Converted physac module to header only
This commit is contained in:
parent
dcbfb83031
commit
558ec3891b
594
src/physac.c
594
src/physac.c
@ -1,594 +0,0 @@
|
||||
/**********************************************************************************************
|
||||
*
|
||||
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
|
||||
*
|
||||
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
|
||||
*
|
||||
* This software is provided "as-is", without any express or implied warranty. In no event
|
||||
* will the authors be held liable for any damages arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose, including commercial
|
||||
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
||||
* wrote the original software. If you use this software in a product, an acknowledgment
|
||||
* in the product documentation would be appreciated but is not required.
|
||||
*
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
||||
* as being the original software.
|
||||
*
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
//#define PHYSAC_STANDALONE // NOTE: To use the physics module as standalone lib, just uncomment this line
|
||||
|
||||
#if defined(PHYSAC_STANDALONE)
|
||||
#include "physac.h"
|
||||
#else
|
||||
#include "raylib.h"
|
||||
#endif
|
||||
|
||||
#include <stdlib.h> // Required for: malloc(), free()
|
||||
#include <math.h> // Required for: cos(), sin(), abs(), fminf()
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
#define MAX_PHYSIC_OBJECTS 256 // Maximum available physic object slots in objects pool
|
||||
#define PHYSICS_STEPS 450 // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
|
||||
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
|
||||
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Types and Structures Definition
|
||||
// NOTE: Below types are required for PHYSAC_STANDALONE usage
|
||||
//----------------------------------------------------------------------------------
|
||||
// ...
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Global Variables Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
static PhysicObject physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
|
||||
static int physicObjectsCount; // Counts current enabled physic objects
|
||||
static Vector2 gravityForce; // Gravity force
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
|
||||
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Initializes pointers array (just pointers, fixed size)
|
||||
void InitPhysics(Vector2 gravity)
|
||||
{
|
||||
// Initialize physics variables
|
||||
physicObjectsCount = 0;
|
||||
gravityForce = gravity;
|
||||
}
|
||||
|
||||
// Update physic objects, calculating physic behaviours and collisions detection
|
||||
void UpdatePhysics()
|
||||
{
|
||||
// Reset all physic objects is grounded state
|
||||
for (int i = 0; i < physicObjectsCount; i++) physicObjects[i]->rigidbody.isGrounded = false;
|
||||
|
||||
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
|
||||
{
|
||||
for (int i = 0; i < physicObjectsCount; i++)
|
||||
{
|
||||
if (physicObjects[i]->enabled)
|
||||
{
|
||||
// Update physic behaviour
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Apply friction to acceleration in X axis
|
||||
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
|
||||
|
||||
// Apply friction to acceleration in Y axis
|
||||
if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
|
||||
|
||||
// Apply friction to velocity in X axis
|
||||
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.velocity.x = 0.0f;
|
||||
|
||||
// Apply friction to velocity in Y axis
|
||||
if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicObjects[i]->rigidbody.velocity.y = 0.0f;
|
||||
|
||||
// Apply gravity to velocity
|
||||
if (physicObjects[i]->rigidbody.applyGravity)
|
||||
{
|
||||
physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
|
||||
physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
|
||||
}
|
||||
|
||||
// Apply acceleration to velocity
|
||||
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
|
||||
physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
|
||||
|
||||
// Apply velocity to position
|
||||
physicObjects[i]->transform.position.x += physicObjects[i]->rigidbody.velocity.x/PHYSICS_STEPS;
|
||||
physicObjects[i]->transform.position.y -= physicObjects[i]->rigidbody.velocity.y/PHYSICS_STEPS;
|
||||
}
|
||||
|
||||
// Update collision detection
|
||||
if (physicObjects[i]->collider.enabled)
|
||||
{
|
||||
// Update collider bounds
|
||||
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
|
||||
|
||||
// Check collision with other colliders
|
||||
for (int k = 0; k < physicObjectsCount; k++)
|
||||
{
|
||||
if (physicObjects[k]->collider.enabled && i != k)
|
||||
{
|
||||
// Resolve physic collision
|
||||
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
|
||||
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
|
||||
|
||||
// 1. Calculate collision normal
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Define collision contact normal, direction and penetration depth
|
||||
Vector2 contactNormal = { 0.0f, 0.0f };
|
||||
Vector2 direction = { 0.0f, 0.0f };
|
||||
float penetrationDepth = 0.0f;
|
||||
|
||||
switch (physicObjects[i]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
switch (physicObjects[k]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector from i to k
|
||||
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
|
||||
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
|
||||
|
||||
// Define overlapping and penetration attributes
|
||||
Vector2 overlap;
|
||||
|
||||
// Calculate overlap on X axis
|
||||
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
|
||||
|
||||
// SAT test on X axis
|
||||
if (overlap.x > 0.0f)
|
||||
{
|
||||
// Calculate overlap on Y axis
|
||||
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
|
||||
|
||||
// SAT test on Y axis
|
||||
if (overlap.y > 0.0f)
|
||||
{
|
||||
// Find out which axis is axis of least penetration
|
||||
if (overlap.y > overlap.x)
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
else contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
|
||||
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
|
||||
else closestPoint.x = physicObjects[i]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
|
||||
else closestPoint.y = physicObjects[i]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicObjects[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
switch (physicObjects[k]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
|
||||
direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
|
||||
else closestPoint.x = physicObjects[k]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
|
||||
else closestPoint.y = physicObjects[k]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicObjects[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal and penetration depth
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
|
||||
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
|
||||
|
||||
// Calculate distance between circles
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Check if circles are not completely overlapped
|
||||
if (distance != 0.0f)
|
||||
{
|
||||
// Calculate contact normal direction (Y axis needs to be flipped)
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
}
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
|
||||
// Update rigidbody grounded state
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
|
||||
}
|
||||
|
||||
// 2. Calculate collision impulse
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate relative velocity
|
||||
Vector2 relVelocity = { 0.0f, 0.0f };
|
||||
relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
|
||||
relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
|
||||
|
||||
// Calculate relative velocity in terms of the normal direction
|
||||
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
|
||||
|
||||
// Dot not resolve if velocities are separating
|
||||
if (velAlongNormal <= 0.0f)
|
||||
{
|
||||
// Calculate minimum bounciness value from both objects
|
||||
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
|
||||
|
||||
// Calculate impulse scalar value
|
||||
float j = -(1.0f + e)*velAlongNormal;
|
||||
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
|
||||
|
||||
// Calculate final impulse vector
|
||||
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
|
||||
|
||||
// Calculate collision mass ration
|
||||
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
|
||||
float ratio = 0.0f;
|
||||
|
||||
// Apply impulse to current rigidbodies velocities if they are enabled
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[i]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicObjects[k]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
// 3. Correct colliders overlaping (transform position)
|
||||
// ---------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate transform position penetration correction
|
||||
Vector2 posCorrection;
|
||||
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
|
||||
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
|
||||
|
||||
// Fix transform positions
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
|
||||
|
||||
if (physicObjects[k]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
|
||||
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Unitialize all physic objects and empty the objects pool
|
||||
void ClosePhysics()
|
||||
{
|
||||
// Free all dynamic memory allocations
|
||||
for (int i = 0; i < physicObjectsCount; i++) free(physicObjects[i]);
|
||||
|
||||
// Reset enabled physic objects count
|
||||
physicObjectsCount = 0;
|
||||
}
|
||||
|
||||
// Create a new physic object dinamically, initialize it and add to pool
|
||||
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale)
|
||||
{
|
||||
// Allocate dynamic memory
|
||||
PhysicObject obj = (PhysicObject)malloc(sizeof(PhysicObjectData));
|
||||
|
||||
// Initialize physic object values with generic values
|
||||
obj->id = physicObjectsCount;
|
||||
obj->enabled = true;
|
||||
|
||||
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
|
||||
|
||||
obj->rigidbody.enabled = false;
|
||||
obj->rigidbody.mass = 1.0f;
|
||||
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
|
||||
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
|
||||
obj->rigidbody.applyGravity = false;
|
||||
obj->rigidbody.isGrounded = false;
|
||||
obj->rigidbody.friction = 0.0f;
|
||||
obj->rigidbody.bounciness = 0.0f;
|
||||
|
||||
obj->collider.enabled = true;
|
||||
obj->collider.type = COLLIDER_RECTANGLE;
|
||||
obj->collider.bounds = TransformToRectangle(obj->transform);
|
||||
obj->collider.radius = 0.0f;
|
||||
|
||||
// Add new physic object to the pointers array
|
||||
physicObjects[physicObjectsCount] = obj;
|
||||
|
||||
// Increase enabled physic objects count
|
||||
physicObjectsCount++;
|
||||
|
||||
return obj;
|
||||
}
|
||||
|
||||
// Destroy a specific physic object and take it out of the list
|
||||
void DestroyPhysicObject(PhysicObject pObj)
|
||||
{
|
||||
// Free dynamic memory allocation
|
||||
free(physicObjects[pObj->id]);
|
||||
|
||||
// Remove *obj from the pointers array
|
||||
for (int i = pObj->id; i < physicObjectsCount; i++)
|
||||
{
|
||||
// Resort all the following pointers of the array
|
||||
if ((i + 1) < physicObjectsCount)
|
||||
{
|
||||
physicObjects[i] = physicObjects[i + 1];
|
||||
physicObjects[i]->id = physicObjects[i + 1]->id;
|
||||
}
|
||||
else free(physicObjects[i]);
|
||||
}
|
||||
|
||||
// Decrease enabled physic objects count
|
||||
physicObjectsCount--;
|
||||
}
|
||||
|
||||
// Apply directional force to a physic object
|
||||
void ApplyForce(PhysicObject pObj, Vector2 force)
|
||||
{
|
||||
if (pObj->rigidbody.enabled)
|
||||
{
|
||||
pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
|
||||
pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply radial force to all physic objects in range
|
||||
void ApplyForceAtPosition(Vector2 position, float force, float radius)
|
||||
{
|
||||
for (int i = 0; i < physicObjectsCount; i++)
|
||||
{
|
||||
if (physicObjects[i]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate direction and distance between force and physic object pposition
|
||||
Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
|
||||
|
||||
if (physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
|
||||
{
|
||||
distance.x += physicObjects[i]->transform.scale.x/2;
|
||||
distance.y += physicObjects[i]->transform.scale.y/2;
|
||||
}
|
||||
|
||||
float distanceLength = Vector2Length(distance);
|
||||
|
||||
// Check if physic object is in force range
|
||||
if (distanceLength <= radius)
|
||||
{
|
||||
// Normalize force direction
|
||||
distance.x /= distanceLength;
|
||||
distance.y /= -distanceLength;
|
||||
|
||||
// Calculate final force
|
||||
Vector2 finalForce = { distance.x*force, distance.y*force };
|
||||
|
||||
// Apply force to the physic object
|
||||
ApplyForce(physicObjects[i], finalForce);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Transform data type to Rectangle (position and scale)
|
||||
Rectangle TransformToRectangle(Transform transform)
|
||||
{
|
||||
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Returns the dot product of two Vector2
|
||||
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = v1.x*v2.x + v1.y*v2.y;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static float Vector2Length(Vector2 v)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = sqrt(v.x*v.x + v.y*v.y);
|
||||
|
||||
return result;
|
||||
}
|
684
src/physac.h
684
src/physac.h
@ -1,8 +1,45 @@
|
||||
/**********************************************************************************************
|
||||
*
|
||||
* [physac] raylib physics module - Basic functions to apply physics to 2D objects
|
||||
* physac 1.0 - 2D Physics library for raylib (https://github.com/raysan5/raylib)
|
||||
*
|
||||
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria
|
||||
* // TODO: Description...
|
||||
*
|
||||
* CONFIGURATION:
|
||||
*
|
||||
* #define PHYSAC_IMPLEMENTATION
|
||||
* Generates the implementation of the library into the included file.
|
||||
* If not defined, the library is in header only mode and can be included in other headers
|
||||
* or source files without problems. But only ONE file should hold the implementation.
|
||||
*
|
||||
* #define PHYSAC_STATIC (defined by default)
|
||||
* The generated implementation will stay private inside implementation file and all
|
||||
* internal symbols and functions will only be visible inside that file.
|
||||
*
|
||||
* #define PHYSAC_STANDALONE
|
||||
* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
|
||||
* internally in the library and input management and drawing functions must be provided by
|
||||
* the user (check library implementation for further details).
|
||||
*
|
||||
* #define PHYSAC_MALLOC()
|
||||
* #define PHYSAC_FREE()
|
||||
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
|
||||
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
|
||||
*
|
||||
* LIMITATIONS:
|
||||
*
|
||||
* // TODO.
|
||||
*
|
||||
* VERSIONS:
|
||||
*
|
||||
* 1.0 (09-Jun-2016) Module names review and converted to header-only.
|
||||
* 0.9 (23-Mar-2016) Complete module redesign, steps-based for better physics resolution.
|
||||
* 0.3 (13-Feb-2016) Reviewed to add PhysicObjects pool.
|
||||
* 0.2 (03-Jan-2016) Improved physics calculations.
|
||||
* 0.1 (30-Dec-2015) Initial release.
|
||||
*
|
||||
* LICENSE: zlib/libpng
|
||||
*
|
||||
* Copyright (c) 2016 Victor Fisac (main developer) and Ramon Santamaria
|
||||
*
|
||||
* This software is provided "as-is", without any express or implied warranty. In no event
|
||||
* will the authors be held liable for any damages arising from the use of this software.
|
||||
@ -24,6 +61,21 @@
|
||||
#ifndef PHYSAC_H
|
||||
#define PHYSAC_H
|
||||
|
||||
#if !defined(RAYGUI_STANDALONE)
|
||||
#include "raylib.h"
|
||||
#endif
|
||||
|
||||
#define PHYSAC_STATIC
|
||||
#ifdef PHYSAC_STATIC
|
||||
#define PHYSACDEF static // Functions just visible to module including this file
|
||||
#else
|
||||
#ifdef __cplusplus
|
||||
#define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
|
||||
#else
|
||||
#define PHYSACDEF extern // Functions visible from other files
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
@ -33,12 +85,28 @@
|
||||
// Types and Structures Definition
|
||||
// NOTE: Below types are required for PHYSAC_STANDALONE usage
|
||||
//----------------------------------------------------------------------------------
|
||||
#if defined(PHYSAC_STANDALONE)
|
||||
#ifndef __cplusplus
|
||||
// Boolean type
|
||||
#ifndef true
|
||||
typedef enum { false, true } bool;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Vector2 type
|
||||
typedef struct Vector2 {
|
||||
float x;
|
||||
float y;
|
||||
} Vector2;
|
||||
// Vector2 type
|
||||
typedef struct Vector2 {
|
||||
float x;
|
||||
float y;
|
||||
} Vector2;
|
||||
|
||||
// Rectangle type
|
||||
typedef struct Rectangle {
|
||||
int x;
|
||||
int y;
|
||||
int width;
|
||||
int height;
|
||||
} Rectangle;
|
||||
#endif
|
||||
|
||||
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
|
||||
|
||||
@ -66,13 +134,13 @@ typedef struct Collider {
|
||||
int radius; // Used for COLLIDER_CIRCLE
|
||||
} Collider;
|
||||
|
||||
typedef struct PhysicObjectData {
|
||||
typedef struct PhysicBodyData {
|
||||
unsigned int id;
|
||||
Transform transform;
|
||||
Rigidbody rigidbody;
|
||||
Collider collider;
|
||||
bool enabled;
|
||||
} PhysicObjectData, *PhysicObject;
|
||||
} PhysicBodyData, *PhysicBody;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" { // Prevents name mangling of functions
|
||||
@ -81,20 +149,602 @@ extern "C" { // Prevents name mangling of functions
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
|
||||
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
|
||||
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
|
||||
PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
|
||||
PHYSACDEF void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
|
||||
PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
|
||||
|
||||
PhysicObject CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
|
||||
void DestroyPhysicObject(PhysicObject pObj); // Destroy a specific physic object and take it out of the list
|
||||
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
|
||||
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody); // Destroy a specific physic body and take it out of the list
|
||||
|
||||
void ApplyForce(PhysicObject pObj, Vector2 force); // Apply directional force to a physic object
|
||||
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
|
||||
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force); // Apply directional force to a physic body
|
||||
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
|
||||
|
||||
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
|
||||
PHYSACDEF Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // PHYSAC_H
|
||||
|
||||
|
||||
/***********************************************************************************
|
||||
*
|
||||
* PHYSAC IMPLEMENTATION
|
||||
*
|
||||
************************************************************************************/
|
||||
|
||||
#if defined(PHYSAC_IMPLEMENTATION)
|
||||
|
||||
// Check if custom malloc/free functions defined, if not, using standard ones
|
||||
#if !defined(PHYSAC_MALLOC)
|
||||
#include <stdlib.h> // Required for: malloc(), free()
|
||||
|
||||
#define PHYSAC_MALLOC(size) malloc(size)
|
||||
#define PHYSAC_FREE(ptr) free(ptr)
|
||||
#endif
|
||||
|
||||
#include <math.h> // Required for: cos(), sin(), abs(), fminf()
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Defines and Macros
|
||||
//----------------------------------------------------------------------------------
|
||||
#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
|
||||
#define PHYSICS_STEPS 450 // Physics update steps number (divided calculations in steps per frame) to get more accurately collisions detections
|
||||
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
|
||||
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Types and Structures Definition
|
||||
// NOTE: Below types are required for PHYSAC_STANDALONE usage
|
||||
//----------------------------------------------------------------------------------
|
||||
// ...
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Global Variables Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
static PhysicBody physicBodies[MAX_PHYSIC_BODIES]; // Physic bodies pool
|
||||
static int physicBodiesCount; // Counts current enabled physic bodies
|
||||
static Vector2 gravityForce; // Gravity force
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
|
||||
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Initializes pointers array (just pointers, fixed size)
|
||||
PHYSACDEF void InitPhysics(Vector2 gravity)
|
||||
{
|
||||
// Initialize physics variables
|
||||
physicBodiesCount = 0;
|
||||
gravityForce = gravity;
|
||||
}
|
||||
|
||||
// Update physic objects, calculating physic behaviours and collisions detection
|
||||
PHYSACDEF void UpdatePhysics()
|
||||
{
|
||||
// Reset all physic objects is grounded state
|
||||
for (int i = 0; i < physicBodiesCount; i++) physicBodies[i]->rigidbody.isGrounded = false;
|
||||
|
||||
for (int steps = 0; steps < PHYSICS_STEPS; steps++)
|
||||
{
|
||||
for (int i = 0; i < physicBodiesCount; i++)
|
||||
{
|
||||
if (physicBodies[i]->enabled)
|
||||
{
|
||||
// Update physic behaviour
|
||||
if (physicBodies[i]->rigidbody.enabled)
|
||||
{
|
||||
// Apply friction to acceleration in X axis
|
||||
if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
|
||||
|
||||
// Apply friction to acceleration in Y axis
|
||||
if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
|
||||
|
||||
// Apply friction to velocity in X axis
|
||||
if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicBodies[i]->rigidbody.velocity.x = 0.0f;
|
||||
|
||||
// Apply friction to velocity in Y axis
|
||||
if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction/PHYSICS_STEPS;
|
||||
else physicBodies[i]->rigidbody.velocity.y = 0.0f;
|
||||
|
||||
// Apply gravity to velocity
|
||||
if (physicBodies[i]->rigidbody.applyGravity)
|
||||
{
|
||||
physicBodies[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
|
||||
physicBodies[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
|
||||
}
|
||||
|
||||
// Apply acceleration to velocity
|
||||
physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
|
||||
physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y/PHYSICS_STEPS;
|
||||
|
||||
// Apply velocity to position
|
||||
physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x/PHYSICS_STEPS;
|
||||
physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y/PHYSICS_STEPS;
|
||||
}
|
||||
|
||||
// Update collision detection
|
||||
if (physicBodies[i]->collider.enabled)
|
||||
{
|
||||
// Update collider bounds
|
||||
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
|
||||
|
||||
// Check collision with other colliders
|
||||
for (int k = 0; k < physicBodiesCount; k++)
|
||||
{
|
||||
if (physicBodies[k]->collider.enabled && i != k)
|
||||
{
|
||||
// Resolve physic collision
|
||||
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
|
||||
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
|
||||
|
||||
// 1. Calculate collision normal
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Define collision contact normal, direction and penetration depth
|
||||
Vector2 contactNormal = { 0.0f, 0.0f };
|
||||
Vector2 direction = { 0.0f, 0.0f };
|
||||
float penetrationDepth = 0.0f;
|
||||
|
||||
switch (physicBodies[i]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
switch (physicBodies[k]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector from i to k
|
||||
direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
|
||||
direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
|
||||
|
||||
// Define overlapping and penetration attributes
|
||||
Vector2 overlap;
|
||||
|
||||
// Calculate overlap on X axis
|
||||
overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
|
||||
|
||||
// SAT test on X axis
|
||||
if (overlap.x > 0.0f)
|
||||
{
|
||||
// Calculate overlap on Y axis
|
||||
overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
|
||||
|
||||
// SAT test on Y axis
|
||||
if (overlap.y > 0.0f)
|
||||
{
|
||||
// Find out which axis is axis of least penetration
|
||||
if (overlap.y > overlap.x)
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.x;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Point towards k knowing that direction points from i to k
|
||||
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
else contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
|
||||
// Update penetration depth for position correction
|
||||
penetrationDepth = overlap.y;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
|
||||
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
|
||||
else closestPoint.x = physicBodies[i]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
|
||||
else closestPoint.y = physicBodies[i]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicBodies[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
switch (physicBodies[k]->collider.type)
|
||||
{
|
||||
case COLLIDER_RECTANGLE:
|
||||
{
|
||||
if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
|
||||
direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
|
||||
|
||||
// Calculate closest point on rectangle to circle
|
||||
Vector2 closestPoint = { 0.0f, 0.0f };
|
||||
if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
|
||||
else closestPoint.x = physicBodies[k]->collider.bounds.x;
|
||||
|
||||
if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
|
||||
else closestPoint.y = physicBodies[k]->collider.bounds.y;
|
||||
|
||||
// Check if the closest point is inside the circle
|
||||
if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
|
||||
{
|
||||
// Recalculate direction based on closest point position
|
||||
direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
|
||||
direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Calculate final contact normal
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
|
||||
// Calculate penetration depth
|
||||
penetrationDepth = physicBodies[k]->collider.radius - distance;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (abs(direction.y) < abs(direction.x))
|
||||
{
|
||||
// Calculate final contact normal
|
||||
if (direction.y > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, -1.0f };
|
||||
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ 0.0f, 1.0f };
|
||||
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Calculate final contact normal and penetration depth
|
||||
if (direction.x > 0.0f)
|
||||
{
|
||||
contactNormal = (Vector2){ 1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
contactNormal = (Vector2){ -1.0f, 0.0f };
|
||||
penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case COLLIDER_CIRCLE:
|
||||
{
|
||||
// Check if colliders are overlapped
|
||||
if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
|
||||
{
|
||||
// Calculate direction vector between circles
|
||||
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
|
||||
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
|
||||
|
||||
// Calculate distance between circles
|
||||
float distance = Vector2Length(direction);
|
||||
|
||||
// Check if circles are not completely overlapped
|
||||
if (distance != 0.0f)
|
||||
{
|
||||
// Calculate contact normal direction (Y axis needs to be flipped)
|
||||
contactNormal.x = direction.x/distance;
|
||||
contactNormal.y = -direction.y/distance;
|
||||
}
|
||||
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
} break;
|
||||
default: break;
|
||||
}
|
||||
|
||||
// Update rigidbody grounded state
|
||||
if (physicBodies[i]->rigidbody.enabled)
|
||||
{
|
||||
if (contactNormal.y < 0.0f) physicBodies[i]->rigidbody.isGrounded = true;
|
||||
}
|
||||
|
||||
// 2. Calculate collision impulse
|
||||
// -------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate relative velocity
|
||||
Vector2 relVelocity = { 0.0f, 0.0f };
|
||||
relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
|
||||
relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
|
||||
|
||||
// Calculate relative velocity in terms of the normal direction
|
||||
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
|
||||
|
||||
// Dot not resolve if velocities are separating
|
||||
if (velAlongNormal <= 0.0f)
|
||||
{
|
||||
// Calculate minimum bounciness value from both objects
|
||||
float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
|
||||
|
||||
// Calculate impulse scalar value
|
||||
float j = -(1.0f + e)*velAlongNormal;
|
||||
j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
|
||||
|
||||
// Calculate final impulse vector
|
||||
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
|
||||
|
||||
// Calculate collision mass ration
|
||||
float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
|
||||
float ratio = 0.0f;
|
||||
|
||||
// Apply impulse to current rigidbodies velocities if they are enabled
|
||||
if (physicBodies[i]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicBodies[i]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
|
||||
physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
if (physicBodies[k]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate inverted mass ration
|
||||
ratio = physicBodies[k]->rigidbody.mass/massSum;
|
||||
|
||||
// Apply impulse direction to velocity
|
||||
physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
|
||||
physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
|
||||
}
|
||||
|
||||
// 3. Correct colliders overlaping (transform position)
|
||||
// ---------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
// Calculate transform position penetration correction
|
||||
Vector2 posCorrection;
|
||||
posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
|
||||
posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
|
||||
|
||||
// Fix transform positions
|
||||
if (physicBodies[i]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
|
||||
physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
|
||||
|
||||
if (physicBodies[k]->rigidbody.enabled)
|
||||
{
|
||||
// Fix physic objects transform position
|
||||
physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
|
||||
physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
|
||||
|
||||
// Update collider bounds
|
||||
physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Unitialize all physic objects and empty the objects pool
|
||||
PHYSACDEF void ClosePhysics()
|
||||
{
|
||||
// Free all dynamic memory allocations
|
||||
for (int i = 0; i < physicBodiesCount; i++) PHYSAC_FREE(physicBodies[i]);
|
||||
|
||||
// Reset enabled physic objects count
|
||||
physicBodiesCount = 0;
|
||||
}
|
||||
|
||||
// Create a new physic body dinamically, initialize it and add to pool
|
||||
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale)
|
||||
{
|
||||
// Allocate dynamic memory
|
||||
PhysicBody obj = (PhysicBody)PHYSAC_MALLOC(sizeof(PhysicBodyData));
|
||||
|
||||
// Initialize physic body values with generic values
|
||||
obj->id = physicBodiesCount;
|
||||
obj->enabled = true;
|
||||
|
||||
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
|
||||
|
||||
obj->rigidbody.enabled = false;
|
||||
obj->rigidbody.mass = 1.0f;
|
||||
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
|
||||
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
|
||||
obj->rigidbody.applyGravity = false;
|
||||
obj->rigidbody.isGrounded = false;
|
||||
obj->rigidbody.friction = 0.0f;
|
||||
obj->rigidbody.bounciness = 0.0f;
|
||||
|
||||
obj->collider.enabled = true;
|
||||
obj->collider.type = COLLIDER_RECTANGLE;
|
||||
obj->collider.bounds = TransformToRectangle(obj->transform);
|
||||
obj->collider.radius = 0.0f;
|
||||
|
||||
// Add new physic body to the pointers array
|
||||
physicBodies[physicBodiesCount] = obj;
|
||||
|
||||
// Increase enabled physic bodies count
|
||||
physicBodiesCount++;
|
||||
|
||||
return obj;
|
||||
}
|
||||
|
||||
// Destroy a specific physic body and take it out of the list
|
||||
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody)
|
||||
{
|
||||
// Free dynamic memory allocation
|
||||
PHYSAC_FREE(physicBodies[pbody->id]);
|
||||
|
||||
// Remove *obj from the pointers array
|
||||
for (int i = pbody->id; i < physicBodiesCount; i++)
|
||||
{
|
||||
// Resort all the following pointers of the array
|
||||
if ((i + 1) < physicBodiesCount)
|
||||
{
|
||||
physicBodies[i] = physicBodies[i + 1];
|
||||
physicBodies[i]->id = physicBodies[i + 1]->id;
|
||||
}
|
||||
else PHYSAC_FREE(physicBodies[i]);
|
||||
}
|
||||
|
||||
// Decrease enabled physic bodies count
|
||||
physicBodiesCount--;
|
||||
}
|
||||
|
||||
// Apply directional force to a physic body
|
||||
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force)
|
||||
{
|
||||
if (pbody->rigidbody.enabled)
|
||||
{
|
||||
pbody->rigidbody.velocity.x += force.x/pbody->rigidbody.mass;
|
||||
pbody->rigidbody.velocity.y += force.y/pbody->rigidbody.mass;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply radial force to all physic objects in range
|
||||
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius)
|
||||
{
|
||||
for (int i = 0; i < physicBodiesCount; i++)
|
||||
{
|
||||
if (physicBodies[i]->rigidbody.enabled)
|
||||
{
|
||||
// Calculate direction and distance between force and physic body position
|
||||
Vector2 distance = (Vector2){ physicBodies[i]->transform.position.x - position.x, physicBodies[i]->transform.position.y - position.y };
|
||||
|
||||
if (physicBodies[i]->collider.type == COLLIDER_RECTANGLE)
|
||||
{
|
||||
distance.x += physicBodies[i]->transform.scale.x/2;
|
||||
distance.y += physicBodies[i]->transform.scale.y/2;
|
||||
}
|
||||
|
||||
float distanceLength = Vector2Length(distance);
|
||||
|
||||
// Check if physic body is in force range
|
||||
if (distanceLength <= radius)
|
||||
{
|
||||
// Normalize force direction
|
||||
distance.x /= distanceLength;
|
||||
distance.y /= -distanceLength;
|
||||
|
||||
// Calculate final force
|
||||
Vector2 finalForce = { distance.x*force, distance.y*force };
|
||||
|
||||
// Apply force to the physic body
|
||||
ApplyForce(physicBodies[i], finalForce);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Transform data type to Rectangle (position and scale)
|
||||
PHYSACDEF Rectangle TransformToRectangle(Transform transform)
|
||||
{
|
||||
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Returns the dot product of two Vector2
|
||||
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = v1.x*v2.x + v1.y*v2.y;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static float Vector2Length(Vector2 v)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = sqrt(v.x*v.x + v.y*v.y);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // PHYSAC_IMPLEMENTATION
|
Loading…
Reference in New Issue
Block a user