qemu/target-mips/op.c
ths fd4a04ebb2 - Move FPU exception handling into helper functions, since they are big.
- Fix FP-conditional branches.
- Check FPU register mode at runtime, not translation time, as the F64
  status bit can change.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2828 c046a42c-6fe2-441c-8c8c-71466251a162
2007-05-18 11:55:54 +00:00

2501 lines
44 KiB
C

/*
* MIPS emulation micro-operations for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2006 Marius Groeger (FPU operations)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
#ifndef CALL_FROM_TB0
#define CALL_FROM_TB0(func) func()
#endif
#ifndef CALL_FROM_TB1
#define CALL_FROM_TB1(func, arg0) func(arg0)
#endif
#ifndef CALL_FROM_TB1_CONST16
#define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0)
#endif
#ifndef CALL_FROM_TB2
#define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1)
#endif
#ifndef CALL_FROM_TB2_CONST16
#define CALL_FROM_TB2_CONST16(func, arg0, arg1) \
CALL_FROM_TB2(func, arg0, arg1)
#endif
#ifndef CALL_FROM_TB3
#define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2)
#endif
#ifndef CALL_FROM_TB4
#define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \
func(arg0, arg1, arg2, arg3)
#endif
#define REG 1
#include "op_template.c"
#undef REG
#define REG 2
#include "op_template.c"
#undef REG
#define REG 3
#include "op_template.c"
#undef REG
#define REG 4
#include "op_template.c"
#undef REG
#define REG 5
#include "op_template.c"
#undef REG
#define REG 6
#include "op_template.c"
#undef REG
#define REG 7
#include "op_template.c"
#undef REG
#define REG 8
#include "op_template.c"
#undef REG
#define REG 9
#include "op_template.c"
#undef REG
#define REG 10
#include "op_template.c"
#undef REG
#define REG 11
#include "op_template.c"
#undef REG
#define REG 12
#include "op_template.c"
#undef REG
#define REG 13
#include "op_template.c"
#undef REG
#define REG 14
#include "op_template.c"
#undef REG
#define REG 15
#include "op_template.c"
#undef REG
#define REG 16
#include "op_template.c"
#undef REG
#define REG 17
#include "op_template.c"
#undef REG
#define REG 18
#include "op_template.c"
#undef REG
#define REG 19
#include "op_template.c"
#undef REG
#define REG 20
#include "op_template.c"
#undef REG
#define REG 21
#include "op_template.c"
#undef REG
#define REG 22
#include "op_template.c"
#undef REG
#define REG 23
#include "op_template.c"
#undef REG
#define REG 24
#include "op_template.c"
#undef REG
#define REG 25
#include "op_template.c"
#undef REG
#define REG 26
#include "op_template.c"
#undef REG
#define REG 27
#include "op_template.c"
#undef REG
#define REG 28
#include "op_template.c"
#undef REG
#define REG 29
#include "op_template.c"
#undef REG
#define REG 30
#include "op_template.c"
#undef REG
#define REG 31
#include "op_template.c"
#undef REG
#define TN
#include "op_template.c"
#undef TN
#define FREG 0
#include "fop_template.c"
#undef FREG
#define FREG 1
#include "fop_template.c"
#undef FREG
#define FREG 2
#include "fop_template.c"
#undef FREG
#define FREG 3
#include "fop_template.c"
#undef FREG
#define FREG 4
#include "fop_template.c"
#undef FREG
#define FREG 5
#include "fop_template.c"
#undef FREG
#define FREG 6
#include "fop_template.c"
#undef FREG
#define FREG 7
#include "fop_template.c"
#undef FREG
#define FREG 8
#include "fop_template.c"
#undef FREG
#define FREG 9
#include "fop_template.c"
#undef FREG
#define FREG 10
#include "fop_template.c"
#undef FREG
#define FREG 11
#include "fop_template.c"
#undef FREG
#define FREG 12
#include "fop_template.c"
#undef FREG
#define FREG 13
#include "fop_template.c"
#undef FREG
#define FREG 14
#include "fop_template.c"
#undef FREG
#define FREG 15
#include "fop_template.c"
#undef FREG
#define FREG 16
#include "fop_template.c"
#undef FREG
#define FREG 17
#include "fop_template.c"
#undef FREG
#define FREG 18
#include "fop_template.c"
#undef FREG
#define FREG 19
#include "fop_template.c"
#undef FREG
#define FREG 20
#include "fop_template.c"
#undef FREG
#define FREG 21
#include "fop_template.c"
#undef FREG
#define FREG 22
#include "fop_template.c"
#undef FREG
#define FREG 23
#include "fop_template.c"
#undef FREG
#define FREG 24
#include "fop_template.c"
#undef FREG
#define FREG 25
#include "fop_template.c"
#undef FREG
#define FREG 26
#include "fop_template.c"
#undef FREG
#define FREG 27
#include "fop_template.c"
#undef FREG
#define FREG 28
#include "fop_template.c"
#undef FREG
#define FREG 29
#include "fop_template.c"
#undef FREG
#define FREG 30
#include "fop_template.c"
#undef FREG
#define FREG 31
#include "fop_template.c"
#undef FREG
#define FTN
#include "fop_template.c"
#undef FTN
void op_dup_T0 (void)
{
T2 = T0;
RETURN();
}
void op_load_HI (void)
{
T0 = env->HI;
RETURN();
}
void op_store_HI (void)
{
env->HI = T0;
RETURN();
}
void op_load_LO (void)
{
T0 = env->LO;
RETURN();
}
void op_store_LO (void)
{
env->LO = T0;
RETURN();
}
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif
/* Addresses computation */
void op_addr_add (void)
{
/* For compatibility with 32-bit code, data reference in user mode
with Status_UX = 0 should be casted to 32-bit and sign extended.
See the MIPS64 PRA manual, section 4.10. */
#ifdef TARGET_MIPS64
if ((env->CP0_Status & (1 << CP0St_UM)) &&
!(env->CP0_Status & (1 << CP0St_UX)))
T0 = (int64_t)(int32_t)(T0 + T1);
else
#endif
T0 += T1;
RETURN();
}
/* Arithmetic */
void op_add (void)
{
T0 = (int32_t)((int32_t)T0 + (int32_t)T1);
RETURN();
}
void op_addo (void)
{
target_ulong tmp;
tmp = (int32_t)T0;
T0 = (int32_t)T0 + (int32_t)T1;
if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) {
/* operands of same sign, result different sign */
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
T0 = (int32_t)T0;
RETURN();
}
void op_sub (void)
{
T0 = (int32_t)((int32_t)T0 - (int32_t)T1);
RETURN();
}
void op_subo (void)
{
target_ulong tmp;
tmp = (int32_t)T0;
T0 = (int32_t)T0 - (int32_t)T1;
if (((tmp ^ T1) & (tmp ^ T0)) >> 31) {
/* operands of different sign, first operand and result different sign */
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
T0 = (int32_t)T0;
RETURN();
}
void op_mul (void)
{
T0 = (int32_t)((int32_t)T0 * (int32_t)T1);
RETURN();
}
#if HOST_LONG_BITS < 64
void op_div (void)
{
CALL_FROM_TB0(do_div);
RETURN();
}
#else
void op_div (void)
{
if (T1 != 0) {
env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
}
RETURN();
}
#endif
void op_divu (void)
{
if (T1 != 0) {
env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1);
env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1);
}
RETURN();
}
#ifdef TARGET_MIPS64
/* Arithmetic */
void op_dadd (void)
{
T0 += T1;
RETURN();
}
void op_daddo (void)
{
target_long tmp;
tmp = T0;
T0 += T1;
if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) {
/* operands of same sign, result different sign */
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
RETURN();
}
void op_dsub (void)
{
T0 -= T1;
RETURN();
}
void op_dsubo (void)
{
target_long tmp;
tmp = T0;
T0 = (int64_t)T0 - (int64_t)T1;
if (((tmp ^ T1) & (tmp ^ T0)) >> 63) {
/* operands of different sign, first operand and result different sign */
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
}
RETURN();
}
void op_dmul (void)
{
T0 = (int64_t)T0 * (int64_t)T1;
RETURN();
}
/* Those might call libgcc functions. */
void op_ddiv (void)
{
do_ddiv();
RETURN();
}
#if TARGET_LONG_BITS > HOST_LONG_BITS
void op_ddivu (void)
{
do_ddivu();
RETURN();
}
#else
void op_ddivu (void)
{
if (T1 != 0) {
env->LO = T0 / T1;
env->HI = T0 % T1;
}
RETURN();
}
#endif
#endif /* TARGET_MIPS64 */
/* Logical */
void op_and (void)
{
T0 &= T1;
RETURN();
}
void op_nor (void)
{
T0 = ~(T0 | T1);
RETURN();
}
void op_or (void)
{
T0 |= T1;
RETURN();
}
void op_xor (void)
{
T0 ^= T1;
RETURN();
}
void op_sll (void)
{
T0 = (int32_t)((uint32_t)T0 << T1);
RETURN();
}
void op_sra (void)
{
T0 = (int32_t)((int32_t)T0 >> T1);
RETURN();
}
void op_srl (void)
{
T0 = (int32_t)((uint32_t)T0 >> T1);
RETURN();
}
void op_rotr (void)
{
target_ulong tmp;
if (T1) {
tmp = (int32_t)((uint32_t)T0 << (0x20 - T1));
T0 = (int32_t)((uint32_t)T0 >> T1) | tmp;
}
RETURN();
}
void op_sllv (void)
{
T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F));
RETURN();
}
void op_srav (void)
{
T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F));
RETURN();
}
void op_srlv (void)
{
T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F));
RETURN();
}
void op_rotrv (void)
{
target_ulong tmp;
T0 &= 0x1F;
if (T0) {
tmp = (int32_t)((uint32_t)T1 << (0x20 - T0));
T0 = (int32_t)((uint32_t)T1 >> T0) | tmp;
} else
T0 = T1;
RETURN();
}
void op_clo (void)
{
int n;
if (T0 == ~((target_ulong)0)) {
T0 = 32;
} else {
for (n = 0; n < 32; n++) {
if (!(T0 & (1 << 31)))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
void op_clz (void)
{
int n;
if (T0 == 0) {
T0 = 32;
} else {
for (n = 0; n < 32; n++) {
if (T0 & (1 << 31))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
#ifdef TARGET_MIPS64
#if TARGET_LONG_BITS > HOST_LONG_BITS
/* Those might call libgcc functions. */
void op_dsll (void)
{
CALL_FROM_TB0(do_dsll);
RETURN();
}
void op_dsll32 (void)
{
CALL_FROM_TB0(do_dsll32);
RETURN();
}
void op_dsra (void)
{
CALL_FROM_TB0(do_dsra);
RETURN();
}
void op_dsra32 (void)
{
CALL_FROM_TB0(do_dsra32);
RETURN();
}
void op_dsrl (void)
{
CALL_FROM_TB0(do_dsrl);
RETURN();
}
void op_dsrl32 (void)
{
CALL_FROM_TB0(do_dsrl32);
RETURN();
}
void op_drotr (void)
{
CALL_FROM_TB0(do_drotr);
RETURN();
}
void op_drotr32 (void)
{
CALL_FROM_TB0(do_drotr32);
RETURN();
}
void op_dsllv (void)
{
CALL_FROM_TB0(do_dsllv);
RETURN();
}
void op_dsrav (void)
{
CALL_FROM_TB0(do_dsrav);
RETURN();
}
void op_dsrlv (void)
{
CALL_FROM_TB0(do_dsrlv);
RETURN();
}
void op_drotrv (void)
{
CALL_FROM_TB0(do_drotrv);
RETURN();
}
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
void op_dsll (void)
{
T0 = T0 << T1;
RETURN();
}
void op_dsll32 (void)
{
T0 = T0 << (T1 + 32);
RETURN();
}
void op_dsra (void)
{
T0 = (int64_t)T0 >> T1;
RETURN();
}
void op_dsra32 (void)
{
T0 = (int64_t)T0 >> (T1 + 32);
RETURN();
}
void op_dsrl (void)
{
T0 = T0 >> T1;
RETURN();
}
void op_dsrl32 (void)
{
T0 = T0 >> (T1 + 32);
RETURN();
}
void op_drotr (void)
{
target_ulong tmp;
if (T1) {
tmp = T0 << (0x40 - T1);
T0 = (T0 >> T1) | tmp;
}
RETURN();
}
void op_drotr32 (void)
{
target_ulong tmp;
if (T1) {
tmp = T0 << (0x40 - (32 + T1));
T0 = (T0 >> (32 + T1)) | tmp;
}
RETURN();
}
void op_dsllv (void)
{
T0 = T1 << (T0 & 0x3F);
RETURN();
}
void op_dsrav (void)
{
T0 = (int64_t)T1 >> (T0 & 0x3F);
RETURN();
}
void op_dsrlv (void)
{
T0 = T1 >> (T0 & 0x3F);
RETURN();
}
void op_drotrv (void)
{
target_ulong tmp;
T0 &= 0x3F;
if (T0) {
tmp = T1 << (0x40 - T0);
T0 = (T1 >> T0) | tmp;
} else
T0 = T1;
RETURN();
}
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
void op_dclo (void)
{
int n;
if (T0 == ~((target_ulong)0)) {
T0 = 64;
} else {
for (n = 0; n < 64; n++) {
if (!(T0 & (1ULL << 63)))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
void op_dclz (void)
{
int n;
if (T0 == 0) {
T0 = 64;
} else {
for (n = 0; n < 64; n++) {
if (T0 & (1ULL << 63))
break;
T0 = T0 << 1;
}
T0 = n;
}
RETURN();
}
#endif
/* 64 bits arithmetic */
#if TARGET_LONG_BITS > HOST_LONG_BITS
void op_mult (void)
{
CALL_FROM_TB0(do_mult);
RETURN();
}
void op_multu (void)
{
CALL_FROM_TB0(do_multu);
RETURN();
}
void op_madd (void)
{
CALL_FROM_TB0(do_madd);
RETURN();
}
void op_maddu (void)
{
CALL_FROM_TB0(do_maddu);
RETURN();
}
void op_msub (void)
{
CALL_FROM_TB0(do_msub);
RETURN();
}
void op_msubu (void)
{
CALL_FROM_TB0(do_msubu);
RETURN();
}
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
static inline uint64_t get_HILO (void)
{
return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO);
}
static inline void set_HILO (uint64_t HILO)
{
env->LO = (int32_t)(HILO & 0xFFFFFFFF);
env->HI = (int32_t)(HILO >> 32);
}
void op_mult (void)
{
set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
RETURN();
}
void op_multu (void)
{
set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
RETURN();
}
void op_madd (void)
{
int64_t tmp;
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
set_HILO((int64_t)get_HILO() + tmp);
RETURN();
}
void op_maddu (void)
{
uint64_t tmp;
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
set_HILO(get_HILO() + tmp);
RETURN();
}
void op_msub (void)
{
int64_t tmp;
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
set_HILO((int64_t)get_HILO() - tmp);
RETURN();
}
void op_msubu (void)
{
uint64_t tmp;
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
set_HILO(get_HILO() - tmp);
RETURN();
}
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
#ifdef TARGET_MIPS64
void op_dmult (void)
{
CALL_FROM_TB4(muls64, &(env->HI), &(env->LO), T0, T1);
RETURN();
}
void op_dmultu (void)
{
CALL_FROM_TB4(mulu64, &(env->HI), &(env->LO), T0, T1);
RETURN();
}
#endif
/* Conditional moves */
void op_movn (void)
{
if (T1 != 0)
env->gpr[PARAM1] = T0;
RETURN();
}
void op_movz (void)
{
if (T1 == 0)
env->gpr[PARAM1] = T0;
RETURN();
}
void op_movf (void)
{
if (!(env->fcr31 & PARAM1))
T0 = T1;
RETURN();
}
void op_movt (void)
{
if (env->fcr31 & PARAM1)
T0 = T1;
RETURN();
}
/* Tests */
#define OP_COND(name, cond) \
void glue(op_, name) (void) \
{ \
if (cond) { \
T0 = 1; \
} else { \
T0 = 0; \
} \
RETURN(); \
}
OP_COND(eq, T0 == T1);
OP_COND(ne, T0 != T1);
OP_COND(ge, (int32_t)T0 >= (int32_t)T1);
OP_COND(geu, T0 >= T1);
OP_COND(lt, (int32_t)T0 < (int32_t)T1);
OP_COND(ltu, T0 < T1);
OP_COND(gez, (int32_t)T0 >= 0);
OP_COND(gtz, (int32_t)T0 > 0);
OP_COND(lez, (int32_t)T0 <= 0);
OP_COND(ltz, (int32_t)T0 < 0);
/* Branches */
void OPPROTO op_goto_tb0(void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
RETURN();
}
void OPPROTO op_goto_tb1(void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
RETURN();
}
/* Branch to register */
void op_save_breg_target (void)
{
env->btarget = T2;
RETURN();
}
void op_restore_breg_target (void)
{
T2 = env->btarget;
RETURN();
}
void op_breg (void)
{
env->PC = T2;
RETURN();
}
void op_save_btarget (void)
{
env->btarget = PARAM1;
RETURN();
}
/* Conditional branch */
void op_set_bcond (void)
{
T2 = T0;
RETURN();
}
void op_save_bcond (void)
{
env->bcond = T2;
RETURN();
}
void op_restore_bcond (void)
{
T2 = env->bcond;
RETURN();
}
void op_jnz_T2 (void)
{
if (T2)
GOTO_LABEL_PARAM(1);
RETURN();
}
void op_flush_icache_range(void) {
CALL_FROM_TB2(tlb_flush_page, env, T0 + T1);
RETURN();
}
void op_flush_icache_all(void) {
CALL_FROM_TB1(tb_flush, env);
RETURN();
}
/* CP0 functions */
void op_mfc0_index (void)
{
T0 = env->CP0_Index;
RETURN();
}
void op_mfc0_random (void)
{
CALL_FROM_TB0(do_mfc0_random);
RETURN();
}
void op_mfc0_entrylo0 (void)
{
T0 = (int32_t)env->CP0_EntryLo0;
RETURN();
}
void op_mfc0_entrylo1 (void)
{
T0 = (int32_t)env->CP0_EntryLo1;
RETURN();
}
void op_mfc0_context (void)
{
T0 = (int32_t)env->CP0_Context;
RETURN();
}
void op_mfc0_pagemask (void)
{
T0 = env->CP0_PageMask;
RETURN();
}
void op_mfc0_pagegrain (void)
{
T0 = env->CP0_PageGrain;
RETURN();
}
void op_mfc0_wired (void)
{
T0 = env->CP0_Wired;
RETURN();
}
void op_mfc0_hwrena (void)
{
T0 = env->CP0_HWREna;
RETURN();
}
void op_mfc0_badvaddr (void)
{
T0 = (int32_t)env->CP0_BadVAddr;
RETURN();
}
void op_mfc0_count (void)
{
CALL_FROM_TB0(do_mfc0_count);
RETURN();
}
void op_mfc0_entryhi (void)
{
T0 = (int32_t)env->CP0_EntryHi;
RETURN();
}
void op_mfc0_compare (void)
{
T0 = env->CP0_Compare;
RETURN();
}
void op_mfc0_status (void)
{
T0 = env->CP0_Status;
RETURN();
}
void op_mfc0_intctl (void)
{
T0 = env->CP0_IntCtl;
RETURN();
}
void op_mfc0_srsctl (void)
{
T0 = env->CP0_SRSCtl;
RETURN();
}
void op_mfc0_srsmap (void)
{
T0 = env->CP0_SRSMap;
RETURN();
}
void op_mfc0_cause (void)
{
T0 = env->CP0_Cause;
RETURN();
}
void op_mfc0_epc (void)
{
T0 = (int32_t)env->CP0_EPC;
RETURN();
}
void op_mfc0_prid (void)
{
T0 = env->CP0_PRid;
RETURN();
}
void op_mfc0_ebase (void)
{
T0 = env->CP0_EBase;
RETURN();
}
void op_mfc0_config0 (void)
{
T0 = env->CP0_Config0;
RETURN();
}
void op_mfc0_config1 (void)
{
T0 = env->CP0_Config1;
RETURN();
}
void op_mfc0_config2 (void)
{
T0 = env->CP0_Config2;
RETURN();
}
void op_mfc0_config3 (void)
{
T0 = env->CP0_Config3;
RETURN();
}
void op_mfc0_config6 (void)
{
T0 = env->CP0_Config6;
RETURN();
}
void op_mfc0_config7 (void)
{
T0 = env->CP0_Config7;
RETURN();
}
void op_mfc0_lladdr (void)
{
T0 = (int32_t)env->CP0_LLAddr >> 4;
RETURN();
}
void op_mfc0_watchlo0 (void)
{
T0 = (int32_t)env->CP0_WatchLo;
RETURN();
}
void op_mfc0_watchhi0 (void)
{
T0 = env->CP0_WatchHi;
RETURN();
}
void op_mfc0_xcontext (void)
{
T0 = (int32_t)env->CP0_XContext;
RETURN();
}
void op_mfc0_framemask (void)
{
T0 = env->CP0_Framemask;
RETURN();
}
void op_mfc0_debug (void)
{
T0 = env->CP0_Debug;
if (env->hflags & MIPS_HFLAG_DM)
T0 |= 1 << CP0DB_DM;
RETURN();
}
void op_mfc0_depc (void)
{
T0 = (int32_t)env->CP0_DEPC;
RETURN();
}
void op_mfc0_performance0 (void)
{
T0 = env->CP0_Performance0;
RETURN();
}
void op_mfc0_taglo (void)
{
T0 = env->CP0_TagLo;
RETURN();
}
void op_mfc0_datalo (void)
{
T0 = env->CP0_DataLo;
RETURN();
}
void op_mfc0_taghi (void)
{
T0 = env->CP0_TagHi;
RETURN();
}
void op_mfc0_datahi (void)
{
T0 = env->CP0_DataHi;
RETURN();
}
void op_mfc0_errorepc (void)
{
T0 = (int32_t)env->CP0_ErrorEPC;
RETURN();
}
void op_mfc0_desave (void)
{
T0 = env->CP0_DESAVE;
RETURN();
}
void op_mtc0_index (void)
{
env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 % env->nb_tlb);
RETURN();
}
void op_mtc0_entrylo0 (void)
{
/* Large physaddr not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo0 = T0 & 0x3FFFFFFF;
RETURN();
}
void op_mtc0_entrylo1 (void)
{
/* Large physaddr not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo1 = T0 & 0x3FFFFFFF;
RETURN();
}
void op_mtc0_context (void)
{
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (T0 & ~0x007FFFFF);
RETURN();
}
void op_mtc0_pagemask (void)
{
/* 1k pages not implemented */
env->CP0_PageMask = T0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
RETURN();
}
void op_mtc0_pagegrain (void)
{
/* SmartMIPS not implemented */
/* Large physaddr not implemented */
/* 1k pages not implemented */
env->CP0_PageGrain = 0;
RETURN();
}
void op_mtc0_wired (void)
{
env->CP0_Wired = T0 % env->nb_tlb;
RETURN();
}
void op_mtc0_hwrena (void)
{
env->CP0_HWREna = T0 & 0x0000000F;
RETURN();
}
void op_mtc0_count (void)
{
CALL_FROM_TB2(cpu_mips_store_count, env, T0);
RETURN();
}
void op_mtc0_entryhi (void)
{
target_ulong old, val;
/* 1k pages not implemented */
val = T0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
#ifdef TARGET_MIPS64
val = T0 & 0xC00000FFFFFFFFFFULL;
#endif
old = env->CP0_EntryHi;
env->CP0_EntryHi = val;
/* If the ASID changes, flush qemu's TLB. */
if ((old & 0xFF) != (val & 0xFF))
CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1);
RETURN();
}
void op_mtc0_compare (void)
{
CALL_FROM_TB2(cpu_mips_store_compare, env, T0);
RETURN();
}
void op_mtc0_status (void)
{
uint32_t val, old;
uint32_t mask = env->Status_rw_bitmask;
/* No reverse endianness, no MDMX/DSP, no 64bit ops
implemented. */
val = T0 & mask;
old = env->CP0_Status;
if (!(val & (1 << CP0St_EXL)) &&
!(val & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
(val & (1 << CP0St_UM)))
env->hflags |= MIPS_HFLAG_UM;
env->CP0_Status = (env->CP0_Status & ~mask) | val;
if (loglevel & CPU_LOG_EXEC)
CALL_FROM_TB2(do_mtc0_status_debug, old, val);
CALL_FROM_TB1(cpu_mips_update_irq, env);
RETURN();
}
void op_mtc0_intctl (void)
{
/* vectored interrupts not implemented, timer on int 7,
no performance counters. */
env->CP0_IntCtl |= T0 & 0x000002e0;
RETURN();
}
void op_mtc0_srsctl (void)
{
/* shadow registers not implemented */
env->CP0_SRSCtl = 0;
RETURN();
}
void op_mtc0_srsmap (void)
{
/* shadow registers not implemented */
env->CP0_SRSMap = 0;
RETURN();
}
void op_mtc0_cause (void)
{
uint32_t mask = 0x00C00300;
if ((env->CP0_Config0 & (0x7 << CP0C0_AR)) == (1 << CP0C0_AR))
mask |= 1 << CP0Ca_DC;
env->CP0_Cause = (env->CP0_Cause & ~mask) | (T0 & mask);
/* Handle the software interrupt as an hardware one, as they
are very similar */
if (T0 & CP0Ca_IP_mask) {
CALL_FROM_TB1(cpu_mips_update_irq, env);
}
RETURN();
}
void op_mtc0_epc (void)
{
env->CP0_EPC = T0;
RETURN();
}
void op_mtc0_ebase (void)
{
/* vectored interrupts not implemented */
/* Multi-CPU not implemented */
env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000);
RETURN();
}
void op_mtc0_config0 (void)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (T0 & 0x00000001);
RETURN();
}
void op_mtc0_config2 (void)
{
/* tertiary/secondary caches not implemented */
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
RETURN();
}
void op_mtc0_watchlo0 (void)
{
/* Watch exceptions for instructions, data loads, data stores
not implemented. */
env->CP0_WatchLo = (T0 & ~0x7);
RETURN();
}
void op_mtc0_watchhi0 (void)
{
env->CP0_WatchHi = (T0 & 0x40FF0FF8);
env->CP0_WatchHi &= ~(env->CP0_WatchHi & T0 & 0x7);
RETURN();
}
void op_mtc0_framemask (void)
{
env->CP0_Framemask = T0; /* XXX */
RETURN();
}
void op_mtc0_debug (void)
{
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120);
if (T0 & (1 << CP0DB_DM))
env->hflags |= MIPS_HFLAG_DM;
else
env->hflags &= ~MIPS_HFLAG_DM;
RETURN();
}
void op_mtc0_depc (void)
{
env->CP0_DEPC = T0;
RETURN();
}
void op_mtc0_performance0 (void)
{
env->CP0_Performance0 = T0; /* XXX */
RETURN();
}
void op_mtc0_taglo (void)
{
env->CP0_TagLo = T0 & 0xFFFFFCF6;
RETURN();
}
void op_mtc0_datalo (void)
{
env->CP0_DataLo = T0; /* XXX */
RETURN();
}
void op_mtc0_taghi (void)
{
env->CP0_TagHi = T0; /* XXX */
RETURN();
}
void op_mtc0_datahi (void)
{
env->CP0_DataHi = T0; /* XXX */
RETURN();
}
void op_mtc0_errorepc (void)
{
env->CP0_ErrorEPC = T0;
RETURN();
}
void op_mtc0_desave (void)
{
env->CP0_DESAVE = T0;
RETURN();
}
#ifdef TARGET_MIPS64
void op_mtc0_xcontext (void)
{
env->CP0_XContext = (env->CP0_XContext & 0x1ffffffffULL) | (T0 & ~0x1ffffffffULL);
RETURN();
}
void op_dmfc0_entrylo0 (void)
{
T0 = env->CP0_EntryLo0;
RETURN();
}
void op_dmfc0_entrylo1 (void)
{
T0 = env->CP0_EntryLo1;
RETURN();
}
void op_dmfc0_context (void)
{
T0 = env->CP0_Context;
RETURN();
}
void op_dmfc0_badvaddr (void)
{
T0 = env->CP0_BadVAddr;
RETURN();
}
void op_dmfc0_entryhi (void)
{
T0 = env->CP0_EntryHi;
RETURN();
}
void op_dmfc0_epc (void)
{
T0 = env->CP0_EPC;
RETURN();
}
void op_dmfc0_lladdr (void)
{
T0 = env->CP0_LLAddr >> 4;
RETURN();
}
void op_dmfc0_watchlo0 (void)
{
T0 = env->CP0_WatchLo;
RETURN();
}
void op_dmfc0_xcontext (void)
{
T0 = env->CP0_XContext;
RETURN();
}
void op_dmfc0_depc (void)
{
T0 = env->CP0_DEPC;
RETURN();
}
void op_dmfc0_errorepc (void)
{
T0 = env->CP0_ErrorEPC;
RETURN();
}
#endif /* TARGET_MIPS64 */
/* CP1 functions */
#if 0
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
#else
# define DEBUG_FPU_STATE() do { } while(0)
#endif
void op_cp0_enabled(void)
{
if (!(env->CP0_Status & (1 << CP0St_CU0)) &&
(env->hflags & MIPS_HFLAG_UM)) {
CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 0);
}
RETURN();
}
void op_cp1_enabled(void)
{
if (!(env->CP0_Status & (1 << CP0St_CU1))) {
CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 1);
}
RETURN();
}
/*
* Verify if floating point register is valid; an operation is not defined
* if bit 0 of any register specification is set and the FR bit in the
* Status register equals zero, since the register numbers specify an
* even-odd pair of adjacent coprocessor general registers. When the FR bit
* in the Status register equals one, both even and odd register numbers
* are valid. This limitation exists only for 64 bit wide (d,l,ps) registers.
*
* Multiple 64 bit wide registers can be checked by calling
* gen_op_cp1_registers(freg1 | freg2 | ... | fregN);
*/
void op_cp1_registers(void)
{
if (!(env->CP0_Status & (1 << CP0St_FR)) && (PARAM1 & 1)) {
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
}
RETURN();
}
void op_cfc1 (void)
{
switch (T1) {
case 0:
T0 = (int32_t)env->fcr0;
break;
case 25:
T0 = ((env->fcr31 >> 24) & 0xfe) | ((env->fcr31 >> 23) & 0x1);
break;
case 26:
T0 = env->fcr31 & 0x0003f07c;
break;
case 28:
T0 = (env->fcr31 & 0x00000f83) | ((env->fcr31 >> 22) & 0x4);
break;
default:
T0 = (int32_t)env->fcr31;
break;
}
DEBUG_FPU_STATE();
RETURN();
}
void op_ctc1 (void)
{
CALL_FROM_TB0(do_ctc1);
DEBUG_FPU_STATE();
RETURN();
}
void op_mfc1 (void)
{
T0 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
void op_mtc1 (void)
{
WT0 = T0;
DEBUG_FPU_STATE();
RETURN();
}
void op_dmfc1 (void)
{
T0 = DT0;
DEBUG_FPU_STATE();
RETURN();
}
void op_dmtc1 (void)
{
DT0 = T0;
DEBUG_FPU_STATE();
RETURN();
}
void op_mfhc1 (void)
{
T0 = WTH0;
DEBUG_FPU_STATE();
RETURN();
}
void op_mthc1 (void)
{
WTH0 = T0;
DEBUG_FPU_STATE();
RETURN();
}
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps",
paired single lowwer "pl", paired single upper "pu". */
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
FLOAT_OP(cvtd, s)
{
CALL_FROM_TB0(do_float_cvtd_s);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtd, w)
{
CALL_FROM_TB0(do_float_cvtd_w);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtd, l)
{
CALL_FROM_TB0(do_float_cvtd_l);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtl, d)
{
CALL_FROM_TB0(do_float_cvtl_d);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtl, s)
{
CALL_FROM_TB0(do_float_cvtl_s);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtps, s)
{
WT2 = WT0;
WTH2 = WT1;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtps, pw)
{
CALL_FROM_TB0(do_float_cvtps_pw);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtpw, ps)
{
CALL_FROM_TB0(do_float_cvtpw_ps);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, d)
{
CALL_FROM_TB0(do_float_cvts_d);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, w)
{
CALL_FROM_TB0(do_float_cvts_w);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, l)
{
CALL_FROM_TB0(do_float_cvts_l);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, pl)
{
CALL_FROM_TB0(do_float_cvts_pl);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvts, pu)
{
CALL_FROM_TB0(do_float_cvts_pu);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtw, s)
{
CALL_FROM_TB0(do_float_cvtw_s);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(cvtw, d)
{
CALL_FROM_TB0(do_float_cvtw_d);
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(pll, ps)
{
DT2 = ((uint64_t)WT0 << 32) | WT1;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(plu, ps)
{
DT2 = ((uint64_t)WT0 << 32) | WTH1;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(pul, ps)
{
DT2 = ((uint64_t)WTH0 << 32) | WT1;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(puu, ps)
{
DT2 = ((uint64_t)WTH0 << 32) | WTH1;
DEBUG_FPU_STATE();
RETURN();
}
#define FLOAT_ROUNDOP(op, ttype, stype) \
FLOAT_OP(op ## ttype, stype) \
{ \
CALL_FROM_TB0(do_float_ ## op ## ttype ## _ ## stype); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_ROUNDOP(round, l, d)
FLOAT_ROUNDOP(round, l, s)
FLOAT_ROUNDOP(round, w, d)
FLOAT_ROUNDOP(round, w, s)
FLOAT_ROUNDOP(trunc, l, d)
FLOAT_ROUNDOP(trunc, l, s)
FLOAT_ROUNDOP(trunc, w, d)
FLOAT_ROUNDOP(trunc, w, s)
FLOAT_ROUNDOP(ceil, l, d)
FLOAT_ROUNDOP(ceil, l, s)
FLOAT_ROUNDOP(ceil, w, d)
FLOAT_ROUNDOP(ceil, w, s)
FLOAT_ROUNDOP(floor, l, d)
FLOAT_ROUNDOP(floor, l, s)
FLOAT_ROUNDOP(floor, w, d)
FLOAT_ROUNDOP(floor, w, s)
#undef FLOAR_ROUNDOP
FLOAT_OP(movf, d)
{
if (!(env->fcr31 & PARAM1))
DT2 = DT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movf, s)
{
if (!(env->fcr31 & PARAM1))
WT2 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movf, ps)
{
if (!(env->fcr31 & PARAM1)) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movt, d)
{
if (env->fcr31 & PARAM1)
DT2 = DT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movt, s)
{
if (env->fcr31 & PARAM1)
WT2 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movt, ps)
{
if (env->fcr31 & PARAM1) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movz, d)
{
if (!T0)
DT2 = DT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movz, s)
{
if (!T0)
WT2 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movz, ps)
{
if (!T0) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movn, d)
{
if (T0)
DT2 = DT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movn, s)
{
if (T0)
WT2 = WT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(movn, ps)
{
if (T0) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
RETURN();
}
/* binary operations */
#define FLOAT_BINOP(name) \
FLOAT_OP(name, d) \
{ \
CALL_FROM_TB0(do_float_ ## name ## _d); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, s) \
{ \
CALL_FROM_TB0(do_float_ ## name ## _s); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, ps) \
{ \
CALL_FROM_TB0(do_float_ ## name ## _ps); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
FLOAT_OP(addr, ps)
{
CALL_FROM_TB0(do_float_addr_ps);
DEBUG_FPU_STATE();
RETURN();
}
/* ternary operations */
#define FLOAT_TERNOP(name1, name2) \
FLOAT_OP(name1 ## name2, d) \
{ \
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name1 ## name2, s) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name1 ## name2, ps) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_TERNOP(mul, add)
FLOAT_TERNOP(mul, sub)
#undef FLOAT_TERNOP
/* negated ternary operations */
#define FLOAT_NTERNOP(name1, name2) \
FLOAT_OP(n ## name1 ## name2, d) \
{ \
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \
FDT2 ^= 1ULL << 63; \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(n ## name1 ## name2, s) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
FST2 ^= 1 << 31; \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(n ## name1 ## name2, ps) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \
FST2 ^= 1 << 31; \
FSTH2 ^= 1 << 31; \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_NTERNOP(mul, add)
FLOAT_NTERNOP(mul, sub)
#undef FLOAT_NTERNOP
/* unary operations, modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, ps) \
{ \
FST2 = float32_ ## name(FST0, &env->fp_status); \
FSTH2 = float32_ ## name(FSTH0, &env->fp_status); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_UNOP(sqrt)
#undef FLOAT_UNOP
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
FLOAT_OP(name, ps) \
{ \
FST2 = float32_ ## name(FST0); \
FSTH2 = float32_ ## name(FSTH0); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
FLOAT_OP(mov, d)
{
FDT2 = FDT0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(mov, s)
{
FST2 = FST0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(mov, ps)
{
FST2 = FST0;
FSTH2 = FSTH0;
DEBUG_FPU_STATE();
RETURN();
}
FLOAT_OP(alnv, ps)
{
switch (T0 & 0x7) {
case 0:
FST2 = FST0;
FSTH2 = FSTH0;
break;
case 4:
#ifdef TARGET_WORDS_BIGENDIAN
FSTH2 = FST0;
FST2 = FSTH1;
#else
FSTH2 = FST1;
FST2 = FSTH0;
#endif
break;
default: /* unpredictable */
break;
}
DEBUG_FPU_STATE();
RETURN();
}
#ifdef CONFIG_SOFTFLOAT
#define clear_invalid() do { \
int flags = get_float_exception_flags(&env->fp_status); \
flags &= ~float_flag_invalid; \
set_float_exception_flags(flags, &env->fp_status); \
} while(0)
#else
#define clear_invalid() do { } while(0)
#endif
extern void dump_fpu_s(CPUState *env);
#define CMP_OP(fmt, op) \
void OPPROTO op_cmp ## _ ## fmt ## _ ## op(void) \
{ \
CALL_FROM_TB1(do_cmp ## _ ## fmt ## _ ## op, PARAM1); \
DEBUG_FPU_STATE(); \
RETURN(); \
} \
void OPPROTO op_cmpabs ## _ ## fmt ## _ ## op(void) \
{ \
CALL_FROM_TB1(do_cmpabs ## _ ## fmt ## _ ## op, PARAM1); \
DEBUG_FPU_STATE(); \
RETURN(); \
}
#define CMP_OPS(op) \
CMP_OP(d, op) \
CMP_OP(s, op) \
CMP_OP(ps, op)
CMP_OPS(f)
CMP_OPS(un)
CMP_OPS(eq)
CMP_OPS(ueq)
CMP_OPS(olt)
CMP_OPS(ult)
CMP_OPS(ole)
CMP_OPS(ule)
CMP_OPS(sf)
CMP_OPS(ngle)
CMP_OPS(seq)
CMP_OPS(ngl)
CMP_OPS(lt)
CMP_OPS(nge)
CMP_OPS(le)
CMP_OPS(ngt)
#undef CMP_OPS
#undef CMP_OP
void op_bc1f (void)
{
T0 = !!(~GET_FP_COND(env) & (0x1 << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1any2f (void)
{
T0 = !!(~GET_FP_COND(env) & (0x3 << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1any4f (void)
{
T0 = !!(~GET_FP_COND(env) & (0xf << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1t (void)
{
T0 = !!(GET_FP_COND(env) & (0x1 << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1any2t (void)
{
T0 = !!(GET_FP_COND(env) & (0x3 << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_bc1any4t (void)
{
T0 = !!(GET_FP_COND(env) & (0xf << PARAM1));
DEBUG_FPU_STATE();
RETURN();
}
void op_tlbwi (void)
{
CALL_FROM_TB0(env->do_tlbwi);
RETURN();
}
void op_tlbwr (void)
{
CALL_FROM_TB0(env->do_tlbwr);
RETURN();
}
void op_tlbp (void)
{
CALL_FROM_TB0(env->do_tlbp);
RETURN();
}
void op_tlbr (void)
{
CALL_FROM_TB0(env->do_tlbr);
RETURN();
}
/* Specials */
#if defined (CONFIG_USER_ONLY)
void op_tls_value (void)
{
T0 = env->tls_value;
}
#endif
void op_pmon (void)
{
CALL_FROM_TB1(do_pmon, PARAM1);
RETURN();
}
void op_di (void)
{
T0 = env->CP0_Status;
env->CP0_Status = T0 & ~(1 << CP0St_IE);
CALL_FROM_TB1(cpu_mips_update_irq, env);
RETURN();
}
void op_ei (void)
{
T0 = env->CP0_Status;
env->CP0_Status = T0 | (1 << CP0St_IE);
CALL_FROM_TB1(cpu_mips_update_irq, env);
RETURN();
}
void op_trap (void)
{
if (T0) {
CALL_FROM_TB1(do_raise_exception, EXCP_TRAP);
}
RETURN();
}
void op_debug (void)
{
CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG);
RETURN();
}
void op_set_lladdr (void)
{
env->CP0_LLAddr = T2;
RETURN();
}
void debug_pre_eret (void);
void debug_post_eret (void);
void op_eret (void)
{
if (loglevel & CPU_LOG_EXEC)
CALL_FROM_TB0(debug_pre_eret);
if (env->CP0_Status & (1 << CP0St_ERL)) {
env->PC = env->CP0_ErrorEPC;
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
env->PC = env->CP0_EPC;
env->CP0_Status &= ~(1 << CP0St_EXL);
}
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
(env->CP0_Status & (1 << CP0St_UM)))
env->hflags |= MIPS_HFLAG_UM;
if (loglevel & CPU_LOG_EXEC)
CALL_FROM_TB0(debug_post_eret);
env->CP0_LLAddr = 1;
RETURN();
}
void op_deret (void)
{
if (loglevel & CPU_LOG_EXEC)
CALL_FROM_TB0(debug_pre_eret);
env->PC = env->CP0_DEPC;
env->hflags |= MIPS_HFLAG_DM;
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
(env->CP0_Status & (1 << CP0St_UM)))
env->hflags |= MIPS_HFLAG_UM;
if (loglevel & CPU_LOG_EXEC)
CALL_FROM_TB0(debug_post_eret);
env->CP0_LLAddr = 1;
RETURN();
}
void op_rdhwr_cpunum(void)
{
if (!(env->hflags & MIPS_HFLAG_UM) ||
(env->CP0_HWREna & (1 << 0)) ||
(env->CP0_Status & (1 << CP0St_CU0)))
T0 = env->CP0_EBase & 0x3ff;
else
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
RETURN();
}
void op_rdhwr_synci_step(void)
{
if (!(env->hflags & MIPS_HFLAG_UM) ||
(env->CP0_HWREna & (1 << 1)) ||
(env->CP0_Status & (1 << CP0St_CU0)))
T0 = env->SYNCI_Step;
else
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
RETURN();
}
void op_rdhwr_cc(void)
{
if (!(env->hflags & MIPS_HFLAG_UM) ||
(env->CP0_HWREna & (1 << 2)) ||
(env->CP0_Status & (1 << CP0St_CU0)))
T0 = env->CP0_Count;
else
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
RETURN();
}
void op_rdhwr_ccres(void)
{
if (!(env->hflags & MIPS_HFLAG_UM) ||
(env->CP0_HWREna & (1 << 3)) ||
(env->CP0_Status & (1 << CP0St_CU0)))
T0 = env->CCRes;
else
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
RETURN();
}
void op_save_state (void)
{
env->hflags = PARAM1;
RETURN();
}
void op_save_pc (void)
{
env->PC = PARAM1;
RETURN();
}
void op_interrupt_restart (void)
{
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM) &&
(env->CP0_Status & (1 << CP0St_IE)) &&
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
CALL_FROM_TB1(do_raise_exception, EXCP_EXT_INTERRUPT);
}
RETURN();
}
void op_raise_exception (void)
{
CALL_FROM_TB1(do_raise_exception, PARAM1);
RETURN();
}
void op_raise_exception_err (void)
{
CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2);
RETURN();
}
void op_exit_tb (void)
{
EXIT_TB();
RETURN();
}
void op_wait (void)
{
env->halted = 1;
CALL_FROM_TB1(do_raise_exception, EXCP_HLT);
RETURN();
}
/* Bitfield operations. */
void op_ext(void)
{
unsigned int pos = PARAM1;
unsigned int size = PARAM2;
T0 = ((uint32_t)T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0);
RETURN();
}
void op_ins(void)
{
unsigned int pos = PARAM1;
unsigned int size = PARAM2;
target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
T0 = (T0 & ~mask) | (((uint32_t)T1 << pos) & mask);
RETURN();
}
void op_wsbh(void)
{
T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF);
RETURN();
}
#ifdef TARGET_MIPS64
void op_dext(void)
{
unsigned int pos = PARAM1;
unsigned int size = PARAM2;
T0 = (T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0);
RETURN();
}
void op_dins(void)
{
unsigned int pos = PARAM1;
unsigned int size = PARAM2;
target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
T0 = (T0 & ~mask) | ((T1 << pos) & mask);
RETURN();
}
void op_dsbh(void)
{
T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL);
RETURN();
}
void op_dshd(void)
{
T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL);
RETURN();
}
#endif
void op_seb(void)
{
T0 = ((T1 & 0xFF) ^ 0x80) - 0x80;
RETURN();
}
void op_seh(void)
{
T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000;
RETURN();
}