raylib/examples/models/resources/shaders/glsl330/brdf.fs

134 lines
4.4 KiB
Forth
Raw Normal View History

2017-07-17 15:06:27 +03:00
/*******************************************************************************************
*
* BRDF LUT Generation - Bidirectional reflectance distribution function fragment shader
*
* REF: https://github.com/HectorMF/BRDFGenerator
2017-07-17 15:06:27 +03:00
*
* Copyright (c) 2017 Victor Fisac
*
**********************************************************************************************/
#version 330
2017-07-17 15:06:27 +03:00
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
// Constant values
const float PI = 3.14159265359;
const uint MAX_SAMPLES = 1024u;
2017-07-17 15:06:27 +03:00
// Output fragment color
out vec4 finalColor;
vec2 Hammersley(uint i, uint N);
float RadicalInverseVdC(uint bits);
2017-07-17 15:06:27 +03:00
float GeometrySchlickGGX(float NdotV, float roughness);
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness);
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness);
2017-07-17 15:06:27 +03:00
vec2 IntegrateBRDF(float NdotV, float roughness);
float RadicalInverseVdC(uint bits)
2017-07-17 15:06:27 +03:00
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
2017-07-17 15:06:27 +03:00
}
// Compute Hammersley coordinates
2017-07-17 15:06:27 +03:00
vec2 Hammersley(uint i, uint N)
{
return vec2(float(i)/float(N), RadicalInverseVdC(i));
2017-07-17 15:06:27 +03:00
}
// Integrate number of importance samples for (roughness and NoV)
2017-07-17 15:06:27 +03:00
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y)/(1.0 + (a*a - 1.0)*Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// Transform from spherical coordinates to cartesian coordinates (halfway vector)
vec3 H = vec3(cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);
// Transform from tangent space H vector to world space sample vector
vec3 up = ((abs(N.z) < 0.999) ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0));
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent*H.x + bitangent*H.y + N*H.z;
return normalize(sampleVec);
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
// For IBL k is calculated different
float k = (roughness*roughness)/2.0;
float nom = NdotV;
float denom = NdotV*(1.0 - k) + k;
return nom/denom;
}
// Compute the geometry term for the BRDF given roughness squared, NoV, NoL
2017-07-17 15:06:27 +03:00
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1*ggx2;
}
vec2 IntegrateBRDF(float NdotV, float roughness)
{
float A = 0.0;
float B = 0.0;
vec3 V = vec3(sqrt(1.0 - NdotV*NdotV), 0.0, NdotV);
2017-07-17 15:06:27 +03:00
vec3 N = vec3(0.0, 0.0, 1.0);
for (uint i = 0u; i < MAX_SAMPLES; i++)
2017-07-17 15:06:27 +03:00
{
// Generate a sample vector that's biased towards the preferred alignment direction (importance sampling)
vec2 Xi = Hammersley(i, MAX_SAMPLES); // Compute a Hammersely coordinate
vec3 H = ImportanceSampleGGX(Xi, N, roughness); // Integrate number of importance samples for (roughness and NoV)
vec3 L = normalize(2.0*dot(V, H)*H - V); // Compute reflection vector L
float NdotL = max(L.z, 0.0); // Compute normal dot light
float NdotH = max(H.z, 0.0); // Compute normal dot half
float VdotH = max(dot(V, H), 0.0); // Compute view dot half
2017-07-17 15:06:27 +03:00
if (NdotL > 0.0)
{
float G = GeometrySmith(N, V, L, roughness); // Compute the geometry term for the BRDF given roughness squared, NoV, NoL
float GVis = (G*VdotH)/(NdotH*NdotV); // Compute the visibility term given G, VoH, NoH, NoV, NoL
float Fc = pow(1.0 - VdotH, 5.0); // Compute the fresnel term given VoH
2017-07-17 15:06:27 +03:00
A += (1.0 - Fc)*GVis; // Sum the result given fresnel, geometry, visibility
B += Fc*GVis;
2017-07-17 15:06:27 +03:00
}
}
// Calculate brdf average sample
A /= float(MAX_SAMPLES);
B /= float(MAX_SAMPLES);
return vec2(A, B);
}
void main()
{
// Calculate brdf based on texture coordinates
vec2 brdf = IntegrateBRDF(fragTexCoord.x, fragTexCoord.y);
// Calculate final fragment color
finalColor = vec4(brdf.r, brdf.g, 0.0, 1.0);
}