qemu/target-i386/cpu.c
Eduardo Habkost ffce9ebbb6 target-i386: Update model values on Conroe/Penryn/Nehalem CPU models
The CPUID model values on Conroe, Penryn, and Nehalem are too
conservative and don't reflect the values found on real Conroe, Penryn,
and Nehalem CPUs.

This causes at least one known problems: Windows XP disables sysenter
when (family == 6 && model <= 2), but Skype tries to use the sysenter
instruction anyway because it is reported as available on CPUID, making
it crash.

This patch sets appropriate model values that correspond to real Conroe,
Penryn, and Nehalem CPUs.

Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Reviewed-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Andreas Färber <afaerber@suse.de>
2013-06-10 23:33:18 +02:00

2549 lines
84 KiB
C

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "sysemu/kvm.h"
#include "sysemu/cpus.h"
#include "topology.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qapi/qmp/qerror.h"
#include "qapi-types.h"
#include "qapi-visit.h"
#include "qapi/visitor.h"
#include "sysemu/arch_init.h"
#include "hyperv.h"
#include "hw/hw.h"
#if defined(CONFIG_KVM)
#include <linux/kvm_para.h>
#endif
#include "sysemu/sysemu.h"
#include "hw/qdev-properties.h"
#include "hw/cpu/icc_bus.h"
#ifndef CONFIG_USER_ONLY
#include "hw/xen/xen.h"
#include "hw/i386/apic_internal.h"
#endif
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
/* feature flags taken from "Intel Processor Identification and the CPUID
* Instruction" and AMD's "CPUID Specification". In cases of disagreement
* between feature naming conventions, aliases may be added.
*/
static const char *feature_name[] = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
};
static const char *ext_feature_name[] = {
"pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor",
"ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1|sse4_1",
"sse4.2|sse4_2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", "f16c", "rdrand", "hypervisor",
};
/* Feature names that are already defined on feature_name[] but are set on
* CPUID[8000_0001].EDX on AMD CPUs don't have their names on
* ext2_feature_name[]. They are copied automatically to cpuid_ext2_features
* if and only if CPU vendor is AMD.
*/
static const char *ext2_feature_name[] = {
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */ /* AMD CMPXCHG8B */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx|xd", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp",
NULL, "lm|i64", "3dnowext", "3dnow",
};
static const char *ext3_feature_name[] = {
"lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */,
"cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid_msr",
NULL, "tbm", "topoext", "perfctr_core",
"perfctr_nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *ext4_feature_name[] = {
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *kvm_feature_name[] = {
"kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock",
"kvm_asyncpf", "kvm_steal_time", "kvm_pv_eoi", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *svm_feature_name[] = {
"npt", "lbrv", "svm_lock", "nrip_save",
"tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause_filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *cpuid_7_0_ebx_feature_name[] = {
"fsgsbase", NULL, NULL, "bmi1", "hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm", NULL, NULL, NULL, NULL,
NULL, NULL, "rdseed", "adx", "smap", NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
};
typedef struct FeatureWordInfo {
const char **feat_names;
uint32_t cpuid_eax; /* Input EAX for CPUID */
bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t cpuid_ecx; /* Input ECX value for CPUID */
int cpuid_reg; /* output register (R_* constant) */
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
[FEAT_1_EDX] = {
.feat_names = feature_name,
.cpuid_eax = 1, .cpuid_reg = R_EDX,
},
[FEAT_1_ECX] = {
.feat_names = ext_feature_name,
.cpuid_eax = 1, .cpuid_reg = R_ECX,
},
[FEAT_8000_0001_EDX] = {
.feat_names = ext2_feature_name,
.cpuid_eax = 0x80000001, .cpuid_reg = R_EDX,
},
[FEAT_8000_0001_ECX] = {
.feat_names = ext3_feature_name,
.cpuid_eax = 0x80000001, .cpuid_reg = R_ECX,
},
[FEAT_C000_0001_EDX] = {
.feat_names = ext4_feature_name,
.cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX,
},
[FEAT_KVM] = {
.feat_names = kvm_feature_name,
.cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX,
},
[FEAT_SVM] = {
.feat_names = svm_feature_name,
.cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX,
},
[FEAT_7_0_EBX] = {
.feat_names = cpuid_7_0_ebx_feature_name,
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EBX,
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
[R_##reg] = { .name = #reg, .qapi_enum = X86_C_P_U_REGISTER32_##reg }
X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
const char *get_register_name_32(unsigned int reg)
{
if (reg > CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
/* collects per-function cpuid data
*/
typedef struct model_features_t {
uint32_t *guest_feat;
uint32_t *host_feat;
FeatureWord feat_word;
} model_features_t;
int check_cpuid = 0;
int enforce_cpuid = 0;
static uint32_t kvm_default_features = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_STEAL_TIME) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
void disable_kvm_pv_eoi(void)
{
kvm_default_features &= ~(1UL << KVM_FEATURE_PV_EOI);
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
#if defined(CONFIG_KVM)
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#else
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
#endif
}
#define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c)))
/* general substring compare of *[s1..e1) and *[s2..e2). sx is start of
* a substring. ex if !NULL points to the first char after a substring,
* otherwise the string is assumed to sized by a terminating nul.
* Return lexical ordering of *s1:*s2.
*/
static int sstrcmp(const char *s1, const char *e1, const char *s2,
const char *e2)
{
for (;;) {
if (!*s1 || !*s2 || *s1 != *s2)
return (*s1 - *s2);
++s1, ++s2;
if (s1 == e1 && s2 == e2)
return (0);
else if (s1 == e1)
return (*s2);
else if (s2 == e2)
return (*s1);
}
}
/* compare *[s..e) to *altstr. *altstr may be a simple string or multiple
* '|' delimited (possibly empty) strings in which case search for a match
* within the alternatives proceeds left to right. Return 0 for success,
* non-zero otherwise.
*/
static int altcmp(const char *s, const char *e, const char *altstr)
{
const char *p, *q;
for (q = p = altstr; ; ) {
while (*p && *p != '|')
++p;
if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p)))
return (0);
if (!*p)
return (1);
else
q = ++p;
}
}
/* search featureset for flag *[s..e), if found set corresponding bit in
* *pval and return true, otherwise return false
*/
static bool lookup_feature(uint32_t *pval, const char *s, const char *e,
const char **featureset)
{
uint32_t mask;
const char **ppc;
bool found = false;
for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) {
if (*ppc && !altcmp(s, e, *ppc)) {
*pval |= mask;
found = true;
}
}
return found;
}
static void add_flagname_to_bitmaps(const char *flagname,
FeatureWordArray words)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
if (wi->feat_names &&
lookup_feature(&words[w], flagname, NULL, wi->feat_names)) {
break;
}
}
if (w == FEATURE_WORDS) {
fprintf(stderr, "CPU feature %s not found\n", flagname);
}
}
typedef struct x86_def_t {
const char *name;
uint32_t level;
uint32_t xlevel;
uint32_t xlevel2;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
char model_id[48];
} x86_def_t;
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64)
CPUID_PSE36 (needed for Solaris) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_XSAVE,
CPUID_EXT_OSXSAVE, CPUID_EXT_AVX, CPUID_EXT_F16C,
CPUID_EXT_RDRAND */
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT)
/* missing:
CPUID_EXT2_PDPE1GB */
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_SVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX)
/* missing:
CPUID_7_0_EBX_FSGSBASE, CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_ERMS, CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
/* built-in CPU model definitions
*/
static x86_def_t builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 4,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
(PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
.xlevel = 0x8000000A,
},
{
.name = "phenom",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_HT,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
(PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
.features[FEAT_SVM] =
CPUID_SVM_NPT | CPUID_SVM_LBRV,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 11,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS |
CPUID_HT | CPUID_TM | CPUID_PBE,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_DTES64 | CPUID_EXT_DSCPL | CPUID_EXT_VMX | CPUID_EXT_EST |
CPUID_EXT_TM2 | CPUID_EXT_CX16 | CPUID_EXT_XTPR | CPUID_EXT_PDCM,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_VME, CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
(PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) |
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 3,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_POPCNT,
.xlevel = 0x80000004,
},
{
.name = "kvm32",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES,
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 14,
.stepping = 8,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_DTS | CPUID_ACPI |
CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_VMX |
CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR | CPUID_EXT_PDCM,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 4,
.model = 8,
.stepping = 0,
.features[FEAT_1_EDX] =
I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 5,
.model = 4,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 5,
.stepping = 2,
.features[FEAT_1_EDX] =
PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 7,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
.features[FEAT_8000_0001_EDX] =
(PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) |
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
},
{
.name = "n270",
/* original is on level 10 */
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 28,
.stepping = 2,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_DTS |
CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE,
/* Some CPUs got no CPUID_SEP */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_DSCPL | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR |
CPUID_EXT_MOVBE,
.features[FEAT_8000_0001_EDX] =
(PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) |
CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
.name = "Conroe",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
.name = "Penryn",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
.name = "Nehalem",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
},
{
.name = "Westmere",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
},
{
.name = "SandyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
},
{
.name = "Haswell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Haswell)",
},
{
.name = "Opteron_G1",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
.name = "Opteron_G2",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
.name = "Opteron_G3",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
.name = "Opteron_G4",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
{
.name = "Opteron_G5",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
};
/**
* x86_cpu_compat_set_features:
* @cpu_model: CPU model name to be changed. If NULL, all CPU models are changed
* @w: Identifies the feature word to be changed.
* @feat_add: Feature bits to be added to feature word
* @feat_remove: Feature bits to be removed from feature word
*
* Change CPU model feature bits for compatibility.
*
* This function may be used by machine-type compatibility functions
* to enable or disable feature bits on specific CPU models.
*/
void x86_cpu_compat_set_features(const char *cpu_model, FeatureWord w,
uint32_t feat_add, uint32_t feat_remove)
{
x86_def_t *def;
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
if (!cpu_model || !strcmp(cpu_model, def->name)) {
def->features[w] |= feat_add;
def->features[w] &= ~feat_remove;
}
}
}
#ifdef CONFIG_KVM
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
#endif
/* Fill a x86_def_t struct with information about the host CPU, and
* the CPU features supported by the host hardware + host kernel
*
* This function may be called only if KVM is enabled.
*/
static void kvm_cpu_fill_host(x86_def_t *x86_cpu_def)
{
#ifdef CONFIG_KVM
KVMState *s = kvm_state;
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
assert(kvm_enabled());
x86_cpu_def->name = "host";
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(x86_cpu_def->vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
x86_cpu_def->model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
x86_cpu_def->stepping = eax & 0x0F;
x86_cpu_def->level = kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
x86_cpu_def->features[FEAT_1_EDX] =
kvm_arch_get_supported_cpuid(s, 0x1, 0, R_EDX);
x86_cpu_def->features[FEAT_1_ECX] =
kvm_arch_get_supported_cpuid(s, 0x1, 0, R_ECX);
if (x86_cpu_def->level >= 7) {
x86_cpu_def->features[FEAT_7_0_EBX] =
kvm_arch_get_supported_cpuid(s, 0x7, 0, R_EBX);
} else {
x86_cpu_def->features[FEAT_7_0_EBX] = 0;
}
x86_cpu_def->xlevel = kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
x86_cpu_def->features[FEAT_8000_0001_EDX] =
kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX);
x86_cpu_def->features[FEAT_8000_0001_ECX] =
kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_ECX);
cpu_x86_fill_model_id(x86_cpu_def->model_id);
/* Call Centaur's CPUID instruction. */
if (!strcmp(x86_cpu_def->vendor, CPUID_VENDOR_VIA)) {
host_cpuid(0xC0000000, 0, &eax, &ebx, &ecx, &edx);
eax = kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
if (eax >= 0xC0000001) {
/* Support VIA max extended level */
x86_cpu_def->xlevel2 = eax;
host_cpuid(0xC0000001, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_def->features[FEAT_C000_0001_EDX] =
kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
}
}
/* Other KVM-specific feature fields: */
x86_cpu_def->features[FEAT_SVM] =
kvm_arch_get_supported_cpuid(s, 0x8000000A, 0, R_EDX);
x86_cpu_def->features[FEAT_KVM] =
kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
#endif /* CONFIG_KVM */
}
static int unavailable_host_feature(FeatureWordInfo *f, uint32_t mask)
{
int i;
for (i = 0; i < 32; ++i)
if (1 << i & mask) {
const char *reg = get_register_name_32(f->cpuid_reg);
assert(reg);
fprintf(stderr, "warning: host doesn't support requested feature: "
"CPUID.%02XH:%s%s%s [bit %d]\n",
f->cpuid_eax, reg,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
break;
}
return 0;
}
/* Check if all requested cpu flags are making their way to the guest
*
* Returns 0 if all flags are supported by the host, non-zero otherwise.
*
* This function may be called only if KVM is enabled.
*/
static int kvm_check_features_against_host(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
x86_def_t host_def;
uint32_t mask;
int rv, i;
struct model_features_t ft[] = {
{&env->features[FEAT_1_EDX],
&host_def.features[FEAT_1_EDX],
FEAT_1_EDX },
{&env->features[FEAT_1_ECX],
&host_def.features[FEAT_1_ECX],
FEAT_1_ECX },
{&env->features[FEAT_8000_0001_EDX],
&host_def.features[FEAT_8000_0001_EDX],
FEAT_8000_0001_EDX },
{&env->features[FEAT_8000_0001_ECX],
&host_def.features[FEAT_8000_0001_ECX],
FEAT_8000_0001_ECX },
{&env->features[FEAT_C000_0001_EDX],
&host_def.features[FEAT_C000_0001_EDX],
FEAT_C000_0001_EDX },
{&env->features[FEAT_7_0_EBX],
&host_def.features[FEAT_7_0_EBX],
FEAT_7_0_EBX },
{&env->features[FEAT_SVM],
&host_def.features[FEAT_SVM],
FEAT_SVM },
{&env->features[FEAT_KVM],
&host_def.features[FEAT_KVM],
FEAT_KVM },
};
assert(kvm_enabled());
kvm_cpu_fill_host(&host_def);
for (rv = 0, i = 0; i < ARRAY_SIZE(ft); ++i) {
FeatureWord w = ft[i].feat_word;
FeatureWordInfo *wi = &feature_word_info[w];
for (mask = 1; mask; mask <<= 1) {
if (*ft[i].guest_feat & mask &&
!(*ft[i].host_feat & mask)) {
unavailable_host_feature(wi, mask);
rv = 1;
}
}
}
return rv;
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static void x86_cpuid_get_level(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_set_level(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_level, name, errp);
}
static void x86_cpuid_get_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static void x86_cpuid_set_xlevel(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp);
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
value = (char *)g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_set(errp, QERR_PROPERTY_VALUE_BAD, "",
"vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
int64_t value;
visit_type_int(v, &value, name, errp);
if (error_is_set(errp)) {
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = value / 1000;
}
static void x86_cpuid_get_apic_id(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value = cpu->env.cpuid_apic_id;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_set_apic_id(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
DeviceState *dev = DEVICE(obj);
const int64_t min = 0;
const int64_t max = UINT32_MAX;
Error *error = NULL;
int64_t value;
if (dev->realized) {
error_setg(errp, "Attempt to set property '%s' on '%s' after "
"it was realized", name, object_get_typename(obj));
return;
}
visit_type_int(v, &value, name, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value < min || value > max) {
error_setg(errp, "Property %s.%s doesn't take value %" PRId64
" (minimum: %" PRId64 ", maximum: %" PRId64 ")" ,
object_get_typename(obj), name, value, min, max);
return;
}
if ((value != cpu->env.cpuid_apic_id) && cpu_exists(value)) {
error_setg(errp, "CPU with APIC ID %" PRIi64 " exists", value);
return;
}
cpu->env.cpuid_apic_id = value;
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
uint32_t *array = (uint32_t *)opaque;
FeatureWord w;
Error *err = NULL;
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid_eax;
qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid_ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, &list, "feature-words", &err);
error_propagate(errp, err);
}
static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *name)
{
x86_def_t *def;
int i;
if (name == NULL) {
return -1;
}
if (kvm_enabled() && strcmp(name, "host") == 0) {
kvm_cpu_fill_host(x86_cpu_def);
return 0;
}
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
if (strcmp(name, def->name) == 0) {
memcpy(x86_cpu_def, def, sizeof(*def));
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
if (kvm_enabled()) {
uint32_t ebx = 0, ecx = 0, edx = 0;
host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(x86_cpu_def->vendor, ebx, edx, ecx);
}
return 0;
}
}
return -1;
}
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void cpu_x86_parse_featurestr(X86CPU *cpu, char *features, Error **errp)
{
char *featurestr; /* Single 'key=value" string being parsed */
/* Features to be added */
FeatureWordArray plus_features = { 0 };
/* Features to be removed */
FeatureWordArray minus_features = { 0 };
uint32_t numvalue;
CPUX86State *env = &cpu->env;
featurestr = features ? strtok(features, ",") : NULL;
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, plus_features);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, minus_features);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
feat2prop(featurestr);
if (!strcmp(featurestr, "family")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "model")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "stepping")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "level")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "xlevel")) {
char *err;
char num[32];
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
error_setg(errp, "bad numerical value %s", val);
goto out;
}
if (numvalue < 0x80000000) {
fprintf(stderr, "xlevel value shall always be >= 0x80000000"
", fixup will be removed in future versions\n");
numvalue += 0x80000000;
}
snprintf(num, sizeof(num), "%" PRIu32, numvalue);
object_property_parse(OBJECT(cpu), num, featurestr, errp);
} else if (!strcmp(featurestr, "vendor")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "model-id")) {
object_property_parse(OBJECT(cpu), val, featurestr, errp);
} else if (!strcmp(featurestr, "tsc-freq")) {
int64_t tsc_freq;
char *err;
char num[32];
tsc_freq = strtosz_suffix_unit(val, &err,
STRTOSZ_DEFSUFFIX_B, 1000);
if (tsc_freq < 0 || *err) {
error_setg(errp, "bad numerical value %s", val);
goto out;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
object_property_parse(OBJECT(cpu), num, "tsc-frequency", errp);
} else if (!strcmp(featurestr, "hv-spinlocks")) {
char *err;
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
error_setg(errp, "bad numerical value %s", val);
goto out;
}
hyperv_set_spinlock_retries(numvalue);
} else {
error_setg(errp, "unrecognized feature %s", featurestr);
goto out;
}
} else if (!strcmp(featurestr, "check")) {
check_cpuid = 1;
} else if (!strcmp(featurestr, "enforce")) {
check_cpuid = enforce_cpuid = 1;
} else if (!strcmp(featurestr, "hv_relaxed")) {
hyperv_enable_relaxed_timing(true);
} else if (!strcmp(featurestr, "hv_vapic")) {
hyperv_enable_vapic_recommended(true);
} else {
error_setg(errp, "feature string `%s' not in format (+feature|"
"-feature|feature=xyz)", featurestr);
goto out;
}
if (error_is_set(errp)) {
goto out;
}
featurestr = strtok(NULL, ",");
}
env->features[FEAT_1_EDX] |= plus_features[FEAT_1_EDX];
env->features[FEAT_1_ECX] |= plus_features[FEAT_1_ECX];
env->features[FEAT_8000_0001_EDX] |= plus_features[FEAT_8000_0001_EDX];
env->features[FEAT_8000_0001_ECX] |= plus_features[FEAT_8000_0001_ECX];
env->features[FEAT_C000_0001_EDX] |= plus_features[FEAT_C000_0001_EDX];
env->features[FEAT_KVM] |= plus_features[FEAT_KVM];
env->features[FEAT_SVM] |= plus_features[FEAT_SVM];
env->features[FEAT_7_0_EBX] |= plus_features[FEAT_7_0_EBX];
env->features[FEAT_1_EDX] &= ~minus_features[FEAT_1_EDX];
env->features[FEAT_1_ECX] &= ~minus_features[FEAT_1_ECX];
env->features[FEAT_8000_0001_EDX] &= ~minus_features[FEAT_8000_0001_EDX];
env->features[FEAT_8000_0001_ECX] &= ~minus_features[FEAT_8000_0001_ECX];
env->features[FEAT_C000_0001_EDX] &= ~minus_features[FEAT_C000_0001_EDX];
env->features[FEAT_KVM] &= ~minus_features[FEAT_KVM];
env->features[FEAT_SVM] &= ~minus_features[FEAT_SVM];
env->features[FEAT_7_0_EBX] &= ~minus_features[FEAT_7_0_EBX];
out:
return;
}
/* generate a composite string into buf of all cpuid names in featureset
* selected by fbits. indicate truncation at bufsize in the event of overflow.
* if flags, suppress names undefined in featureset.
*/
static void listflags(char *buf, int bufsize, uint32_t fbits,
const char **featureset, uint32_t flags)
{
const char **p = &featureset[31];
char *q, *b, bit;
int nc;
b = 4 <= bufsize ? buf + (bufsize -= 3) - 1 : NULL;
*buf = '\0';
for (q = buf, bit = 31; fbits && bufsize; --p, fbits &= ~(1 << bit), --bit)
if (fbits & 1 << bit && (*p || !flags)) {
if (*p)
nc = snprintf(q, bufsize, "%s%s", q == buf ? "" : " ", *p);
else
nc = snprintf(q, bufsize, "%s[%d]", q == buf ? "" : " ", bit);
if (bufsize <= nc) {
if (b) {
memcpy(b, "...", sizeof("..."));
}
return;
}
q += nc;
bufsize -= nc;
}
}
/* generate CPU information. */
void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
x86_def_t *def;
char buf[256];
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
snprintf(buf, sizeof(buf), "%s", def->name);
(*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id);
}
#ifdef CONFIG_KVM
(*cpu_fprintf)(f, "x86 %16s %-48s\n", "host",
"KVM processor with all supported host features "
"(only available in KVM mode)");
#endif
(*cpu_fprintf)(f, "\nRecognized CPUID flags:\n");
for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
FeatureWordInfo *fw = &feature_word_info[i];
listflags(buf, sizeof(buf), (uint32_t)~0, fw->feat_names, 1);
(*cpu_fprintf)(f, " %s\n", buf);
}
}
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
x86_def_t *def;
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
def = &builtin_x86_defs[i];
info = g_malloc0(sizeof(*info));
info->name = g_strdup(def->name);
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = cpu_list;
cpu_list = entry;
}
return cpu_list;
}
#ifdef CONFIG_KVM
static void filter_features_for_kvm(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
KVMState *s = kvm_state;
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t host_feat = kvm_arch_get_supported_cpuid(s, wi->cpuid_eax,
wi->cpuid_ecx,
wi->cpuid_reg);
uint32_t requested_features = env->features[w];
env->features[w] &= host_feat;
cpu->filtered_features[w] = requested_features & ~env->features[w];
}
}
#endif
static void cpu_x86_register(X86CPU *cpu, const char *name, Error **errp)
{
CPUX86State *env = &cpu->env;
x86_def_t def1, *def = &def1;
memset(def, 0, sizeof(*def));
if (cpu_x86_find_by_name(def, name) < 0) {
error_setg(errp, "Unable to find CPU definition: %s", name);
return;
}
if (kvm_enabled()) {
def->features[FEAT_KVM] |= kvm_default_features;
}
def->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
object_property_set_str(OBJECT(cpu), def->vendor, "vendor", errp);
object_property_set_int(OBJECT(cpu), def->level, "level", errp);
object_property_set_int(OBJECT(cpu), def->family, "family", errp);
object_property_set_int(OBJECT(cpu), def->model, "model", errp);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
env->features[FEAT_1_EDX] = def->features[FEAT_1_EDX];
env->features[FEAT_1_ECX] = def->features[FEAT_1_ECX];
env->features[FEAT_8000_0001_EDX] = def->features[FEAT_8000_0001_EDX];
env->features[FEAT_8000_0001_ECX] = def->features[FEAT_8000_0001_ECX];
object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", errp);
env->features[FEAT_KVM] = def->features[FEAT_KVM];
env->features[FEAT_SVM] = def->features[FEAT_SVM];
env->features[FEAT_C000_0001_EDX] = def->features[FEAT_C000_0001_EDX];
env->features[FEAT_7_0_EBX] = def->features[FEAT_7_0_EBX];
env->cpuid_xlevel2 = def->xlevel2;
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
}
X86CPU *cpu_x86_create(const char *cpu_model, DeviceState *icc_bridge,
Error **errp)
{
X86CPU *cpu = NULL;
CPUX86State *env;
gchar **model_pieces;
char *name, *features;
char *typename;
Error *error = NULL;
model_pieces = g_strsplit(cpu_model, ",", 2);
if (!model_pieces[0]) {
error_setg(&error, "Invalid/empty CPU model name");
goto out;
}
name = model_pieces[0];
features = model_pieces[1];
cpu = X86_CPU(object_new(TYPE_X86_CPU));
#ifndef CONFIG_USER_ONLY
if (icc_bridge == NULL) {
error_setg(&error, "Invalid icc-bridge value");
goto out;
}
qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc"));
object_unref(OBJECT(cpu));
#endif
env = &cpu->env;
env->cpu_model_str = cpu_model;
cpu_x86_register(cpu, name, &error);
if (error) {
goto out;
}
/* Emulate per-model subclasses for global properties */
typename = g_strdup_printf("%s-" TYPE_X86_CPU, name);
qdev_prop_set_globals_for_type(DEVICE(cpu), typename, &error);
g_free(typename);
if (error) {
goto out;
}
cpu_x86_parse_featurestr(cpu, features, &error);
if (error) {
goto out;
}
out:
error_propagate(errp, error);
g_strfreev(model_pieces);
return cpu;
}
X86CPU *cpu_x86_init(const char *cpu_model)
{
Error *error = NULL;
X86CPU *cpu;
cpu = cpu_x86_create(cpu_model, NULL, &error);
if (error) {
goto out;
}
object_property_set_bool(OBJECT(cpu), true, "realized", &error);
out:
if (error) {
fprintf(stderr, "%s\n", error_get_pretty(error));
error_free(error);
if (cpu != NULL) {
object_unref(OBJECT(cpu));
cpu = NULL;
}
}
return cpu;
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
/* Initialize list of CPU models, filling some non-static fields if necessary
*/
void x86_cpudef_setup(void)
{
int i, j;
static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" };
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) {
x86_def_t *def = &builtin_x86_defs[i];
/* Look for specific "cpudef" models that */
/* have the QEMU version in .model_id */
for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) {
if (strcmp(model_with_versions[j], def->name) == 0) {
pstrcpy(def->model_id, sizeof(def->model_id),
"QEMU Virtual CPU version ");
pstrcat(def->model_id, sizeof(def->model_id),
qemu_get_version());
break;
}
}
}
}
static void get_cpuid_vendor(CPUX86State *env, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
}
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel) {
if (env->cpuid_xlevel2 > 0) {
/* Handle the Centaur's CPUID instruction. */
if (index > env->cpuid_xlevel2) {
index = env->cpuid_xlevel2;
} else if (index < 0xC0000000) {
index = env->cpuid_xlevel;
}
} else {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
}
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
get_cpuid_vendor(env, ebx, ecx, edx);
break;
case 1:
*eax = env->cpuid_version;
*ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= 1 << 28; /* HTT bit */
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
*eax = 1;
*ebx = 0;
*ecx = 0;
*edx = 0x2c307d;
break;
case 4:
/* cache info: needed for Core compatibility */
if (cs->nr_cores > 1) {
*eax = (cs->nr_cores - 1) << 26;
} else {
*eax = 0;
}
switch (count) {
case 0: /* L1 dcache info */
*eax |= 0x0000121;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 1: /* L1 icache info */
*eax |= 0x0000122;
*ebx = 0x1c0003f;
*ecx = 0x000003f;
*edx = 0x0000001;
break;
case 2: /* L2 cache info */
*eax |= 0x0000143;
if (cs->nr_threads > 1) {
*eax |= (cs->nr_threads - 1) << 14;
}
*ebx = 0x3c0003f;
*ecx = 0x0000fff;
*edx = 0x0000001;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = 0; /* Reserved */
*edx = 0; /* Reserved */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled()) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xD:
/* Processor Extended State */
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
if (kvm_enabled()) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So dont set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
uint32_t tebx, tecx, tedx;
get_cpuid_vendor(env, &tebx, &tecx, &tedx);
if (tebx != CPUID_VENDOR_INTEL_1 ||
tedx != CPUID_VENDOR_INTEL_2 ||
tecx != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
*eax = 0x01ff01ff;
*ebx = 0x01ff01ff;
*ecx = 0x40020140;
*edx = 0x40020140;
break;
case 0x80000006:
/* cache info (L2 cache) */
*eax = 0;
*ebx = 0x42004200;
*ecx = 0x02008140;
*edx = 0;
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
/* XXX: This value must match the one used in the MMU code. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor */
/* XXX: The physical address space is limited to 42 bits in exec.c. */
*eax = 0x00003028; /* 48 bits virtual, 40 bits physical */
} else {
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
*eax = 0x00000024; /* 36 bits physical */
} else {
*eax = 0x00000020; /* 32 bits physical */
}
}
*ebx = 0;
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
int i;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", s->cpu_index);
log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
}
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(env, BP_CPU);
cpu_watchpoint_remove_all(env, BP_CPU);
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
if (s->cpu_index == 0) {
apic_designate_bsp(env->apic_state);
}
s->halted = !cpu_is_bsp(cpu);
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return cpu_get_apic_base(cpu->env.apic_state) & MSR_IA32_APICBASE_BSP;
}
/* TODO: remove me, when reset over QOM tree is implemented */
static void x86_cpu_machine_reset_cb(void *opaque)
{
X86CPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF;
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
CPUX86State *env = &cpu->env;
DeviceState *dev = DEVICE(cpu);
APICCommonState *apic;
const char *apic_type = "apic";
if (kvm_irqchip_in_kernel()) {
apic_type = "kvm-apic";
} else if (xen_enabled()) {
apic_type = "xen-apic";
}
env->apic_state = qdev_try_create(qdev_get_parent_bus(dev), apic_type);
if (env->apic_state == NULL) {
error_setg(errp, "APIC device '%s' could not be created", apic_type);
return;
}
object_property_add_child(OBJECT(cpu), "apic",
OBJECT(env->apic_state), NULL);
qdev_prop_set_uint8(env->apic_state, "id", env->cpuid_apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(env->apic_state);
apic->cpu = cpu;
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
CPUX86State *env = &cpu->env;
if (env->apic_state == NULL) {
return;
}
if (qdev_init(env->apic_state)) {
error_setg(errp, "APIC device '%s' could not be initialized",
object_get_typename(OBJECT(env->apic_state)));
return;
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
{
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
if (env->features[FEAT_7_0_EBX] && env->cpuid_level < 7) {
env->cpuid_level = 7;
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (env->cpuid_vendor1 == CPUID_VENDOR_AMD_1 &&
env->cpuid_vendor2 == CPUID_VENDOR_AMD_2 &&
env->cpuid_vendor3 == CPUID_VENDOR_AMD_3) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
if (!kvm_enabled()) {
env->features[FEAT_1_EDX] &= TCG_FEATURES;
env->features[FEAT_1_ECX] &= TCG_EXT_FEATURES;
env->features[FEAT_8000_0001_EDX] &= (TCG_EXT2_FEATURES
#ifdef TARGET_X86_64
| CPUID_EXT2_SYSCALL | CPUID_EXT2_LM
#endif
);
env->features[FEAT_8000_0001_ECX] &= TCG_EXT3_FEATURES;
env->features[FEAT_SVM] &= TCG_SVM_FEATURES;
} else {
if (check_cpuid && kvm_check_features_against_host(cpu)
&& enforce_cpuid) {
error_setg(&local_err,
"Host's CPU doesn't support requested features");
goto out;
}
#ifdef CONFIG_KVM
filter_features_for_kvm(cpu);
#endif
}
#ifndef CONFIG_USER_ONLY
qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
qemu_init_vcpu(&cpu->env);
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(CPU(cpu));
xcc->parent_realize(dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
/* Enables contiguous-apic-ID mode, for compatibility */
static bool compat_apic_id_mode;
void enable_compat_apic_id_mode(void)
{
compat_apic_id_mode = true;
}
/* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
{
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
if (compat_apic_id_mode) {
if (cpu_index != correct_id && !warned) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
static void x86_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
static int inited;
cs->env_ptr = env;
cpu_exec_init(env);
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add(obj, "level", "int",
x86_cpuid_get_level,
x86_cpuid_set_level, NULL, NULL, NULL);
object_property_add(obj, "xlevel", "int",
x86_cpuid_get_xlevel,
x86_cpuid_set_xlevel, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(obj, "apic-id", "int",
x86_cpuid_get_apic_id,
x86_cpuid_set_apic_id, NULL, NULL, NULL);
object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
env->cpuid_apic_id = x86_cpu_apic_id_from_index(cs->cpu_index);
/* init various static tables used in TCG mode */
if (tcg_enabled() && !inited) {
inited = 1;
optimize_flags_init();
#ifndef CONFIG_USER_ONLY
cpu_set_debug_excp_handler(breakpoint_handler);
#endif
}
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
return env->cpuid_apic_id;
}
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
xcc->parent_realize = dc->realize;
dc->realize = x86_cpu_realizefn;
dc->bus_type = TYPE_ICC_BUS;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->do_interrupt = x86_cpu_do_interrupt;
#ifndef CONFIG_USER_ONLY
cc->write_elf64_note = x86_cpu_write_elf64_note;
cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
cc->write_elf32_note = x86_cpu_write_elf32_note;
cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
#endif
cpu_class_set_vmsd(cc, &vmstate_x86_cpu);
cc->get_arch_id = x86_cpu_get_arch_id;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = false,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
static void x86_cpu_register_types(void)
{
type_register_static(&x86_cpu_type_info);
}
type_init(x86_cpu_register_types)