qemu/hw/pxa2xx_timer.c
balrog aa941b9445 Savevm/loadvm bits for ARM core, the PXA2xx peripherals and Spitz hardware.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2857 c046a42c-6fe2-441c-8c8c-71466251a162
2007-05-24 18:50:09 +00:00

496 lines
13 KiB
C

/*
* Intel XScale PXA255/270 OS Timers.
*
* Copyright (c) 2006 Openedhand Ltd.
* Copyright (c) 2006 Thorsten Zitterell
*
* This code is licenced under the GPL.
*/
#include "vl.h"
#define OSMR0 0x00
#define OSMR1 0x04
#define OSMR2 0x08
#define OSMR3 0x0c
#define OSMR4 0x80
#define OSMR5 0x84
#define OSMR6 0x88
#define OSMR7 0x8c
#define OSMR8 0x90
#define OSMR9 0x94
#define OSMR10 0x98
#define OSMR11 0x9c
#define OSCR 0x10 /* OS Timer Count */
#define OSCR4 0x40
#define OSCR5 0x44
#define OSCR6 0x48
#define OSCR7 0x4c
#define OSCR8 0x50
#define OSCR9 0x54
#define OSCR10 0x58
#define OSCR11 0x5c
#define OSSR 0x14 /* Timer status register */
#define OWER 0x18
#define OIER 0x1c /* Interrupt enable register 3-0 to E3-E0 */
#define OMCR4 0xc0 /* OS Match Control registers */
#define OMCR5 0xc4
#define OMCR6 0xc8
#define OMCR7 0xcc
#define OMCR8 0xd0
#define OMCR9 0xd4
#define OMCR10 0xd8
#define OMCR11 0xdc
#define OSNR 0x20
#define PXA25X_FREQ 3686400 /* 3.6864 MHz */
#define PXA27X_FREQ 3250000 /* 3.25 MHz */
static int pxa2xx_timer4_freq[8] = {
[0] = 0,
[1] = 32768,
[2] = 1000,
[3] = 1,
[4] = 1000000,
/* [5] is the "Externally supplied clock". Assign if necessary. */
[5 ... 7] = 0,
};
struct pxa2xx_timer0_s {
uint32_t value;
int level;
qemu_irq irq;
QEMUTimer *qtimer;
int num;
void *info;
};
struct pxa2xx_timer4_s {
struct pxa2xx_timer0_s tm;
int32_t oldclock;
int32_t clock;
uint64_t lastload;
uint32_t freq;
uint32_t control;
};
typedef struct {
target_phys_addr_t base;
int32_t clock;
int32_t oldclock;
uint64_t lastload;
uint32_t freq;
struct pxa2xx_timer0_s timer[4];
struct pxa2xx_timer4_s *tm4;
uint32_t events;
uint32_t irq_enabled;
uint32_t reset3;
uint32_t snapshot;
} pxa2xx_timer_info;
static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int i;
uint32_t now_vm;
uint64_t new_qemu;
now_vm = s->clock +
muldiv64(now_qemu - s->lastload, s->freq, ticks_per_sec);
for (i = 0; i < 4; i ++) {
new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
ticks_per_sec, s->freq);
qemu_mod_timer(s->timer[i].qtimer, new_qemu);
}
}
static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
uint32_t now_vm;
uint64_t new_qemu;
static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
int counter;
if (s->tm4[n].control & (1 << 7))
counter = n;
else
counter = counters[n];
if (!s->tm4[counter].freq) {
qemu_del_timer(s->tm4[n].tm.qtimer);
return;
}
now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
s->tm4[counter].lastload,
s->tm4[counter].freq, ticks_per_sec);
new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
ticks_per_sec, s->tm4[counter].freq);
qemu_mod_timer(s->tm4[n].tm.qtimer, new_qemu);
}
static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int tm = 0;
offset -= s->base;
switch (offset) {
case OSMR3: tm ++;
case OSMR2: tm ++;
case OSMR1: tm ++;
case OSMR0:
return s->timer[tm].value;
case OSMR11: tm ++;
case OSMR10: tm ++;
case OSMR9: tm ++;
case OSMR8: tm ++;
case OSMR7: tm ++;
case OSMR6: tm ++;
case OSMR5: tm ++;
case OSMR4:
if (!s->tm4)
goto badreg;
return s->tm4[tm].tm.value;
case OSCR:
return s->clock + muldiv64(qemu_get_clock(vm_clock) -
s->lastload, s->freq, ticks_per_sec);
case OSCR11: tm ++;
case OSCR10: tm ++;
case OSCR9: tm ++;
case OSCR8: tm ++;
case OSCR7: tm ++;
case OSCR6: tm ++;
case OSCR5: tm ++;
case OSCR4:
if (!s->tm4)
goto badreg;
if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
if (s->tm4[tm - 1].freq)
s->snapshot = s->tm4[tm - 1].clock + muldiv64(
qemu_get_clock(vm_clock) -
s->tm4[tm - 1].lastload,
s->tm4[tm - 1].freq, ticks_per_sec);
else
s->snapshot = s->tm4[tm - 1].clock;
}
if (!s->tm4[tm].freq)
return s->tm4[tm].clock;
return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
s->tm4[tm].lastload, s->tm4[tm].freq, ticks_per_sec);
case OIER:
return s->irq_enabled;
case OSSR: /* Status register */
return s->events;
case OWER:
return s->reset3;
case OMCR11: tm ++;
case OMCR10: tm ++;
case OMCR9: tm ++;
case OMCR8: tm ++;
case OMCR7: tm ++;
case OMCR6: tm ++;
case OMCR5: tm ++;
case OMCR4:
if (!s->tm4)
goto badreg;
return s->tm4[tm].control;
case OSNR:
return s->snapshot;
default:
badreg:
cpu_abort(cpu_single_env, "pxa2xx_timer_read: Bad offset "
REG_FMT "\n", offset);
}
return 0;
}
static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
int i, tm = 0;
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
offset -= s->base;
switch (offset) {
case OSMR3: tm ++;
case OSMR2: tm ++;
case OSMR1: tm ++;
case OSMR0:
s->timer[tm].value = value;
pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
break;
case OSMR11: tm ++;
case OSMR10: tm ++;
case OSMR9: tm ++;
case OSMR8: tm ++;
case OSMR7: tm ++;
case OSMR6: tm ++;
case OSMR5: tm ++;
case OSMR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].tm.value = value;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
break;
case OSCR:
s->oldclock = s->clock;
s->lastload = qemu_get_clock(vm_clock);
s->clock = value;
pxa2xx_timer_update(s, s->lastload);
break;
case OSCR11: tm ++;
case OSCR10: tm ++;
case OSCR9: tm ++;
case OSCR8: tm ++;
case OSCR7: tm ++;
case OSCR6: tm ++;
case OSCR5: tm ++;
case OSCR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].oldclock = s->tm4[tm].clock;
s->tm4[tm].lastload = qemu_get_clock(vm_clock);
s->tm4[tm].clock = value;
pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
break;
case OIER:
s->irq_enabled = value & 0xfff;
break;
case OSSR: /* Status register */
s->events &= ~value;
for (i = 0; i < 4; i ++, value >>= 1) {
if (s->timer[i].level && (value & 1)) {
s->timer[i].level = 0;
qemu_irq_lower(s->timer[i].irq);
}
}
if (s->tm4) {
for (i = 0; i < 8; i ++, value >>= 1)
if (s->tm4[i].tm.level && (value & 1))
s->tm4[i].tm.level = 0;
if (!(s->events & 0xff0))
qemu_irq_lower(s->tm4->tm.irq);
}
break;
case OWER: /* XXX: Reset on OSMR3 match? */
s->reset3 = value;
break;
case OMCR7: tm ++;
case OMCR6: tm ++;
case OMCR5: tm ++;
case OMCR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].control = value & 0x0ff;
/* XXX Stop if running (shouldn't happen) */
if ((value & (1 << 7)) || tm == 0)
s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
else {
s->tm4[tm].freq = 0;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
}
break;
case OMCR11: tm ++;
case OMCR10: tm ++;
case OMCR9: tm ++;
case OMCR8: tm += 4;
if (!s->tm4)
goto badreg;
s->tm4[tm].control = value & 0x3ff;
/* XXX Stop if running (shouldn't happen) */
if ((value & (1 << 7)) || !(tm & 1))
s->tm4[tm].freq =
pxa2xx_timer4_freq[(value & (1 << 8)) ? 0 : (value & 7)];
else {
s->tm4[tm].freq = 0;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
}
break;
default:
badreg:
cpu_abort(cpu_single_env, "pxa2xx_timer_write: Bad offset "
REG_FMT "\n", offset);
}
}
static CPUReadMemoryFunc *pxa2xx_timer_readfn[] = {
pxa2xx_timer_read,
pxa2xx_timer_read,
pxa2xx_timer_read,
};
static CPUWriteMemoryFunc *pxa2xx_timer_writefn[] = {
pxa2xx_timer_write,
pxa2xx_timer_write,
pxa2xx_timer_write,
};
static void pxa2xx_timer_tick(void *opaque)
{
struct pxa2xx_timer0_s *t = (struct pxa2xx_timer0_s *) opaque;
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
if (i->irq_enabled & (1 << t->num)) {
t->level = 1;
i->events |= 1 << t->num;
qemu_irq_raise(t->irq);
}
if (t->num == 3)
if (i->reset3 & 1) {
i->reset3 = 0;
qemu_system_reset_request();
}
}
static void pxa2xx_timer_tick4(void *opaque)
{
struct pxa2xx_timer4_s *t = (struct pxa2xx_timer4_s *) opaque;
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
pxa2xx_timer_tick(&t->tm);
if (t->control & (1 << 3))
t->clock = 0;
if (t->control & (1 << 6))
pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
}
static void pxa2xx_timer_save(QEMUFile *f, void *opaque)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int i;
qemu_put_be32s(f, &s->clock);
qemu_put_be32s(f, &s->oldclock);
qemu_put_be64s(f, &s->lastload);
for (i = 0; i < 4; i ++) {
qemu_put_be32s(f, &s->timer[i].value);
qemu_put_be32(f, s->timer[i].level);
}
if (s->tm4)
for (i = 0; i < 8; i ++) {
qemu_put_be32s(f, &s->tm4[i].tm.value);
qemu_put_be32(f, s->tm4[i].tm.level);
qemu_put_be32s(f, &s->tm4[i].oldclock);
qemu_put_be32s(f, &s->tm4[i].clock);
qemu_put_be64s(f, &s->tm4[i].lastload);
qemu_put_be32s(f, &s->tm4[i].freq);
qemu_put_be32s(f, &s->tm4[i].control);
}
qemu_put_be32s(f, &s->events);
qemu_put_be32s(f, &s->irq_enabled);
qemu_put_be32s(f, &s->reset3);
qemu_put_be32s(f, &s->snapshot);
}
static int pxa2xx_timer_load(QEMUFile *f, void *opaque, int version_id)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int64_t now;
int i;
qemu_get_be32s(f, &s->clock);
qemu_get_be32s(f, &s->oldclock);
qemu_get_be64s(f, &s->lastload);
now = qemu_get_clock(vm_clock);
for (i = 0; i < 4; i ++) {
qemu_get_be32s(f, &s->timer[i].value);
s->timer[i].level = qemu_get_be32(f);
}
pxa2xx_timer_update(s, now);
if (s->tm4)
for (i = 0; i < 8; i ++) {
qemu_get_be32s(f, &s->tm4[i].tm.value);
s->tm4[i].tm.level = qemu_get_be32(f);
qemu_get_be32s(f, &s->tm4[i].oldclock);
qemu_get_be32s(f, &s->tm4[i].clock);
qemu_get_be64s(f, &s->tm4[i].lastload);
qemu_get_be32s(f, &s->tm4[i].freq);
qemu_get_be32s(f, &s->tm4[i].control);
pxa2xx_timer_update4(s, now, i);
}
qemu_get_be32s(f, &s->events);
qemu_get_be32s(f, &s->irq_enabled);
qemu_get_be32s(f, &s->reset3);
qemu_get_be32s(f, &s->snapshot);
return 0;
}
static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
qemu_irq *irqs)
{
int i;
int iomemtype;
pxa2xx_timer_info *s;
s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
s->base = base;
s->irq_enabled = 0;
s->oldclock = 0;
s->clock = 0;
s->lastload = qemu_get_clock(vm_clock);
s->reset3 = 0;
for (i = 0; i < 4; i ++) {
s->timer[i].value = 0;
s->timer[i].irq = irqs[i];
s->timer[i].info = s;
s->timer[i].num = i;
s->timer[i].level = 0;
s->timer[i].qtimer = qemu_new_timer(vm_clock,
pxa2xx_timer_tick, &s->timer[i]);
}
iomemtype = cpu_register_io_memory(0, pxa2xx_timer_readfn,
pxa2xx_timer_writefn, s);
cpu_register_physical_memory(base, 0x00000fff, iomemtype);
register_savevm("pxa2xx_timer", 0, 0,
pxa2xx_timer_save, pxa2xx_timer_load, s);
return s;
}
void pxa25x_timer_init(target_phys_addr_t base, qemu_irq *irqs)
{
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
s->freq = PXA25X_FREQ;
s->tm4 = 0;
}
void pxa27x_timer_init(target_phys_addr_t base,
qemu_irq *irqs, qemu_irq irq4)
{
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
int i;
s->freq = PXA27X_FREQ;
s->tm4 = (struct pxa2xx_timer4_s *) qemu_mallocz(8 *
sizeof(struct pxa2xx_timer4_s));
for (i = 0; i < 8; i ++) {
s->tm4[i].tm.value = 0;
s->tm4[i].tm.irq = irq4;
s->tm4[i].tm.info = s;
s->tm4[i].tm.num = i + 4;
s->tm4[i].tm.level = 0;
s->tm4[i].freq = 0;
s->tm4[i].control = 0x0;
s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
pxa2xx_timer_tick4, &s->tm4[i]);
}
}