[rModels] Correctly split obj meshes by material (#4285)

* Correctly split meshes from tinyobj by material so they can be represented by raylib correctly

* PR Feedback
This commit is contained in:
Jeffery Myers 2024-08-25 09:49:52 -07:00 committed by GitHub
parent f5ef357810
commit 91a9888baa
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1 changed files with 206 additions and 98 deletions

View File

@ -2016,6 +2016,8 @@ static void ProcessMaterialsOBJ(Material *materials, tinyobj_material_t *mats, i
// NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
materials[m] = LoadMaterialDefault();
if (mats == NULL) continue;
// Get default texture, in case no texture is defined
// NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8
materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
@ -4073,131 +4075,237 @@ static void BuildPoseFromParentJoints(BoneInfo *bones, int boneCount, Transform
// - the mesh is automatically triangulated by tinyobj
static Model LoadOBJ(const char *fileName)
{
tinyobj_attrib_t objAttributes = { 0 };
tinyobj_shape_t* objShapes = NULL;
unsigned int objShapeCount = 0;
tinyobj_material_t* objMaterials = NULL;
unsigned int objMaterialCount = 0;
Model model = { 0 };
model.transform = MatrixIdentity();
tinyobj_attrib_t attrib = { 0 };
tinyobj_shape_t *meshes = NULL;
unsigned int meshCount = 0;
char* fileText = LoadFileText(fileName);
tinyobj_material_t *materials = NULL;
unsigned int materialCount = 0;
char *fileText = LoadFileText(fileName);
if (fileText != NULL)
if (fileText == NULL)
{
unsigned int dataSize = (unsigned int)strlen(fileText);
TRACELOG(LOG_ERROR, "MODEL Unable to read obj file %s", fileName);
return model;
}
char currentDir[1024] = { 0 };
strcpy(currentDir, GetWorkingDirectory()); // Save current working directory
const char *workingDir = GetDirectoryPath(fileName); // Switch to OBJ directory for material path correctness
const char* workingDir = GetDirectoryPath(fileName); // Switch to OBJ directory for material path correctness
if (CHDIR(workingDir) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
}
unsigned int dataSize = (unsigned int)strlen(fileText);
unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, fileText, dataSize, flags);
int ret = tinyobj_parse_obj(&objAttributes, &objShapes, &objShapeCount, &objMaterials, &objMaterialCount, fileText, dataSize, flags);
if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load OBJ data", fileName);
else TRACELOG(LOG_INFO, "MODEL: [%s] OBJ data loaded successfully: %i meshes/%i materials", fileName, meshCount, materialCount);
// WARNING: We are not splitting meshes by materials (previous implementation)
// Depending on the provided OBJ that was not the best option and it just crashed
// so, implementation was simplified to prioritize parsed meshes
model.meshCount = meshCount;
// Set number of materials available
// NOTE: There could be more materials available than meshes but it will be resolved at
// model.meshMaterial, just assigning the right material to corresponding mesh
model.materialCount = materialCount;
if (model.materialCount == 0)
if (ret != TINYOBJ_SUCCESS)
{
model.materialCount = 1;
TRACELOG(LOG_INFO, "MODEL: No materials provided, setting one default material for all meshes");
TRACELOG(LOG_ERROR, "MODEL Unable to read obj data %s", fileName);
return model;
}
else if (model.materialCount > 1 && model.meshCount > 1)
{
// TEMP warning about multiple materials, to be removed when proper splitting code is implemented
// any obj with multiple materials will need to have it's materials assigned by the user in code to work at this time
TRACELOG(LOG_INFO, "MODEL: OBJ has multiple materials, manual material assignment will be required.");
}
// Init model meshes and materials
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int)); // Material index assigned to each mesh
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
// Process each provided mesh
for (int i = 0; i < model.meshCount; i++)
{
// WARNING: We need to calculate the mesh triangles manually using meshes[i].face_offset
// because in case of triangulated quads, meshes[i].length actually report quads,
// despite the triangulation that is efectively considered on attrib.num_faces
unsigned int tris = 0;
if (i == model.meshCount - 1) tris = attrib.num_faces - meshes[i].face_offset;
else tris = meshes[i + 1].face_offset;
model.meshes[i].vertexCount = tris*3;
model.meshes[i].triangleCount = tris; // Face count (triangulated)
model.meshes[i].vertices = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
model.meshes[i].texcoords = (float *)RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float));
model.meshes[i].normals = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
model.meshMaterial[i] = 0; // By default, assign material 0 to each mesh
// Process all mesh faces
for (unsigned int face = 0, f = meshes[i].face_offset, v = 0, vt = 0, vn = 0; face < tris; face++, f++, v += 3, vt += 3, vn += 3)
{
// Get indices for the face
tinyobj_vertex_index_t idx0 = attrib.faces[f*3 + 0];
tinyobj_vertex_index_t idx1 = attrib.faces[f*3 + 1];
tinyobj_vertex_index_t idx2 = attrib.faces[f*3 + 2];
// Fill vertices buffer (float) using vertex index of the face
for (int n = 0; n < 3; n++) { model.meshes[i].vertices[v*3 + n] = attrib.vertices[idx0.v_idx*3 + n]; }
for (int n = 0; n < 3; n++) { model.meshes[i].vertices[(v + 1)*3 + n] = attrib.vertices[idx1.v_idx*3 + n]; }
for (int n = 0; n < 3; n++) { model.meshes[i].vertices[(v + 2)*3 + n] = attrib.vertices[idx2.v_idx*3 + n]; }
if (attrib.num_texcoords > 0)
{
// Fill texcoords buffer (float) using vertex index of the face
// NOTE: Y-coordinate must be flipped upside-down
model.meshes[i].texcoords[vt*2 + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
model.meshes[i].texcoords[vt*2 + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1];
model.meshes[i].texcoords[(vt + 1)*2 + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
model.meshes[i].texcoords[(vt + 1)*2 + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1];
model.meshes[i].texcoords[(vt + 2)*2 + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
model.meshes[i].texcoords[(vt + 2)*2 + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1];
}
if (attrib.num_normals > 0)
{
// Fill normals buffer (float) using vertex index of the face
for (int n = 0; n < 3; n++) { model.meshes[i].normals[vn*3 + n] = attrib.normals[idx0.vn_idx*3 + n]; }
for (int n = 0; n < 3; n++) { model.meshes[i].normals[(vn + 1)*3 + n] = attrib.normals[idx1.vn_idx*3 + n]; }
for (int n = 0; n < 3; n++) { model.meshes[i].normals[(vn + 2)*3 + n] = attrib.normals[idx2.vn_idx*3 + n]; }
}
}
}
// Init model materials
if (materialCount > 0) ProcessMaterialsOBJ(model.materials, materials, materialCount);
else model.materials[0] = LoadMaterialDefault(); // Set default material for the mesh
tinyobj_attrib_free(&attrib);
tinyobj_shapes_free(meshes, model.meshCount);
tinyobj_materials_free(materials, materialCount);
UnloadFileText(fileText);
unsigned int faceVertIndex = 0;
unsigned int nextShape = 1;
int lastMaterial = -1;
unsigned int meshIndex = 0;
// count meshes
unsigned int nextShapeEnd = objAttributes.num_face_num_verts;
// see how many verts till the next shape
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
if (faceVertIndex >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
meshIndex++;
}
else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial)
{
meshIndex++;// if this is a new material, we need to allocate a new mesh
}
lastMaterial = objAttributes.material_ids[faceId];
faceVertIndex += objAttributes.face_num_verts[faceId];
}
// allocate the base meshes and materials
model.meshCount = meshIndex + 1;
model.meshes = (Mesh*)MemAlloc(sizeof(Mesh) * model.meshCount);
if (objMaterialCount > 0)
{
model.materialCount = objMaterialCount;
model.materials = (Material*)MemAlloc(sizeof(Material) * objMaterialCount);
}
else // we must allocate at least one material
{
model.materialCount = 1;
model.materials = (Material*)MemAlloc(sizeof(Material) * 1);
}
model.meshMaterial = (int*)MemAlloc(sizeof(int) * model.meshCount);
// see how many verts are in each mesh
unsigned int* localMeshVertexCounts = (unsigned int*)MemAlloc(sizeof(unsigned int) * model.meshCount);
faceVertIndex = 0;
nextShapeEnd = objAttributes.num_face_num_verts;
lastMaterial = -1;
meshIndex = 0;
unsigned int localMeshVertexCount = 0;
nextShape = 1;
if (objShapeCount > 1)
nextShapeEnd = objShapes[nextShape].face_offset;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
bool newMesh = false; // do we need a new mesh?
if (faceVertIndex >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
newMesh = true;
}
else if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial)
{
newMesh = true;
}
lastMaterial = objAttributes.material_ids[faceId];
if (newMesh)
{
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
localMeshVertexCount = 0;
meshIndex++;
}
faceVertIndex += objAttributes.face_num_verts[faceId];
localMeshVertexCount += objAttributes.face_num_verts[faceId];
}
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
for (int i = 0; i < model.meshCount; i++)
{
// allocate the buffers for each mesh
unsigned int vertexCount = localMeshVertexCounts[i];
model.meshes[i].vertexCount = vertexCount;
model.meshes[i].triangleCount = vertexCount / 3;
model.meshes[i].vertices = (float*)MemAlloc(sizeof(float) * vertexCount * 3);
model.meshes[i].normals = (float*)MemAlloc(sizeof(float) * vertexCount * 3);
model.meshes[i].texcoords = (float*)MemAlloc(sizeof(float) * vertexCount * 2);
model.meshes[i].colors = (unsigned char*)MemAlloc(sizeof(unsigned char) * vertexCount * 4);
}
MemFree(localMeshVertexCounts);
localMeshVertexCounts = NULL;
// fill meshes
faceVertIndex = 0;
nextShapeEnd = objAttributes.num_face_num_verts;
// see how many verts till the next shape
nextShape = 1;
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
lastMaterial = -1;
meshIndex = 0;
localMeshVertexCount = 0;
// walk all the faces
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
{
bool newMesh = false; // do we need a new mesh?
if (faceVertIndex >= nextShapeEnd)
{
// try to find the last vert in the next shape
nextShape++;
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
newMesh = true;
}
// if this is a new material, we need to allocate a new mesh
if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) newMesh = true;
lastMaterial = objAttributes.material_ids[faceId];;
if (newMesh)
{
localMeshVertexCount = 0;
meshIndex++;
}
int matId = 0;
if (lastMaterial >= 0 && lastMaterial < (int)objMaterialCount)
matId = lastMaterial;
model.meshMaterial[meshIndex] = matId;
for (int f = 0; f < objAttributes.face_num_verts[faceId]; f++)
{
int vertIndex = objAttributes.faces[faceVertIndex].v_idx;
int normalIndex = objAttributes.faces[faceVertIndex].vn_idx;
int texcordIndex = objAttributes.faces[faceVertIndex].vt_idx;
for (int i = 0; i < 3; i++)
model.meshes[meshIndex].vertices[localMeshVertexCount * 3 + i] = objAttributes.vertices[vertIndex * 3 + i];
for (int i = 0; i < 3; i++)
model.meshes[meshIndex].normals[localMeshVertexCount * 3 + i] = objAttributes.normals[normalIndex * 3 + i];
for (int i = 0; i < 2; i++)
model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + i] = objAttributes.texcoords[texcordIndex * 2 + i];
model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1] = 1.0f - model.meshes[meshIndex].texcoords[localMeshVertexCount * 2 + 1];
for (int i = 0; i < 4; i++)
model.meshes[meshIndex].colors[localMeshVertexCount * 4 + i] = 255;
faceVertIndex++;
localMeshVertexCount++;
}
}
if (objMaterialCount > 0) ProcessMaterialsOBJ(model.materials, objMaterials, objMaterialCount);
else model.materials[0] = LoadMaterialDefault(); // Set default material for the mesh
tinyobj_attrib_free(&objAttributes);
tinyobj_shapes_free(objShapes, objShapeCount);
tinyobj_materials_free(objMaterials, objMaterialCount);
for (int i = 0; i < model.meshCount; i++)
UploadMesh(model.meshes + i, true);
// Restore current working directory
if (CHDIR(currentDir) != 0)
{
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
}
}
return model;
}