Merge pull request #101 from victorfisac/develop

Redesigned physac module (IN PROGRESS)
This commit is contained in:
Ray 2016-03-05 20:16:52 +01:00
commit 893facdf6d
6 changed files with 419 additions and 539 deletions

View File

@ -1,8 +1,8 @@
/*******************************************************************************************
*
* raylib [physac] physics example - Basic rigidbody
* raylib [physac] example - Basic rigidbody
*
* This example has been created using raylib 1.4 (www.raylib.com)
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria (@raysan5)
@ -11,8 +11,8 @@
#include "raylib.h"
#define OBJECT_SIZE 50
#define PLAYER_INDEX 0
#define MOVE_VELOCITY 5
#define JUMP_VELOCITY 35
int main()
{
@ -20,28 +20,45 @@ int main()
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physics] example - basic rigidbody");
InitPhysics(3); // Initialize physics system with maximum physic objects
// Object initialization
Transform player = (Transform){(Vector2){(screenWidth - OBJECT_SIZE) / 2, (screenHeight - OBJECT_SIZE) / 2}, 0.0f, (Vector2){OBJECT_SIZE, OBJECT_SIZE}};
AddCollider(PLAYER_INDEX, (Collider){true, COLLIDER_RECTANGLE, (Rectangle){player.position.x, player.position.y, player.scale.x, player.scale.y}, 0});
AddRigidbody(PLAYER_INDEX, (Rigidbody){true, 1.0f, (Vector2){0, 0}, (Vector2){0, 0}, false, false, true, 0.5f, 1.0f});
// Floor initialization
// NOTE: floor doesn't need a rigidbody because it's a static physic object, just a collider to collide with other dynamic colliders (with rigidbody)
Transform floor = (Transform){(Vector2){0, screenHeight * 0.8f}, 0.0f, (Vector2){screenWidth, screenHeight * 0.2f}};
AddCollider(PLAYER_INDEX + 1, (Collider){true, COLLIDER_RECTANGLE, (Rectangle){floor.position.x, floor.position.y, floor.scale.x, floor.scale.y}, 0});
// Object properties initialization
float moveSpeed = 6.0f;
float jumpForce = 5.0f;
bool physicsDebug = false;
InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody");
InitPhysics(); // Initialize physics module
SetTargetFPS(60);
// Debug variables
bool isDebug = false;
// Player physic object
PhysicObject *player = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
player->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
player->rigidbody.applyGravity = true;
player->rigidbody.friction = 0.3f;
player->collider.enabled = true; // Enable physic object collisions detection
// Player physic object
PhysicObject *player2 = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
player2->rigidbody.enabled = true;
player2->rigidbody.applyGravity = true;
player2->rigidbody.friction = 0.1f;
player2->collider.enabled = true;
// Floor physic object
PhysicObject *floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
floor->collider.enabled = true; // Enable just physic object collisions detection
// Left wall physic object
PhysicObject *leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
leftWall->collider.enabled = true;
// Right wall physic object
PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
rightWall->collider.enabled = true;
// Platform physic objectdd
PhysicObject *platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
platform->collider.enabled = true;
//--------------------------------------------------------------------------------------
// Main game loop
@ -49,35 +66,22 @@ int main()
{
// Update
//----------------------------------------------------------------------------------
UpdatePhysics(); // Update all created physic objects
// Update object physics
// NOTE: all physics detections and reactions are calculated in ApplyPhysics() function (You will live happier :D)
ApplyPhysics(PLAYER_INDEX, &player.position);
// Check debug switch input
if (IsKeyPressed('P')) isDebug = !isDebug;
// Check jump button input
if (IsKeyDown(KEY_SPACE) && GetRigidbody(PLAYER_INDEX).isGrounded)
{
// Reset object Y velocity to avoid double jumping cases but keep the same X velocity that it already has
SetRigidbodyVelocity(PLAYER_INDEX, (Vector2){GetRigidbody(PLAYER_INDEX).velocity.x, 0});
// Add jumping force in Y axis
AddRigidbodyForce(PLAYER_INDEX, (Vector2){0, jumpForce});
}
// Check player movement inputs
if (IsKeyDown('W') && player->rigidbody.isGrounded) player->rigidbody.velocity.y = JUMP_VELOCITY;
// Check movement buttons input
if (IsKeyDown(KEY_RIGHT) || IsKeyDown(KEY_D))
{
// Set rigidbody velocity in X based on moveSpeed value and apply the same Y velocity that it already has
SetRigidbodyVelocity(PLAYER_INDEX, (Vector2){moveSpeed, GetRigidbody(PLAYER_INDEX).velocity.y});
}
else if (IsKeyDown(KEY_LEFT) || IsKeyDown(KEY_A))
{
// Set rigidbody velocity in X based on moveSpeed negative value and apply the same Y velocity that it already has
SetRigidbodyVelocity(PLAYER_INDEX, (Vector2){-moveSpeed, GetRigidbody(PLAYER_INDEX).velocity.y});
}
if (IsKeyDown('A')) player->rigidbody.velocity.x = -MOVE_VELOCITY;
else if (IsKeyDown('D')) player->rigidbody.velocity.x = MOVE_VELOCITY;
// Check debug mode toggle button input
if (IsKeyPressed(KEY_P)) physicsDebug = !physicsDebug;
// Check player 2 movement inputs
if (IsKeyDown(KEY_UP) && player2->rigidbody.isGrounded) player2->rigidbody.velocity.y = JUMP_VELOCITY;
if (IsKeyDown(KEY_LEFT)) player2->rigidbody.velocity.x = -MOVE_VELOCITY;
else if (IsKeyDown(KEY_RIGHT)) player2->rigidbody.velocity.x = MOVE_VELOCITY;
//----------------------------------------------------------------------------------
// Draw
@ -86,28 +90,28 @@ int main()
ClearBackground(RAYWHITE);
// Draw information
DrawText("Use LEFT / RIGHT to MOVE and SPACE to JUMP", (screenWidth - MeasureText("Use LEFT / RIGHT to MOVE and SPACE to JUMP", 20)) / 2, screenHeight * 0.20f, 20, LIGHTGRAY);
DrawText("Use P to switch DEBUG MODE", (screenWidth - MeasureText("Use P to switch DEBUG MODE", 20)) / 2, screenHeight * 0.3f, 20, LIGHTGRAY);
// Check if debug mode is enabled
if (physicsDebug)
if (isDebug)
{
// Draw every internal physics stored collider if it is active
for (int i = 0; i < 2; i++)
{
if (GetCollider(i).enabled)
{
DrawRectangleLines(GetCollider(i).bounds.x, GetCollider(i).bounds.y, GetCollider(i).bounds.width, GetCollider(i).bounds.height, GREEN);
}
}
DrawRectangleLines(floor->collider.bounds.x, floor->collider.bounds.y, floor->collider.bounds.width, floor->collider.bounds.height, GREEN);
DrawRectangleLines(leftWall->collider.bounds.x, leftWall->collider.bounds.y, leftWall->collider.bounds.width, leftWall->collider.bounds.height, GREEN);
DrawRectangleLines(rightWall->collider.bounds.x, rightWall->collider.bounds.y, rightWall->collider.bounds.width, rightWall->collider.bounds.height, GREEN);
DrawRectangleLines(platform->collider.bounds.x, platform->collider.bounds.y, platform->collider.bounds.width, platform->collider.bounds.height, GREEN);
DrawRectangleLines(player->collider.bounds.x, player->collider.bounds.y, player->collider.bounds.width, player->collider.bounds.height, GREEN);
DrawRectangleLines(player2->collider.bounds.x, player2->collider.bounds.y, player2->collider.bounds.width, player2->collider.bounds.height, GREEN);
}
else
{
// Draw player and floor
DrawRectangleRec((Rectangle){player.position.x, player.position.y, player.scale.x, player.scale.y}, GRAY);
DrawRectangleRec((Rectangle){floor.position.x, floor.position.y, floor.scale.x, floor.scale.y}, BLACK);
// Convert transform values to rectangle data type variable
DrawRectangleRec(TransformToRectangle(floor->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(leftWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(rightWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(platform->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(player->transform), RED);
DrawRectangleRec(TransformToRectangle(player2->transform), BLUE);
}
// Draw all physic object information in specific screen position and font size
// DrawPhysicObjectInfo(player, (Vector2){ 10.0f, 10.0f }, 10);
EndDrawing();
//----------------------------------------------------------------------------------
@ -115,8 +119,7 @@ int main()
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadPhysics(); // Unload physic objects
ClosePhysics(); // Unitialize physics module
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------

View File

@ -1,135 +0,0 @@
/*******************************************************************************************
*
* raylib [physac] physics example - Rigidbody forces
*
* This example has been created using raylib 1.4 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#define MAX_OBJECTS 5
#define OBJECTS_OFFSET 150
#define FORCE_INTENSITY 250.0f // Customize by user
#define FORCE_RADIUS 100 // Customize by user
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physics] example - rigidbodies forces");
InitPhysics(MAX_OBJECTS + 1); // Initialize physics system with maximum physic objects
// Physic Objects initialization
Transform objects[MAX_OBJECTS];
for (int i = 0; i < MAX_OBJECTS; i++)
{
objects[i] = (Transform){(Vector2){75 + OBJECTS_OFFSET * i, (screenHeight - 50) / 2}, 0.0f, (Vector2){50, 50}};
AddCollider(i, (Collider){true, COLLIDER_RECTANGLE, (Rectangle){objects[i].position.x, objects[i].position.y, objects[i].scale.x, objects[i].scale.y}, 0});
AddRigidbody(i, (Rigidbody){true, 1.0f, (Vector2){0, 0}, (Vector2){0, 0}, false, false, true, 0.5f, 0.5f});
}
// Floor initialization
// NOTE: floor doesn't need a rigidbody because it's a static physic object, just a collider to collide with other dynamic colliders (with rigidbody)
Transform floor = (Transform){(Vector2){0, screenHeight * 0.8f}, 0.0f, (Vector2){screenWidth, screenHeight * 0.2f}};
AddCollider(MAX_OBJECTS, (Collider){true, COLLIDER_RECTANGLE, (Rectangle){floor.position.x, floor.position.y, floor.scale.x, floor.scale.y}, 0});
bool physicsDebug = false;
SetTargetFPS(60);
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
// Update object physics
// NOTE: all physics detections and reactions are calculated in ApplyPhysics() function (You will live happier :D)
for (int i = 0; i < MAX_OBJECTS; i++)
{
ApplyPhysics(i, &objects[i].position);
}
// Check foce button input
if (IsMouseButtonPressed(MOUSE_LEFT_BUTTON))
{
AddForceAtPosition(GetMousePosition(), FORCE_INTENSITY, FORCE_RADIUS);
}
// Check debug mode toggle button input
if (IsKeyPressed(KEY_P)) physicsDebug = !physicsDebug;
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
// Check if debug mode is enabled
if (physicsDebug)
{
// Draw every internal physics stored collider if it is active (floor included)
for (int i = 0; i < MAX_OBJECTS; i++)
{
if (GetCollider(i).enabled)
{
// Draw collider bounds
DrawRectangleLines(GetCollider(i).bounds.x, GetCollider(i).bounds.y, GetCollider(i).bounds.width, GetCollider(i).bounds.height, GREEN);
// Check if current collider is not floor
if (i < MAX_OBJECTS)
{
// Draw lines between mouse position and objects if they are in force range
if (CheckCollisionPointCircle(GetMousePosition(), (Vector2){GetCollider(i).bounds.x + GetCollider(i).bounds.width / 2, GetCollider(i).bounds.y + GetCollider(i).bounds.height / 2}, FORCE_RADIUS))
{
DrawLineV(GetMousePosition(), (Vector2){GetCollider(i).bounds.x + GetCollider(i).bounds.width / 2, GetCollider(i).bounds.y + GetCollider(i).bounds.height / 2}, RED);
}
}
}
}
// Draw radius circle
DrawCircleLines(GetMousePosition().x, GetMousePosition().y, FORCE_RADIUS, RED);
}
else
{
// Draw objects
for (int i = 0; i < MAX_OBJECTS; i++)
{
DrawRectangleRec((Rectangle){objects[i].position.x, objects[i].position.y, objects[i].scale.x, objects[i].scale.y}, GRAY);
}
// Draw floor
DrawRectangleRec((Rectangle){floor.position.x, floor.position.y, floor.scale.x, floor.scale.y}, BLACK);
}
// Draw help messages
DrawText("Use LEFT MOUSE BUTTON to create a force in mouse position", (screenWidth - MeasureText("Use LEFT MOUSE BUTTON to create a force in mouse position", 20)) / 2, screenHeight * 0.20f, 20, LIGHTGRAY);
DrawText("Use P to switch DEBUG MODE", (screenWidth - MeasureText("Use P to switch DEBUG MODE", 20)) / 2, screenHeight * 0.3f, 20, LIGHTGRAY);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadPhysics(); // Unload physic objects
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,6 +1,6 @@
/**********************************************************************************************
*
* [physac] raylib physics engine module - Basic functions to apply physics to 2D objects
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
*
* Copyright (c) 2015 Victor Fisac and Ramon Santamaria
*
@ -29,329 +29,343 @@
#include "raylib.h"
#endif
#include <math.h>
#include <stdlib.h> // Required for: malloc(), free()
#include <stdlib.h> // Declares malloc() and free() for memory management
#include <math.h> // abs() and fminf()
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define DECIMAL_FIX 0.26f // Decimal margin for collision checks (avoid rigidbodies shake)
#define MAX_PHYSIC_OBJECTS 256
#define PHYSICS_GRAVITY -9.81f/2
#define PHYSICS_STEPS 450
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static Collider *colliders; // Colliders array, dynamically allocated at runtime
static Rigidbody *rigidbodies; // Rigitbody array, dynamically allocated at runtime
static bool collisionChecker;
static int maxElements; // Max physic elements to compute
static bool enabled; // Physics enabled? (true by default)
static Vector2 gravity; // Gravity value used for physic calculations
static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
static int physicObjectsCount; // Counts current enabled physic objects
//----------------------------------------------------------------------------------
// Module specific Functions Declarations
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static float Vector2Length(Vector2 vector);
static float Vector2Distance(Vector2 a, Vector2 b);
static void Vector2Normalize(Vector2 *vector);
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
//----------------------------------------------------------------------------------
// Module Functions Definitions
// Module Functions Definition
//----------------------------------------------------------------------------------
void InitPhysics(int maxPhysicElements)
// Initializes pointers array (just pointers, fixed size)
void InitPhysics()
{
maxElements = maxPhysicElements;
colliders = (Collider *)malloc(maxElements*sizeof(Collider));
rigidbodies = (Rigidbody *)malloc(maxElements*sizeof(Rigidbody));
for (int i = 0; i < maxElements; i++)
// Initialize physics variables
physicObjectsCount = 0;
}
// Update physic objects, calculating physic behaviours and collisions detection
void UpdatePhysics()
{
// Reset all physic objects is grounded state
for(int i = 0; i < physicObjectsCount; i++)
{
colliders[i].enabled = false;
colliders[i].bounds = (Rectangle){ 0, 0, 0, 0 };
colliders[i].radius = 0;
rigidbodies[i].enabled = false;
rigidbodies[i].mass = 0.0f;
rigidbodies[i].velocity = (Vector2){ 0.0f, 0.0f };
rigidbodies[i].acceleration = (Vector2){ 0.0f, 0.0f };
rigidbodies[i].isGrounded = false;
rigidbodies[i].isContact = false;
rigidbodies[i].friction = 0.0f;
if(physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
}
collisionChecker = false;
enabled = true;
// NOTE: To get better results, gravity needs to be 1:10 from original parameter
gravity = (Vector2){ 0.0f, -9.81f/10.0f }; // By default, standard gravity
}
void UnloadPhysics()
{
free(colliders);
free(rigidbodies);
}
void AddCollider(int index, Collider collider)
{
colliders[index] = collider;
}
void AddRigidbody(int index, Rigidbody rigidbody)
{
rigidbodies[index] = rigidbody;
}
void ApplyPhysics(int index, Vector2 *position)
{
if (rigidbodies[index].enabled)
for(int steps = 0; steps < PHYSICS_STEPS; steps++)
{
// Apply friction to acceleration
if (rigidbodies[index].acceleration.x > DECIMAL_FIX)
for(int i = 0; i < physicObjectsCount; i++)
{
rigidbodies[index].acceleration.x -= rigidbodies[index].friction;
}
else if (rigidbodies[index].acceleration.x < -DECIMAL_FIX)
{
rigidbodies[index].acceleration.x += rigidbodies[index].friction;
}
else
{
rigidbodies[index].acceleration.x = 0;
}
if (rigidbodies[index].acceleration.y > DECIMAL_FIX / 2)
{
rigidbodies[index].acceleration.y -= rigidbodies[index].friction;
}
else if (rigidbodies[index].acceleration.y < -DECIMAL_FIX / 2)
{
rigidbodies[index].acceleration.y += rigidbodies[index].friction;
}
else
{
rigidbodies[index].acceleration.y = 0;
}
// Apply friction to velocity
if (rigidbodies[index].isGrounded)
{
if (rigidbodies[index].velocity.x > DECIMAL_FIX)
if(physicObjects[i]->enabled)
{
rigidbodies[index].velocity.x -= rigidbodies[index].friction;
}
else if (rigidbodies[index].velocity.x < -DECIMAL_FIX)
{
rigidbodies[index].velocity.x += rigidbodies[index].friction;
}
else
{
rigidbodies[index].velocity.x = 0;
}
}
if (rigidbodies[index].velocity.y > DECIMAL_FIX / 2)
{
rigidbodies[index].velocity.y -= rigidbodies[index].friction;
}
else if (rigidbodies[index].velocity.y < -DECIMAL_FIX / 2)
{
rigidbodies[index].velocity.y += rigidbodies[index].friction;
}
else
{
rigidbodies[index].velocity.y = 0;
}
// Apply gravity
rigidbodies[index].velocity.y += gravity.y;
rigidbodies[index].velocity.x += gravity.x;
// Apply acceleration
rigidbodies[index].velocity.y += rigidbodies[index].acceleration.y;
rigidbodies[index].velocity.x += rigidbodies[index].acceleration.x;
// Update position vector
position->x += rigidbodies[index].velocity.x;
position->y -= rigidbodies[index].velocity.y;
// Update collider bounds
colliders[index].bounds.x = position->x;
colliders[index].bounds.y = position->y;
// Check collision with other colliders
collisionChecker = false;
rigidbodies[index].isContact = false;
for (int j = 0; j < maxElements; j++)
{
if (index != j)
{
if (colliders[index].enabled && colliders[j].enabled)
// Update physic behaviour
if(physicObjects[i]->rigidbody.enabled)
{
if (colliders[index].type == COLLIDER_RECTANGLE)
// Apply friction to acceleration in X axis
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to velocity in X axis
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
// Apply gravity to velocity
if (physicObjects[i]->rigidbody.applyGravity) physicObjects[i]->rigidbody.velocity.y += PHYSICS_GRAVITY/PHYSICS_STEPS;
// Apply acceleration to velocity
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
// Apply velocity to position
physicObjects[i]->transform.position.x += physicObjects[i]->rigidbody.velocity.x/PHYSICS_STEPS;
physicObjects[i]->transform.position.y -= physicObjects[i]->rigidbody.velocity.y/PHYSICS_STEPS;
}
// Update collision detection
if (physicObjects[i]->collider.enabled)
{
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicObjectsCount; k++)
{
if (colliders[j].type == COLLIDER_RECTANGLE)
if (physicObjects[k]->collider.enabled && i != k)
{
if (CheckCollisionRecs(colliders[index].bounds, colliders[j].bounds))
// Check if colliders are overlapped
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
{
collisionChecker = true;
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
if ((colliders[index].bounds.y + colliders[index].bounds.height <= colliders[j].bounds.y) == false)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision ontact normal
Vector2 contactNormal = { 0.0f, 0.0f };
// Calculate direction vector from i to k
Vector2 direction;
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
float penetrationDepth = 0.0f;
// Calculate overlap on X axis
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
rigidbodies[index].isContact = true;
// Calculate overlap on Y axis
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
// Update rigidbody grounded state
if (physicObjects[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x, physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y };
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e) * velAlongNormal;
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio;
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio;
}
if (physicObjects[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio;
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio;
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicObjects[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
if (physicObjects[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
}
}
}
}
}
else
{
if (CheckCollisionCircleRec((Vector2){colliders[j].bounds.x, colliders[j].bounds.y}, colliders[j].radius, colliders[index].bounds))
{
collisionChecker = true;
}
}
}
else
{
if (colliders[j].type == COLLIDER_RECTANGLE)
{
if (CheckCollisionCircleRec((Vector2){colliders[index].bounds.x, colliders[index].bounds.y}, colliders[index].radius, colliders[j].bounds))
{
collisionChecker = true;
}
}
else
{
if (CheckCollisionCircles((Vector2){colliders[j].bounds.x, colliders[j].bounds.y}, colliders[j].radius, (Vector2){colliders[index].bounds.x, colliders[index].bounds.y}, colliders[index].radius))
{
collisionChecker = true;
}
}
}
}
}
}
// Update grounded rigidbody state
rigidbodies[index].isGrounded = collisionChecker;
// Set grounded state if needed (fix overlap and set y velocity)
if (collisionChecker && rigidbodies[index].velocity.y != 0)
{
position->y += rigidbodies[index].velocity.y;
rigidbodies[index].velocity.y = -rigidbodies[index].velocity.y * rigidbodies[index].bounciness;
}
if (rigidbodies[index].isContact)
{
position->x -= rigidbodies[index].velocity.x;
rigidbodies[index].velocity.x = rigidbodies[index].velocity.x;
}
}
}
void SetRigidbodyEnabled(int index, bool state)
// Unitialize all physic objects and empty the objects pool
void ClosePhysics()
{
rigidbodies[index].enabled = state;
}
void SetRigidbodyVelocity(int index, Vector2 velocity)
{
rigidbodies[index].velocity.x = velocity.x;
rigidbodies[index].velocity.y = velocity.y;
}
void SetRigidbodyAcceleration(int index, Vector2 acceleration)
{
rigidbodies[index].acceleration.x = acceleration.x;
rigidbodies[index].acceleration.y = acceleration.y;
}
void AddRigidbodyForce(int index, Vector2 force)
{
rigidbodies[index].acceleration.x = force.x / rigidbodies[index].mass;
rigidbodies[index].acceleration.y = force.y / rigidbodies[index].mass;
}
void AddForceAtPosition(Vector2 position, float intensity, float radius)
{
for(int i = 0; i < maxElements; i++)
{
if(rigidbodies[i].enabled)
{
// Get position from its collider
Vector2 pos = {colliders[i].bounds.x, colliders[i].bounds.y};
// Get distance between rigidbody position and target position
float distance = Vector2Distance(position, pos);
if(distance <= radius)
{
// Calculate force based on direction
Vector2 force = {colliders[i].bounds.x - position.x, colliders[i].bounds.y - position.y};
// Normalize the direction vector
Vector2Normalize(&force);
// Invert y value
force.y *= -1;
// Apply intensity and distance
force = (Vector2){force.x * intensity / distance, force.y * intensity / distance};
// Add calculated force to the rigidbodies
AddRigidbodyForce(i, force);
}
}
}
}
void SetColliderEnabled(int index, bool state)
{
colliders[index].enabled = state;
}
Collider GetCollider(int index)
{
return colliders[index];
}
Rigidbody GetRigidbody(int index)
{
return rigidbodies[index];
}
//----------------------------------------------------------------------------------
// Module specific Functions Definitions
//----------------------------------------------------------------------------------
static float Vector2Length(Vector2 vector)
{
return sqrt((vector.x * vector.x) + (vector.y * vector.y));
}
static float Vector2Distance(Vector2 a, Vector2 b)
{
Vector2 vector = {b.x - a.x, b.y - a.y};
return sqrt((vector.x * vector.x) + (vector.y * vector.y));
}
static void Vector2Normalize(Vector2 *vector)
{
float length = Vector2Length(*vector);
// Free all dynamic memory allocations
for (int i = 0; i < physicObjectsCount; i++) free(physicObjects[i]);
if (length != 0.0f)
{
vector->x /= length;
vector->y /= length;
}
else
{
vector->x = 0.0f;
vector->y = 0.0f;
}
// Reset enabled physic objects count
physicObjectsCount = 0;
}
// Create a new physic object dinamically, initialize it and add to pool
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale)
{
// Allocate dynamic memory
PhysicObject *obj = (PhysicObject *)malloc(sizeof(PhysicObject));
// Initialize physic object values with generic values
obj->id = physicObjectsCount;
obj->enabled = true;
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
obj->rigidbody.enabled = false;
obj->rigidbody.mass = 1.0f;
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.applyGravity = false;
obj->rigidbody.isGrounded = false;
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = false;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
// Add new physic object to the pointers array
physicObjects[physicObjectsCount] = obj;
// Increase enabled physic objects count
physicObjectsCount++;
return obj;
}
// Destroy a specific physic object and take it out of the list
void DestroyPhysicObject(PhysicObject *pObj)
{
// Free dynamic memory allocation
free(physicObjects[pObj->id]);
// Remove *obj from the pointers array
for (int i = pObj->id; i < physicObjectsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < physicObjectsCount)
{
physicObjects[i] = physicObjects[i + 1];
physicObjects[i]->id = physicObjects[i + 1]->id;
}
else free(physicObjects[i]);
}
// Decrease enabled physic objects count
physicObjectsCount--;
}
// Convert Transform data type to Rectangle (position and scale)
Rectangle TransformToRectangle(Transform transform)
{
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
}
// Draw physic object information at screen position
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize)
{
// Draw physic object ID
DrawText(FormatText("PhysicObject ID: %i - Enabled: %i", pObj->id, pObj->enabled), position.x, position.y, fontSize, BLACK);
// Draw physic object transform values
DrawText(FormatText("\nTRANSFORM\nPosition: %f, %f\nRotation: %f\nScale: %f, %f", pObj->transform.position.x, pObj->transform.position.y, pObj->transform.rotation, pObj->transform.scale.x, pObj->transform.scale.y), position.x, position.y, fontSize, BLACK);
// Draw physic object rigidbody values
DrawText(FormatText("\n\n\n\n\n\nRIGIDBODY\nEnabled: %i\nMass: %f\nAcceleration: %f, %f\nVelocity: %f, %f\nApplyGravity: %i\nIsGrounded: %i\nFriction: %f\nBounciness: %f", pObj->rigidbody.enabled, pObj->rigidbody.mass, pObj->rigidbody.acceleration.x, pObj->rigidbody.acceleration.y,
pObj->rigidbody.velocity.x, pObj->rigidbody.velocity.y, pObj->rigidbody.applyGravity, pObj->rigidbody.isGrounded, pObj->rigidbody.friction, pObj->rigidbody.bounciness), position.x, position.y, fontSize, BLACK);
DrawText(FormatText("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nCOLLIDER\nEnabled: %i\nBounds: %i, %i, %i, %i\nRadius: %i", pObj->collider.enabled, pObj->collider.bounds.x, pObj->collider.bounds.y, pObj->collider.bounds.width, pObj->collider.bounds.height, pObj->collider.radius), position.x, position.y, fontSize, BLACK);
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Returns the dot product of two Vector2
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y;
return result;
}

View File

@ -1,6 +1,6 @@
/**********************************************************************************************
*
* [physac] raylib physics engine module - Basic functions to apply physics to 2D objects
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
*
* Copyright (c) 2015 Victor Fisac and Ramon Santamaria
*
@ -31,62 +31,65 @@
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// Collider types
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
// Transform struct
typedef struct Transform {
Vector2 position;
float rotation;
Vector2 scale;
} Transform;
// Rigidbody struct
typedef struct Rigidbody {
bool enabled;
bool enabled; // Acts as kinematic state (collisions are calculated anyway)
float mass;
Vector2 acceleration;
Vector2 velocity;
bool isGrounded;
bool isContact; // Avoid freeze player when touching floor
bool applyGravity;
float friction; // 0.0f to 1.0f
float bounciness; // 0.0f to 1.0f
bool isGrounded;
float friction; // Normalized value
float bounciness; // Normalized value
} Rigidbody;
// Collider struct
typedef struct Collider {
bool enabled;
ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
} Collider;
typedef struct PhysicObject {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
} PhysicObject;
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
//----------------------------------------------------------------------------------
// Module Functions Declarations
// Module Functions Declaration
//----------------------------------------------------------------------------------
void InitPhysics(int maxPhysicElements); // Initialize all internal physics values
void UnloadPhysics(); // Unload physic elements arrays
void InitPhysics(); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
void AddRigidbody(int index, Rigidbody rigidbody); // Initialize a new rigidbody with parameters to internal index slot
void AddCollider(int index, Collider collider); // Initialize a new Collider with parameters to internal index slot
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
void ApplyPhysics(int index, Vector2 *position); // Apply physics to internal rigidbody, physics calculations are applied to position pointer parameter
void SetRigidbodyEnabled(int index, bool state); // Set enabled state to a defined rigidbody
void SetRigidbodyVelocity(int index, Vector2 velocity); // Set velocity of rigidbody (without considering of mass value)
void SetRigidbodyAcceleration(int index, Vector2 acceleration); // Set acceleration of rigidbody (without considering of mass value)
void AddRigidbodyForce(int index, Vector2 force); // Set rigidbody force (considering mass value)
void AddForceAtPosition(Vector2 position, float intensity, float radius); // Add a force to all enabled rigidbodies at a position
void SetColliderEnabled(int index, bool state); // Set enabled state to a defined collider
Rigidbody GetRigidbody(int index); // Returns the internal rigidbody data defined by index parameter
Collider GetCollider(int index); // Returns the internal collider data defined by index parameter
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position
#ifdef __cplusplus
}

View File

@ -474,37 +474,40 @@ typedef struct {
// Camera system modes
typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode;
// Collider types
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType;
// Transform struct
typedef struct Transform {
Vector2 position;
float rotation;
Vector2 scale;
} Transform;
// Rigidbody struct
typedef struct Rigidbody {
bool enabled;
bool enabled; // Acts as kinematic state (collisions are calculated anyway)
float mass;
Vector2 acceleration;
Vector2 velocity;
bool isGrounded;
bool isContact; // Avoid freeze player when touching floor
bool applyGravity;
float friction; // 0.0f to 1.0f
float bounciness; // 0.0f to 1.0f
bool isGrounded;
float friction; // Normalized value
float bounciness; // Normalized value
} Rigidbody;
// Collider struct
typedef struct Collider {
bool enabled;
ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE
} Collider;
typedef struct PhysicObject {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
} PhysicObject;
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
@ -811,25 +814,17 @@ void SetShaderMap(Shader *shader, int mapLocation, Texture2D texture, int textur
void SetBlendMode(int mode); // Set blending mode (alpha, additive, multiplied)
//----------------------------------------------------------------------------------
// Physics System Functions (engine-module: physac)
// Physics System Functions (Module: physac)
//----------------------------------------------------------------------------------
void InitPhysics(int maxPhysicElements); // Initialize all internal physics values
void UnloadPhysics(); // Unload physic elements arrays
void InitPhysics(); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
void AddRigidbody(int index, Rigidbody rigidbody); // Initialize a new rigidbody with parameters to internal index slot
void AddCollider(int index, Collider collider); // Initialize a new Collider with parameters to internal index slot
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
void ApplyPhysics(int index, Vector2 *position); // Apply physics to internal rigidbody, physics calculations are applied to position pointer parameter
void SetRigidbodyEnabled(int index, bool state); // Set enabled state to a defined rigidbody
void SetRigidbodyVelocity(int index, Vector2 velocity); // Set velocity of rigidbody (without considering of mass value)
void SetRigidbodyAcceleration(int index, Vector2 acceleration); // Set acceleration of rigidbody (without considering of mass value)
void AddRigidbodyForce(int index, Vector2 force); // Set rigidbody force (considering mass value)
void AddForceAtPosition(Vector2 position, float intensity, float radius); // Add a force to all enabled rigidbodies at a position
void SetColliderEnabled(int index, bool state); // Set enabled state to a defined collider
Rigidbody GetRigidbody(int index); // Returns the internal rigidbody data defined by index parameter
Collider GetCollider(int index); // Returns the internal collider data defined by index parameter
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position
//------------------------------------------------------------------------------------
// Audio Loading and Playing Functions (Module: audio)