raylib/examples/models/resources/shaders/glsl100/pbr.fs

299 lines
10 KiB
Forth
Raw Normal View History

2017-07-17 15:06:27 +03:00
/*******************************************************************************************
*
* rPBR [shader] - Physically based rendering fragment shader
*
* Copyright (c) 2017 Victor Fisac
*
**********************************************************************************************/
#version 330
#define MAX_REFLECTION_LOD 4.0
#define MAX_DEPTH_LAYER 20
#define MIN_DEPTH_LAYER 10
#define MAX_LIGHTS 4
2017-07-17 15:06:27 +03:00
#define LIGHT_DIRECTIONAL 0
#define LIGHT_POINT 1
struct MaterialProperty {
vec3 color;
int useSampler;
sampler2D sampler;
};
struct Light {
int enabled;
int type;
vec3 position;
vec3 target;
vec4 color;
};
// Input vertex attributes (from vertex shader)
in vec3 fragPosition;
in vec2 fragTexCoord;
in vec3 fragNormal;
in vec3 fragTangent;
in vec3 fragBinormal;
// Input material values
uniform MaterialProperty albedo;
uniform MaterialProperty normals;
uniform MaterialProperty metalness;
uniform MaterialProperty roughness;
uniform MaterialProperty occlusion;
uniform MaterialProperty emission;
uniform MaterialProperty height;
// Input uniform values
uniform samplerCube irradianceMap;
uniform samplerCube prefilterMap;
uniform sampler2D brdfLUT;
// Input lighting values
uniform Light lights[MAX_LIGHTS];
// Other uniform values
uniform int renderMode;
uniform vec3 viewPos;
vec2 texCoord;
// Constant values
const float PI = 3.14159265359;
// Output fragment color
out vec4 finalColor;
vec3 ComputeMaterialProperty(MaterialProperty property);
float DistributionGGX(vec3 N, vec3 H, float roughness);
float GeometrySchlickGGX(float NdotV, float roughness);
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness);
vec3 fresnelSchlick(float cosTheta, vec3 F0);
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness);
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir);
vec3 ComputeMaterialProperty(MaterialProperty property)
{
vec3 result = vec3(0.0, 0.0, 0.0);
if (property.useSampler == 1) result = texture(property.sampler, texCoord).rgb;
else result = property.color;
return result;
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2*(a2 - 1.0) + 1.0);
denom = PI*denom*denom;
return nom/denom;
}
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = r*r/8.0;
float nom = NdotV;
float denom = NdotV*(1.0 - k) + k;
return nom/denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1*ggx2;
}
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0)*pow(1.0 - cosTheta, 5.0);
}
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0)*pow(1.0 - cosTheta, 5.0);
}
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
{
// Calculate the number of depth layers and calculate the size of each layer
float numLayers = mix(MAX_DEPTH_LAYER, MIN_DEPTH_LAYER, abs(dot(vec3(0.0, 0.0, 1.0), viewDir)));
float layerDepth = 1.0/numLayers;
// Calculate depth of current layer
float currentLayerDepth = 0.0;
// Calculate the amount to shift the texture coordinates per layer (from vector P)
// Note: height amount is stored in height material attribute color R channel (sampler use is independent)
vec2 P = viewDir.xy*height.color.r;
vec2 deltaTexCoords = P/numLayers;
// Store initial texture coordinates and depth values
vec2 currentTexCoords = texCoords;
float currentDepthMapValue = texture(height.sampler, currentTexCoords).r;
while (currentLayerDepth < currentDepthMapValue)
{
// Shift texture coordinates along direction of P
currentTexCoords -= deltaTexCoords;
// Get depth map value at current texture coordinates
currentDepthMapValue = texture(height.sampler, currentTexCoords).r;
// Get depth of next layer
currentLayerDepth += layerDepth;
}
// Get texture coordinates before collision (reverse operations)
vec2 prevTexCoords = currentTexCoords + deltaTexCoords;
// Get depth after and before collision for linear interpolation
float afterDepth = currentDepthMapValue - currentLayerDepth;
float beforeDepth = texture(height.sampler, prevTexCoords).r - currentLayerDepth + layerDepth;
// Interpolation of texture coordinates
float weight = afterDepth/(afterDepth - beforeDepth);
vec2 finalTexCoords = prevTexCoords*weight + currentTexCoords*(1.0 - weight);
return finalTexCoords;
}
void main()
{
// Calculate TBN and RM matrices
mat3 TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
// Calculate lighting required attributes
vec3 normal = normalize(fragNormal);
vec3 view = normalize(viewPos - fragPosition);
vec3 refl = reflect(-view, normal);
// Check if parallax mapping is enabled and calculate texture coordinates to use based on height map
// NOTE: remember that 'texCoord' variable must be assigned before calling any ComputeMaterialProperty() function
if (height.useSampler == 1) texCoord = ParallaxMapping(fragTexCoord, view);
else texCoord = fragTexCoord; // Use default texture coordinates
// Fetch material values from texture sampler or color attributes
vec3 color = ComputeMaterialProperty(albedo);
vec3 metal = ComputeMaterialProperty(metalness);
vec3 rough = ComputeMaterialProperty(roughness);
vec3 emiss = ComputeMaterialProperty(emission);
vec3 ao = ComputeMaterialProperty(occlusion);
// Check if normal mapping is enabled
if (normals.useSampler == 1)
{
// Fetch normal map color and transform lighting values to tangent space
normal = ComputeMaterialProperty(normals);
normal = normalize(normal*2.0 - 1.0);
normal = normalize(normal*TBN);
// Convert tangent space normal to world space due to cubemap reflection calculations
refl = normalize(reflect(-view, normal));
}
// Calculate reflectance at normal incidence
vec3 F0 = vec3(0.04);
F0 = mix(F0, color, metal.r);
// Calculate lighting for all lights
vec3 Lo = vec3(0.0);
vec3 lightDot = vec3(0.0);
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (lights[i].enabled == 1)
{
// Calculate per-light radiance
vec3 light = vec3(0.0);
vec3 radiance = lights[i].color.rgb;
if (lights[i].type == LIGHT_DIRECTIONAL) light = -normalize(lights[i].target - lights[i].position);
else if (lights[i].type == LIGHT_POINT)
{
light = normalize(lights[i].position - fragPosition);
float distance = length(lights[i].position - fragPosition);
float attenuation = 1.0/(distance*distance);
radiance *= attenuation;
}
// Cook-torrance BRDF
vec3 high = normalize(view + light);
float NDF = DistributionGGX(normal, high, rough.r);
float G = GeometrySmith(normal, view, light, rough.r);
vec3 F = fresnelSchlick(max(dot(high, view), 0.0), F0);
vec3 nominator = NDF*G*F;
float denominator = 4*max(dot(normal, view), 0.0)*max(dot(normal, light), 0.0) + 0.001;
vec3 brdf = nominator/denominator;
// Store to kS the fresnel value and calculate energy conservation
vec3 kS = F;
vec3 kD = vec3(1.0) - kS;
// Multiply kD by the inverse metalness such that only non-metals have diffuse lighting
kD *= 1.0 - metal.r;
// Scale light by dot product between normal and light direction
float NdotL = max(dot(normal, light), 0.0);
// Add to outgoing radiance Lo
// Note: BRDF is already multiplied by the Fresnel so it doesn't need to be multiplied again
Lo += (kD*color/PI + brdf)*radiance*NdotL*lights[i].color.a;
lightDot += radiance*NdotL + brdf*lights[i].color.a;
}
}
// Calculate ambient lighting using IBL
vec3 F = fresnelSchlickRoughness(max(dot(normal, view), 0.0), F0, rough.r);
vec3 kS = F;
vec3 kD = 1.0 - kS;
kD *= 1.0 - metal.r;
// Calculate indirect diffuse
vec3 irradiance = texture(irradianceMap, fragNormal).rgb;
vec3 diffuse = color*irradiance;
// Sample both the prefilter map and the BRDF lut and combine them together as per the Split-Sum approximation
vec3 prefilterColor = textureLod(prefilterMap, refl, rough.r*MAX_REFLECTION_LOD).rgb;
vec2 brdf = texture(brdfLUT, vec2(max(dot(normal, view), 0.0), rough.r)).rg;
vec3 reflection = prefilterColor*(F*brdf.x + brdf.y);
// Calculate final lighting
vec3 ambient = (kD*diffuse + reflection)*ao;
// Calculate fragment color based on render mode
vec3 fragmentColor = ambient + Lo + emiss; // Physically Based Rendering
if (renderMode == 1) fragmentColor = color; // Albedo
else if (renderMode == 2) fragmentColor = normal; // Normals
else if (renderMode == 3) fragmentColor = metal; // Metalness
else if (renderMode == 4) fragmentColor = rough; // Roughness
else if (renderMode == 5) fragmentColor = ao; // Ambient Occlusion
else if (renderMode == 6) fragmentColor = emiss; // Emission
else if (renderMode == 7) fragmentColor = lightDot; // Lighting
else if (renderMode == 8) fragmentColor = kS; // Fresnel
else if (renderMode == 9) fragmentColor = irradiance; // Irradiance
else if (renderMode == 10) fragmentColor = reflection; // Reflection
// Apply HDR tonemapping
fragmentColor = fragmentColor/(fragmentColor + vec3(1.0));
// Apply gamma correction
fragmentColor = pow(fragmentColor, vec3(1.0/2.2));
// Calculate final fragment color
finalColor = vec4(fragmentColor, 1.0);
}