qemu/hw/sh_timer.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

328 lines
8.6 KiB
C

/*
* SuperH Timer modules.
*
* Copyright (c) 2007 Magnus Damm
* Based on arm_timer.c by Paul Brook
* Copyright (c) 2005-2006 CodeSourcery.
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "sh.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#define TIMER_TCR_TPSC (7 << 0)
#define TIMER_TCR_CKEG (3 << 3)
#define TIMER_TCR_UNIE (1 << 5)
#define TIMER_TCR_ICPE (3 << 6)
#define TIMER_TCR_UNF (1 << 8)
#define TIMER_TCR_ICPF (1 << 9)
#define TIMER_TCR_RESERVED (0x3f << 10)
#define TIMER_FEAT_CAPT (1 << 0)
#define TIMER_FEAT_EXTCLK (1 << 1)
#define OFFSET_TCOR 0
#define OFFSET_TCNT 1
#define OFFSET_TCR 2
#define OFFSET_TCPR 3
typedef struct {
ptimer_state *timer;
uint32_t tcnt;
uint32_t tcor;
uint32_t tcr;
uint32_t tcpr;
int freq;
int int_level;
int old_level;
int feat;
int enabled;
qemu_irq irq;
} sh_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void sh_timer_update(sh_timer_state *s)
{
int new_level = s->int_level && (s->tcr & TIMER_TCR_UNIE);
if (new_level != s->old_level)
qemu_set_irq (s->irq, new_level);
s->old_level = s->int_level;
s->int_level = new_level;
}
static uint32_t sh_timer_read(void *opaque, target_phys_addr_t offset)
{
sh_timer_state *s = (sh_timer_state *)opaque;
switch (offset >> 2) {
case OFFSET_TCOR:
return s->tcor;
case OFFSET_TCNT:
return ptimer_get_count(s->timer);
case OFFSET_TCR:
return s->tcr | (s->int_level ? TIMER_TCR_UNF : 0);
case OFFSET_TCPR:
if (s->feat & TIMER_FEAT_CAPT)
return s->tcpr;
default:
hw_error("sh_timer_read: Bad offset %x\n", (int)offset);
return 0;
}
}
static void sh_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
sh_timer_state *s = (sh_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case OFFSET_TCOR:
s->tcor = value;
ptimer_set_limit(s->timer, s->tcor, 0);
break;
case OFFSET_TCNT:
s->tcnt = value;
ptimer_set_count(s->timer, s->tcnt);
break;
case OFFSET_TCR:
if (s->enabled) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch (value & TIMER_TCR_TPSC) {
case 0: freq >>= 2; break;
case 1: freq >>= 4; break;
case 2: freq >>= 6; break;
case 3: freq >>= 8; break;
case 4: freq >>= 10; break;
case 6:
case 7: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: hw_error("sh_timer_write: Reserved TPSC value\n"); break;
}
switch ((value & TIMER_TCR_CKEG) >> 3) {
case 0: break;
case 1:
case 2:
case 3: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: hw_error("sh_timer_write: Reserved CKEG value\n"); break;
}
switch ((value & TIMER_TCR_ICPE) >> 6) {
case 0: break;
case 2:
case 3: if (s->feat & TIMER_FEAT_CAPT) break;
default: hw_error("sh_timer_write: Reserved ICPE value\n"); break;
}
if ((value & TIMER_TCR_UNF) == 0)
s->int_level = 0;
value &= ~TIMER_TCR_UNF;
if ((value & TIMER_TCR_ICPF) && (!(s->feat & TIMER_FEAT_CAPT)))
hw_error("sh_timer_write: Reserved ICPF value\n");
value &= ~TIMER_TCR_ICPF; /* capture not supported */
if (value & TIMER_TCR_RESERVED)
hw_error("sh_timer_write: Reserved TCR bits set\n");
s->tcr = value;
ptimer_set_limit(s->timer, s->tcor, 0);
ptimer_set_freq(s->timer, freq);
if (s->enabled) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, 0);
}
break;
case OFFSET_TCPR:
if (s->feat & TIMER_FEAT_CAPT) {
s->tcpr = value;
break;
}
default:
hw_error("sh_timer_write: Bad offset %x\n", (int)offset);
}
sh_timer_update(s);
}
static void sh_timer_start_stop(void *opaque, int enable)
{
sh_timer_state *s = (sh_timer_state *)opaque;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop %d (%d)\n", enable, s->enabled);
#endif
if (s->enabled && !enable) {
ptimer_stop(s->timer);
}
if (!s->enabled && enable) {
ptimer_run(s->timer, 0);
}
s->enabled = !!enable;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop done %d\n", s->enabled);
#endif
}
static void sh_timer_tick(void *opaque)
{
sh_timer_state *s = (sh_timer_state *)opaque;
s->int_level = s->enabled;
sh_timer_update(s);
}
static void *sh_timer_init(uint32_t freq, int feat, qemu_irq irq)
{
sh_timer_state *s;
QEMUBH *bh;
s = (sh_timer_state *)qemu_mallocz(sizeof(sh_timer_state));
s->freq = freq;
s->feat = feat;
s->tcor = 0xffffffff;
s->tcnt = 0xffffffff;
s->tcpr = 0xdeadbeef;
s->tcr = 0;
s->enabled = 0;
s->irq = irq;
bh = qemu_bh_new(sh_timer_tick, s);
s->timer = ptimer_init(bh);
sh_timer_write(s, OFFSET_TCOR >> 2, s->tcor);
sh_timer_write(s, OFFSET_TCNT >> 2, s->tcnt);
sh_timer_write(s, OFFSET_TCPR >> 2, s->tcpr);
sh_timer_write(s, OFFSET_TCR >> 2, s->tcpr);
/* ??? Save/restore. */
return s;
}
typedef struct {
void *timer[3];
int level[3];
uint32_t tocr;
uint32_t tstr;
int feat;
} tmu012_state;
static uint32_t tmu012_read(void *opaque, target_phys_addr_t offset)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_read 0x%lx\n", (unsigned long) offset);
#endif
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
hw_error("tmu012_write: Bad channel offset %x\n", (int)offset);
return sh_timer_read(s->timer[2], offset - 0x20);
}
if (offset >= 0x14)
return sh_timer_read(s->timer[1], offset - 0x14);
if (offset >= 0x08)
return sh_timer_read(s->timer[0], offset - 0x08);
if (offset == 4)
return s->tstr;
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0)
return s->tocr;
hw_error("tmu012_write: Bad offset %x\n", (int)offset);
return 0;
}
static void tmu012_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_write 0x%lx 0x%08x\n", (unsigned long) offset, value);
#endif
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
hw_error("tmu012_write: Bad channel offset %x\n", (int)offset);
sh_timer_write(s->timer[2], offset - 0x20, value);
return;
}
if (offset >= 0x14) {
sh_timer_write(s->timer[1], offset - 0x14, value);
return;
}
if (offset >= 0x08) {
sh_timer_write(s->timer[0], offset - 0x08, value);
return;
}
if (offset == 4) {
sh_timer_start_stop(s->timer[0], value & (1 << 0));
sh_timer_start_stop(s->timer[1], value & (1 << 1));
if (s->feat & TMU012_FEAT_3CHAN)
sh_timer_start_stop(s->timer[2], value & (1 << 2));
else
if (value & (1 << 2))
hw_error("tmu012_write: Bad channel\n");
s->tstr = value;
return;
}
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) {
s->tocr = value & (1 << 0);
}
}
static CPUReadMemoryFunc * const tmu012_readfn[] = {
tmu012_read,
tmu012_read,
tmu012_read
};
static CPUWriteMemoryFunc * const tmu012_writefn[] = {
tmu012_write,
tmu012_write,
tmu012_write
};
void tmu012_init(target_phys_addr_t base, int feat, uint32_t freq,
qemu_irq ch0_irq, qemu_irq ch1_irq,
qemu_irq ch2_irq0, qemu_irq ch2_irq1)
{
int iomemtype;
tmu012_state *s;
int timer_feat = (feat & TMU012_FEAT_EXTCLK) ? TIMER_FEAT_EXTCLK : 0;
s = (tmu012_state *)qemu_mallocz(sizeof(tmu012_state));
s->feat = feat;
s->timer[0] = sh_timer_init(freq, timer_feat, ch0_irq);
s->timer[1] = sh_timer_init(freq, timer_feat, ch1_irq);
if (feat & TMU012_FEAT_3CHAN)
s->timer[2] = sh_timer_init(freq, timer_feat | TIMER_FEAT_CAPT,
ch2_irq0); /* ch2_irq1 not supported */
iomemtype = cpu_register_io_memory(tmu012_readfn,
tmu012_writefn, s,
DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(P4ADDR(base), 0x00001000, iomemtype);
cpu_register_physical_memory(A7ADDR(base), 0x00001000, iomemtype);
/* ??? Save/restore. */
}