Review shader examples
This commit is contained in:
parent
0ec46e8976
commit
245cf2400e
@ -17,6 +17,12 @@
|
||||
#define RLIGHTS_IMPLEMENTATION
|
||||
#include "rlights.h"
|
||||
|
||||
#if defined(PLATFORM_DESKTOP)
|
||||
#define GLSL_VERSION 330
|
||||
#else // PLATFORM_RPI, PLATFORM_ANDROID, PLATFORM_WEB
|
||||
#define GLSL_VERSION 100
|
||||
#endif
|
||||
|
||||
#define CUBEMAP_SIZE 512 // Cubemap texture size
|
||||
#define IRRADIANCE_SIZE 32 // Irradiance texture size
|
||||
#define PREFILTERED_SIZE 256 // Prefiltered HDR environment texture size
|
||||
@ -114,10 +120,8 @@ static Material LoadMaterialPBR(Color albedo, float metalness, float roughness)
|
||||
{
|
||||
Material mat = { 0 }; // NOTE: All maps textures are set to { 0 }
|
||||
|
||||
#define PATH_PBR_VS "resources/shaders/pbr.vs" // Path to physically based rendering vertex shader
|
||||
#define PATH_PBR_FS "resources/shaders/pbr.fs" // Path to physically based rendering fragment shader
|
||||
|
||||
mat.shader = LoadShader(PATH_PBR_VS, PATH_PBR_FS);
|
||||
mat.shader = LoadShader(FormatText("resources/shaders/glsl%i/pbr.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/pbr.fs", GLSL_VERSION));
|
||||
|
||||
// Get required locations points for PBR material
|
||||
// NOTE: Those location names must be available and used in the shader code
|
||||
@ -144,23 +148,21 @@ static Material LoadMaterialPBR(Color albedo, float metalness, float roughness)
|
||||
mat.maps[MAP_ROUGHNESS].texture = LoadTexture("resources/pbr/trooper_roughness.png");
|
||||
mat.maps[MAP_OCCLUSION].texture = LoadTexture("resources/pbr/trooper_ao.png");
|
||||
|
||||
// Set environment maps
|
||||
#define PATH_CUBEMAP_VS "resources/shaders/cubemap.vs" // Path to equirectangular to cubemap vertex shader
|
||||
#define PATH_CUBEMAP_FS "resources/shaders/cubemap.fs" // Path to equirectangular to cubemap fragment shader
|
||||
#define PATH_SKYBOX_VS "resources/shaders/skybox.vs" // Path to skybox vertex shader
|
||||
#define PATH_IRRADIANCE_FS "resources/shaders/irradiance.fs" // Path to irradiance (GI) calculation fragment shader
|
||||
#define PATH_PREFILTER_FS "resources/shaders/prefilter.fs" // Path to reflection prefilter calculation fragment shader
|
||||
#define PATH_BRDF_VS "resources/shaders/brdf.vs" // Path to bidirectional reflectance distribution function vertex shader
|
||||
#define PATH_BRDF_FS "resources/shaders/brdf.fs" // Path to bidirectional reflectance distribution function fragment shader
|
||||
|
||||
Shader shdrCubemap = LoadShader(PATH_CUBEMAP_VS, PATH_CUBEMAP_FS);
|
||||
printf("Loaded shader: cubemap\n");
|
||||
Shader shdrIrradiance = LoadShader(PATH_SKYBOX_VS, PATH_IRRADIANCE_FS);
|
||||
printf("Loaded shader: irradiance\n");
|
||||
Shader shdrPrefilter = LoadShader(PATH_SKYBOX_VS, PATH_PREFILTER_FS);
|
||||
printf("Loaded shader: prefilter\n");
|
||||
Shader shdrBRDF = LoadShader(PATH_BRDF_VS, PATH_BRDF_FS);
|
||||
printf("Loaded shader: brdf\n");
|
||||
// Load equirectangular to cubemap shader
|
||||
Shader shdrCubemap = LoadShader(FormatText("resources/shaders/glsl%i/cubemap.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/cubemap.fs", GLSL_VERSION));
|
||||
|
||||
// Load irradiance (GI) calculation shader
|
||||
Shader shdrIrradiance = LoadShader(FormatText("resources/shaders/glsl%i/skybox.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/irradiance.fs", GLSL_VERSION));
|
||||
|
||||
// Load reflection prefilter calculation shader
|
||||
Shader shdrPrefilter = LoadShader(FormatText("resources/shaders/glsl%i/skybox.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/prefilter.fs", GLSL_VERSION));
|
||||
|
||||
// Load bidirectional reflectance distribution function shader
|
||||
Shader shdrBRDF = LoadShader(FormatText("resources/shaders/glsl%i/brdf.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/brdf.fs", GLSL_VERSION));
|
||||
|
||||
// Setup required shader locations
|
||||
SetShaderValue(shdrCubemap, GetShaderLocation(shdrCubemap, "equirectangularMap"), (int[1]){ 0 }, UNIFORM_INT);
|
||||
|
@ -11,6 +11,12 @@
|
||||
|
||||
#include "raylib.h"
|
||||
|
||||
#if defined(PLATFORM_DESKTOP)
|
||||
#define GLSL_VERSION 330
|
||||
#else // PLATFORM_RPI, PLATFORM_ANDROID, PLATFORM_WEB
|
||||
#define GLSL_VERSION 100
|
||||
#endif
|
||||
|
||||
int main()
|
||||
{
|
||||
// Initialization
|
||||
@ -29,7 +35,9 @@ int main()
|
||||
|
||||
// Load skybox shader and set required locations
|
||||
// NOTE: Some locations are automatically set at shader loading
|
||||
skybox.materials[0].shader = LoadShader("resources/shaders/skybox.vs", "resources/shaders/skybox.fs");
|
||||
skybox.materials[0].shader = LoadShader(FormatText("resources/shaders/glsl%i/skybox.vs", GLSL_VERSION),
|
||||
FormatText("resources/shaders/glsl%i/skybox.fs", GLSL_VERSION));
|
||||
|
||||
SetShaderValue(skybox.materials[0].shader, GetShaderLocation(skybox.materials[0].shader, "environmentMap"), (int[1]){ MAP_CUBEMAP }, UNIFORM_INT);
|
||||
|
||||
// Load cubemap shader and setup required shader locations
|
||||
|
133
examples/models/resources/shaders/glsl330/brdf.fs
Normal file
133
examples/models/resources/shaders/glsl330/brdf.fs
Normal file
@ -0,0 +1,133 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* BRDF LUT Generation - Bidirectional reflectance distribution function fragment shader
|
||||
*
|
||||
* REF: https://github.com/HectorMF/BRDFGenerator
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec2 fragTexCoord;
|
||||
|
||||
// Constant values
|
||||
const float PI = 3.14159265359;
|
||||
const uint MAX_SAMPLES = 1024u;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
vec2 Hammersley(uint i, uint N);
|
||||
float RadicalInverseVdC(uint bits);
|
||||
float GeometrySchlickGGX(float NdotV, float roughness);
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness);
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness);
|
||||
vec2 IntegrateBRDF(float NdotV, float roughness);
|
||||
|
||||
float RadicalInverseVdC(uint bits)
|
||||
{
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
}
|
||||
|
||||
// Compute Hammersley coordinates
|
||||
vec2 Hammersley(uint i, uint N)
|
||||
{
|
||||
return vec2(float(i)/float(N), RadicalInverseVdC(i));
|
||||
}
|
||||
|
||||
// Integrate number of importance samples for (roughness and NoV)
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float phi = 2.0 * PI * Xi.x;
|
||||
float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y));
|
||||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
|
||||
|
||||
// Transform from spherical coordinates to cartesian coordinates (halfway vector)
|
||||
vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);
|
||||
|
||||
// Transform from tangent space H vector to world space sample vector
|
||||
vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0));
|
||||
vec3 tangent = normalize(cross(up, N));
|
||||
vec3 bitangent = cross(N, tangent);
|
||||
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z;
|
||||
|
||||
return normalize(sampleVec);
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
// For IBL k is calculated different
|
||||
float k = (roughness*roughness)/2.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV*(1.0 - k) + k;
|
||||
|
||||
return nom/denom;
|
||||
}
|
||||
|
||||
// Compute the geometry term for the BRDF given roughness squared, NoV, NoL
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1*ggx2;
|
||||
}
|
||||
|
||||
vec2 IntegrateBRDF(float NdotV, float roughness)
|
||||
{
|
||||
float A = 0.0;
|
||||
float B = 0.0;
|
||||
vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV);
|
||||
vec3 N = vec3(0.0, 0.0, 1.0);
|
||||
|
||||
for (uint i = 0u; i < MAX_SAMPLES; i++)
|
||||
{
|
||||
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling)
|
||||
|
||||
vec2 Xi = Hammersley(i, MAX_SAMPLES); // Compute a Hammersely coordinate
|
||||
vec3 H = ImportanceSampleGGX(Xi, N, roughness); // Integrate number of importance samples for (roughness and NoV)
|
||||
vec3 L = normalize(2.0*dot(V, H)*H - V); // Compute reflection vector L
|
||||
|
||||
float NdotL = max(L.z, 0.0); // Compute normal dot light
|
||||
float NdotH = max(H.z, 0.0); // Compute normal dot half
|
||||
float VdotH = max(dot(V, H), 0.0); // Compute view dot half
|
||||
|
||||
if (NdotL > 0.0)
|
||||
{
|
||||
float G = GeometrySmith(N, V, L, roughness); // Compute the geometry term for the BRDF given roughness squared, NoV, NoL
|
||||
float GVis = (G*VdotH)/(NdotH*NdotV); // Compute the visibility term given G, VoH, NoH, NoV, NoL
|
||||
float Fc = pow(1.0 - VdotH, 5.0); // Compute the fresnel term given VoH
|
||||
|
||||
A += (1.0 - Fc)*GVis; // Sum the result given fresnel, geometry, visibility
|
||||
B += Fc*GVis;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate brdf average sample
|
||||
A /= float(MAX_SAMPLES);
|
||||
B /= float(MAX_SAMPLES);
|
||||
|
||||
return vec2(A, B);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate brdf based on texture coordinates
|
||||
vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y);
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0);
|
||||
}
|
25
examples/models/resources/shaders/glsl330/brdf.vs
Normal file
25
examples/models/resources/shaders/glsl330/brdf.vs
Normal file
@ -0,0 +1,25 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Bidirectional reflectance distribution function vertex shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes
|
||||
in vec3 vertexPosition;
|
||||
in vec2 vertexTexCoord;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
out vec2 fragTexCoord;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate fragment position based on model transformations
|
||||
fragTexCoord = vertexTexCoord;
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = vec4(vertexPosition, 1.0);
|
||||
}
|
38
examples/models/resources/shaders/glsl330/cubemap.fs
Normal file
38
examples/models/resources/shaders/glsl330/cubemap.fs
Normal file
@ -0,0 +1,38 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Equirectangular to cubemap fragment shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform sampler2D equirectangularMap;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
vec2 SampleSphericalMap(vec3 v)
|
||||
{
|
||||
vec2 uv = vec2(atan(v.z, v.x), asin(v.y));
|
||||
uv *= vec2(0.1591, 0.3183);
|
||||
uv += 0.5;
|
||||
return uv;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// Normalize local position
|
||||
vec2 uv = SampleSphericalMap(normalize(fragPosition));
|
||||
|
||||
// Fetch color from texture map
|
||||
vec3 color = texture(equirectangularMap, uv).rgb;
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(color, 1.0);
|
||||
}
|
28
examples/models/resources/shaders/glsl330/cubemap.vs
Normal file
28
examples/models/resources/shaders/glsl330/cubemap.vs
Normal file
@ -0,0 +1,28 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Equirectangular to cubemap vertex shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes
|
||||
in vec3 vertexPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
out vec3 fragPosition;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate fragment position based on model transformations
|
||||
fragPosition = vertexPosition;
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = projection*view*vec4(vertexPosition, 1.0);
|
||||
}
|
58
examples/models/resources/shaders/glsl330/irradiance.fs
Normal file
58
examples/models/resources/shaders/glsl330/irradiance.fs
Normal file
@ -0,0 +1,58 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Irradiance cubemap fragment shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform samplerCube environmentMap;
|
||||
|
||||
// Constant values
|
||||
const float PI = 3.14159265359f;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
void main()
|
||||
{
|
||||
// The sample direction equals the hemisphere's orientation
|
||||
vec3 normal = normalize(fragPosition);
|
||||
|
||||
vec3 irradiance = vec3(0.0);
|
||||
|
||||
vec3 up = vec3(0.0, 1.0, 0.0);
|
||||
vec3 right = cross(up, normal);
|
||||
up = cross(normal, right);
|
||||
|
||||
float sampleDelta = 0.025f;
|
||||
float nrSamples = 0.0f;
|
||||
|
||||
for (float phi = 0.0; phi < 2.0*PI; phi += sampleDelta)
|
||||
{
|
||||
for (float theta = 0.0; theta < 0.5*PI; theta += sampleDelta)
|
||||
{
|
||||
// Spherical to cartesian (in tangent space)
|
||||
vec3 tangentSample = vec3(sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta));
|
||||
|
||||
// tangent space to world
|
||||
vec3 sampleVec = tangentSample.x*right + tangentSample.y*up + tangentSample.z*normal;
|
||||
|
||||
// Fetch color from environment cubemap
|
||||
irradiance += texture(environmentMap, sampleVec).rgb*cos(theta)*sin(theta);
|
||||
nrSamples++;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate irradiance average value from samples
|
||||
irradiance = PI*irradiance*(1.0/float(nrSamples));
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(irradiance, 1.0);
|
||||
}
|
298
examples/models/resources/shaders/glsl330/pbr.fs
Normal file
298
examples/models/resources/shaders/glsl330/pbr.fs
Normal file
@ -0,0 +1,298 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Physically based rendering fragment shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
#define MAX_REFLECTION_LOD 4.0
|
||||
#define MAX_DEPTH_LAYER 20
|
||||
#define MIN_DEPTH_LAYER 10
|
||||
|
||||
#define MAX_LIGHTS 4
|
||||
#define LIGHT_DIRECTIONAL 0
|
||||
#define LIGHT_POINT 1
|
||||
|
||||
struct MaterialProperty {
|
||||
vec3 color;
|
||||
int useSampler;
|
||||
sampler2D sampler;
|
||||
};
|
||||
|
||||
struct Light {
|
||||
int enabled;
|
||||
int type;
|
||||
vec3 position;
|
||||
vec3 target;
|
||||
vec4 color;
|
||||
};
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
in vec2 fragTexCoord;
|
||||
in vec3 fragNormal;
|
||||
in vec3 fragTangent;
|
||||
in vec3 fragBinormal;
|
||||
|
||||
// Input material values
|
||||
uniform MaterialProperty albedo;
|
||||
uniform MaterialProperty normals;
|
||||
uniform MaterialProperty metalness;
|
||||
uniform MaterialProperty roughness;
|
||||
uniform MaterialProperty occlusion;
|
||||
uniform MaterialProperty emission;
|
||||
uniform MaterialProperty height;
|
||||
|
||||
// Input uniform values
|
||||
uniform samplerCube irradianceMap;
|
||||
uniform samplerCube prefilterMap;
|
||||
uniform sampler2D brdfLUT;
|
||||
|
||||
// Input lighting values
|
||||
uniform Light lights[MAX_LIGHTS];
|
||||
|
||||
// Other uniform values
|
||||
uniform int renderMode;
|
||||
uniform vec3 viewPos;
|
||||
vec2 texCoord;
|
||||
|
||||
// Constant values
|
||||
const float PI = 3.14159265359;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
vec3 ComputeMaterialProperty(MaterialProperty property);
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness);
|
||||
float GeometrySchlickGGX(float NdotV, float roughness);
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness);
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0);
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness);
|
||||
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir);
|
||||
|
||||
vec3 ComputeMaterialProperty(MaterialProperty property)
|
||||
{
|
||||
vec3 result = vec3(0.0, 0.0, 0.0);
|
||||
|
||||
if (property.useSampler == 1) result = texture(property.sampler, texCoord).rgb;
|
||||
else result = property.color;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2*(a2 - 1.0) + 1.0);
|
||||
denom = PI*denom*denom;
|
||||
|
||||
return nom/denom;
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = r*r/8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV*(1.0 - k) + k;
|
||||
|
||||
return nom/denom;
|
||||
}
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1*ggx2;
|
||||
}
|
||||
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0)*pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0)*pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
|
||||
{
|
||||
// Calculate the number of depth layers and calculate the size of each layer
|
||||
float numLayers = mix(MAX_DEPTH_LAYER, MIN_DEPTH_LAYER, abs(dot(vec3(0.0, 0.0, 1.0), viewDir)));
|
||||
float layerDepth = 1.0/numLayers;
|
||||
|
||||
// Calculate depth of current layer
|
||||
float currentLayerDepth = 0.0;
|
||||
|
||||
// Calculate the amount to shift the texture coordinates per layer (from vector P)
|
||||
// Note: height amount is stored in height material attribute color R channel (sampler use is independent)
|
||||
vec2 P = viewDir.xy*height.color.r;
|
||||
vec2 deltaTexCoords = P/numLayers;
|
||||
|
||||
// Store initial texture coordinates and depth values
|
||||
vec2 currentTexCoords = texCoords;
|
||||
float currentDepthMapValue = texture(height.sampler, currentTexCoords).r;
|
||||
|
||||
while (currentLayerDepth < currentDepthMapValue)
|
||||
{
|
||||
// Shift texture coordinates along direction of P
|
||||
currentTexCoords -= deltaTexCoords;
|
||||
|
||||
// Get depth map value at current texture coordinates
|
||||
currentDepthMapValue = texture(height.sampler, currentTexCoords).r;
|
||||
|
||||
// Get depth of next layer
|
||||
currentLayerDepth += layerDepth;
|
||||
}
|
||||
|
||||
// Get texture coordinates before collision (reverse operations)
|
||||
vec2 prevTexCoords = currentTexCoords + deltaTexCoords;
|
||||
|
||||
// Get depth after and before collision for linear interpolation
|
||||
float afterDepth = currentDepthMapValue - currentLayerDepth;
|
||||
float beforeDepth = texture(height.sampler, prevTexCoords).r - currentLayerDepth + layerDepth;
|
||||
|
||||
// Interpolation of texture coordinates
|
||||
float weight = afterDepth/(afterDepth - beforeDepth);
|
||||
vec2 finalTexCoords = prevTexCoords*weight + currentTexCoords*(1.0 - weight);
|
||||
|
||||
return finalTexCoords;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate TBN and RM matrices
|
||||
mat3 TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
|
||||
|
||||
// Calculate lighting required attributes
|
||||
vec3 normal = normalize(fragNormal);
|
||||
vec3 view = normalize(viewPos - fragPosition);
|
||||
vec3 refl = reflect(-view, normal);
|
||||
|
||||
// Check if parallax mapping is enabled and calculate texture coordinates to use based on height map
|
||||
// NOTE: remember that 'texCoord' variable must be assigned before calling any ComputeMaterialProperty() function
|
||||
if (height.useSampler == 1) texCoord = ParallaxMapping(fragTexCoord, view);
|
||||
else texCoord = fragTexCoord; // Use default texture coordinates
|
||||
|
||||
// Fetch material values from texture sampler or color attributes
|
||||
vec3 color = ComputeMaterialProperty(albedo);
|
||||
vec3 metal = ComputeMaterialProperty(metalness);
|
||||
vec3 rough = ComputeMaterialProperty(roughness);
|
||||
vec3 emiss = ComputeMaterialProperty(emission);
|
||||
vec3 ao = ComputeMaterialProperty(occlusion);
|
||||
|
||||
// Check if normal mapping is enabled
|
||||
if (normals.useSampler == 1)
|
||||
{
|
||||
// Fetch normal map color and transform lighting values to tangent space
|
||||
normal = ComputeMaterialProperty(normals);
|
||||
normal = normalize(normal*2.0 - 1.0);
|
||||
normal = normalize(normal*TBN);
|
||||
|
||||
// Convert tangent space normal to world space due to cubemap reflection calculations
|
||||
refl = normalize(reflect(-view, normal));
|
||||
}
|
||||
|
||||
// Calculate reflectance at normal incidence
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, color, metal.r);
|
||||
|
||||
// Calculate lighting for all lights
|
||||
vec3 Lo = vec3(0.0);
|
||||
vec3 lightDot = vec3(0.0);
|
||||
|
||||
for (int i = 0; i < MAX_LIGHTS; i++)
|
||||
{
|
||||
if (lights[i].enabled == 1)
|
||||
{
|
||||
// Calculate per-light radiance
|
||||
vec3 light = vec3(0.0);
|
||||
vec3 radiance = lights[i].color.rgb;
|
||||
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position);
|
||||
else if (lights[i].type == LIGHT_POINT)
|
||||
{
|
||||
light = normalize(lights[i].position - fragPosition);
|
||||
float distance = length(lights[i].position - fragPosition);
|
||||
float attenuation = 1.0/(distance*distance);
|
||||
radiance *= attenuation;
|
||||
}
|
||||
|
||||
// Cook-torrance BRDF
|
||||
vec3 high = normalize(view + light);
|
||||
float NDF = DistributionGGX(normal, high, rough.r);
|
||||
float G = GeometrySmith(normal, view, light, rough.r);
|
||||
vec3 F = fresnelSchlick(max(dot(high, view), 0.0), F0);
|
||||
vec3 nominator = NDF*G*F;
|
||||
float denominator = 4*max(dot(normal, view), 0.0)*max(dot(normal, light), 0.0) + 0.001;
|
||||
vec3 brdf = nominator/denominator;
|
||||
|
||||
// Store to kS the fresnel value and calculate energy conservation
|
||||
vec3 kS = F;
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
|
||||
// Multiply kD by the inverse metalness such that only non-metals have diffuse lighting
|
||||
kD *= 1.0 - metal.r;
|
||||
|
||||
// Scale light by dot product between normal and light direction
|
||||
float NdotL = max(dot(normal, light), 0.0);
|
||||
|
||||
// Add to outgoing radiance Lo
|
||||
// Note: BRDF is already multiplied by the Fresnel so it doesn't need to be multiplied again
|
||||
Lo += (kD*color/PI + brdf)*radiance*NdotL*lights[i].color.a;
|
||||
lightDot += radiance*NdotL + brdf*lights[i].color.a;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate ambient lighting using IBL
|
||||
vec3 F = fresnelSchlickRoughness(max(dot(normal, view), 0.0), F0, rough.r);
|
||||
vec3 kS = F;
|
||||
vec3 kD = 1.0 - kS;
|
||||
kD *= 1.0 - metal.r;
|
||||
|
||||
// Calculate indirect diffuse
|
||||
vec3 irradiance = texture(irradianceMap, fragNormal).rgb;
|
||||
vec3 diffuse = color*irradiance;
|
||||
|
||||
// Sample both the prefilter map and the BRDF lut and combine them together as per the Split-Sum approximation
|
||||
vec3 prefilterColor = textureLod(prefilterMap, refl, rough.r*MAX_REFLECTION_LOD).rgb;
|
||||
vec2 brdf = texture(brdfLUT, vec2(max(dot(normal, view), 0.0), rough.r)).rg;
|
||||
vec3 reflection = prefilterColor*(F*brdf.x + brdf.y);
|
||||
|
||||
// Calculate final lighting
|
||||
vec3 ambient = (kD*diffuse + reflection)*ao;
|
||||
|
||||
// Calculate fragment color based on render mode
|
||||
vec3 fragmentColor = ambient + Lo + emiss; // Physically Based Rendering
|
||||
|
||||
if (renderMode == 1) fragmentColor = color; // Albedo
|
||||
else if (renderMode == 2) fragmentColor = normal; // Normals
|
||||
else if (renderMode == 3) fragmentColor = metal; // Metalness
|
||||
else if (renderMode == 4) fragmentColor = rough; // Roughness
|
||||
else if (renderMode == 5) fragmentColor = ao; // Ambient Occlusion
|
||||
else if (renderMode == 6) fragmentColor = emiss; // Emission
|
||||
else if (renderMode == 7) fragmentColor = lightDot; // Lighting
|
||||
else if (renderMode == 8) fragmentColor = kS; // Fresnel
|
||||
else if (renderMode == 9) fragmentColor = irradiance; // Irradiance
|
||||
else if (renderMode == 10) fragmentColor = reflection; // Reflection
|
||||
|
||||
// Apply HDR tonemapping
|
||||
fragmentColor = fragmentColor/(fragmentColor + vec3(1.0));
|
||||
|
||||
// Apply gamma correction
|
||||
fragmentColor = pow(fragmentColor, vec3(1.0/2.2));
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(fragmentColor, 1.0);
|
||||
}
|
49
examples/models/resources/shaders/glsl330/pbr.vs
Normal file
49
examples/models/resources/shaders/glsl330/pbr.vs
Normal file
@ -0,0 +1,49 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Physically based rendering vertex shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes
|
||||
in vec3 vertexPosition;
|
||||
in vec2 vertexTexCoord;
|
||||
in vec3 vertexNormal;
|
||||
in vec4 vertexTangent;
|
||||
|
||||
// Input uniform values
|
||||
uniform mat4 mvp;
|
||||
uniform mat4 matModel;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
out vec3 fragPosition;
|
||||
out vec2 fragTexCoord;
|
||||
out vec3 fragNormal;
|
||||
out vec3 fragTangent;
|
||||
out vec3 fragBinormal;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate binormal from vertex normal and tangent
|
||||
vec3 vertexBinormal = cross(vertexNormal, vec3(vertexTangent));
|
||||
|
||||
// Calculate fragment normal based on normal transformations
|
||||
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
|
||||
|
||||
// Calculate fragment position based on model transformations
|
||||
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0f));
|
||||
|
||||
// Send vertex attributes to fragment shader
|
||||
fragTexCoord = vertexTexCoord;
|
||||
fragNormal = normalize(normalMatrix*vertexNormal);
|
||||
fragTangent = normalize(normalMatrix*vec3(vertexTangent));
|
||||
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
|
||||
fragBinormal = normalize(normalMatrix*vertexBinormal);
|
||||
fragBinormal = cross(fragNormal, fragTangent);
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = mvp*vec4(vertexPosition, 1.0);
|
||||
}
|
120
examples/models/resources/shaders/glsl330/prefilter.fs
Normal file
120
examples/models/resources/shaders/glsl330/prefilter.fs
Normal file
@ -0,0 +1,120 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Prefiltered environment for reflections fragment shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
#define MAX_SAMPLES 1024u
|
||||
#define CUBEMAP_RESOLUTION 1024.0
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform samplerCube environmentMap;
|
||||
uniform float roughness;
|
||||
|
||||
// Constant values
|
||||
const float PI = 3.14159265359f;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness);
|
||||
float RadicalInverse_VdC(uint bits);
|
||||
vec2 Hammersley(uint i, uint N);
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness);
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2*(a2 - 1.0) + 1.0);
|
||||
denom = PI*denom*denom;
|
||||
|
||||
return nom/denom;
|
||||
}
|
||||
|
||||
float RadicalInverse_VdC(uint bits)
|
||||
{
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
}
|
||||
|
||||
vec2 Hammersley(uint i, uint N)
|
||||
{
|
||||
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
|
||||
}
|
||||
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float phi = 2.0 * PI * Xi.x;
|
||||
float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y));
|
||||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
|
||||
|
||||
// Transform from spherical coordinates to cartesian coordinates (halfway vector)
|
||||
vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);
|
||||
|
||||
// Transform from tangent space H vector to world space sample vector
|
||||
vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0));
|
||||
vec3 tangent = normalize(cross(up, N));
|
||||
vec3 bitangent = cross(N, tangent);
|
||||
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z;
|
||||
|
||||
return normalize(sampleVec);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// Make the simplyfying assumption that V equals R equals the normal
|
||||
vec3 N = normalize(fragPosition);
|
||||
vec3 R = N;
|
||||
vec3 V = R;
|
||||
|
||||
vec3 prefilteredColor = vec3(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
for (uint i = 0u; i < MAX_SAMPLES; i++)
|
||||
{
|
||||
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling)
|
||||
vec2 Xi = Hammersley(i, MAX_SAMPLES);
|
||||
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
|
||||
vec3 L = normalize(2.0*dot(V, H)*H - V);
|
||||
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
if(NdotL > 0.0)
|
||||
{
|
||||
// Sample from the environment's mip level based on roughness/pdf
|
||||
float D = DistributionGGX(N, H, roughness);
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float HdotV = max(dot(H, V), 0.0);
|
||||
float pdf = D*NdotH/(4.0*HdotV) + 0.0001;
|
||||
|
||||
float resolution = CUBEMAP_RESOLUTION;
|
||||
float saTexel = 4.0*PI/(6.0*resolution*resolution);
|
||||
float saSample = 1.0/(float(MAX_SAMPLES)*pdf + 0.0001);
|
||||
float mipLevel = ((roughness == 0.0) ? 0.0 : 0.5*log2(saSample/saTexel));
|
||||
|
||||
prefilteredColor += textureLod(environmentMap, L, mipLevel).rgb*NdotL;
|
||||
totalWeight += NdotL;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate prefilter average color
|
||||
prefilteredColor = prefilteredColor/totalWeight;
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(prefilteredColor, 1.0);
|
||||
}
|
31
examples/models/resources/shaders/glsl330/skybox.fs
Normal file
31
examples/models/resources/shaders/glsl330/skybox.fs
Normal file
@ -0,0 +1,31 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Background skybox fragment shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec3 fragPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform samplerCube environmentMap;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Fetch color from texture map
|
||||
vec3 color = texture(environmentMap, fragPosition).rgb;
|
||||
|
||||
// Apply gamma correction
|
||||
color = color/(color + vec3(1.0));
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
// Calculate final fragment color
|
||||
finalColor = vec4(color, 1.0);
|
||||
}
|
32
examples/models/resources/shaders/glsl330/skybox.vs
Normal file
32
examples/models/resources/shaders/glsl330/skybox.vs
Normal file
@ -0,0 +1,32 @@
|
||||
/*******************************************************************************************
|
||||
*
|
||||
* rPBR [shader] - Background skybox vertex shader
|
||||
*
|
||||
* Copyright (c) 2017 Victor Fisac
|
||||
*
|
||||
**********************************************************************************************/
|
||||
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes
|
||||
in vec3 vertexPosition;
|
||||
|
||||
// Input uniform values
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
// Output vertex attributes (to fragment shader)
|
||||
out vec3 fragPosition;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Calculate fragment position based on model transformations
|
||||
fragPosition = vertexPosition;
|
||||
|
||||
// Remove translation from the view matrix
|
||||
mat4 rotView = mat4(mat3(view));
|
||||
vec4 clipPos = projection*rotView*vec4(vertexPosition, 1.0);
|
||||
|
||||
// Calculate final vertex position
|
||||
gl_Position = clipPos.xyww;
|
||||
}
|
Loading…
Reference in New Issue
Block a user