qemu/hw/misc/macio/cuda.c
Aurelien Jarno ed3d807b0a cuda: fix off-by-one error in SET_TIME command
With the new framework the cuda_cmd_set_time command directly receive
the data, without the command byte. Therefore the time is stored at
in_data[0], not at in_data[1].

This fixes the "hwclock --systohc" command in a guest.

Cc: Hervé Poussineau <hpoussin@reactos.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Hervé Poussineau <hpoussin@reactos.org>
[this fixes a regression introduced by e647317 "cuda: port SET_TIME
 command to new framework"]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-04-19 11:39:23 +10:00

965 lines
27 KiB
C

/*
* QEMU PowerMac CUDA device support
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/ppc/mac.h"
#include "hw/input/adb.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "qemu/cutils.h"
/* XXX: implement all timer modes */
/* debug CUDA */
//#define DEBUG_CUDA
/* debug CUDA packets */
//#define DEBUG_CUDA_PACKET
#ifdef DEBUG_CUDA
#define CUDA_DPRINTF(fmt, ...) \
do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
#else
#define CUDA_DPRINTF(fmt, ...)
#endif
/* Bits in B data register: all active low */
#define TREQ 0x08 /* Transfer request (input) */
#define TACK 0x10 /* Transfer acknowledge (output) */
#define TIP 0x20 /* Transfer in progress (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define SR_DATA_INT 0x08
#define SR_CLOCK_INT 0x10
#define T1_INT 0x40 /* Timer 1 interrupt */
#define T2_INT 0x20 /* Timer 2 interrupt */
/* Bits in ACR */
#define T1MODE 0xc0 /* Timer 1 mode */
#define T1MODE_CONT 0x40 /* continuous interrupts */
/* commands (1st byte) */
#define ADB_PACKET 0
#define CUDA_PACKET 1
#define ERROR_PACKET 2
#define TIMER_PACKET 3
#define POWER_PACKET 4
#define MACIIC_PACKET 5
#define PMU_PACKET 6
/* CUDA commands (2nd byte) */
#define CUDA_WARM_START 0x0
#define CUDA_AUTOPOLL 0x1
#define CUDA_GET_6805_ADDR 0x2
#define CUDA_GET_TIME 0x3
#define CUDA_GET_PRAM 0x7
#define CUDA_SET_6805_ADDR 0x8
#define CUDA_SET_TIME 0x9
#define CUDA_POWERDOWN 0xa
#define CUDA_POWERUP_TIME 0xb
#define CUDA_SET_PRAM 0xc
#define CUDA_MS_RESET 0xd
#define CUDA_SEND_DFAC 0xe
#define CUDA_BATTERY_SWAP_SENSE 0x10
#define CUDA_RESET_SYSTEM 0x11
#define CUDA_SET_IPL 0x12
#define CUDA_FILE_SERVER_FLAG 0x13
#define CUDA_SET_AUTO_RATE 0x14
#define CUDA_GET_AUTO_RATE 0x16
#define CUDA_SET_DEVICE_LIST 0x19
#define CUDA_GET_DEVICE_LIST 0x1a
#define CUDA_SET_ONE_SECOND_MODE 0x1b
#define CUDA_SET_POWER_MESSAGES 0x21
#define CUDA_GET_SET_IIC 0x22
#define CUDA_WAKEUP 0x23
#define CUDA_TIMER_TICKLE 0x24
#define CUDA_COMBINED_FORMAT_IIC 0x25
#define CUDA_TIMER_FREQ (4700000 / 6)
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
#define RTC_OFFSET 2082844800
/* CUDA registers */
#define CUDA_REG_B 0x00
#define CUDA_REG_A 0x01
#define CUDA_REG_DIRB 0x02
#define CUDA_REG_DIRA 0x03
#define CUDA_REG_T1CL 0x04
#define CUDA_REG_T1CH 0x05
#define CUDA_REG_T1LL 0x06
#define CUDA_REG_T1LH 0x07
#define CUDA_REG_T2CL 0x08
#define CUDA_REG_T2CH 0x09
#define CUDA_REG_SR 0x0a
#define CUDA_REG_ACR 0x0b
#define CUDA_REG_PCR 0x0c
#define CUDA_REG_IFR 0x0d
#define CUDA_REG_IER 0x0e
#define CUDA_REG_ANH 0x0f
static void cuda_update(CUDAState *s);
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len);
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time);
static void cuda_update_irq(CUDAState *s)
{
if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static uint64_t get_tb(uint64_t time, uint64_t freq)
{
return muldiv64(time, freq, NANOSECONDS_PER_SECOND);
}
static unsigned int get_counter(CUDATimer *ti)
{
int64_t d;
unsigned int counter;
uint64_t tb_diff;
uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
if (ti->index == 0) {
/* the timer goes down from latch to -1 (period of latch + 2) */
if (d <= (ti->counter_value + 1)) {
counter = (ti->counter_value - d) & 0xffff;
} else {
counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
counter = (ti->latch - counter) & 0xffff;
}
} else {
counter = (ti->counter_value - d) & 0xffff;
}
return counter;
}
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
{
CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
s->frequency);
ti->counter_value = val;
cuda_timer_update(s, ti, ti->load_time);
}
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
{
int64_t d, next_time;
unsigned int counter;
/* current counter value */
d = muldiv64(current_time - s->load_time,
CUDA_TIMER_FREQ, NANOSECONDS_PER_SECOND);
/* the timer goes down from latch to -1 (period of latch + 2) */
if (d <= (s->counter_value + 1)) {
counter = (s->counter_value - d) & 0xffff;
} else {
counter = (d - (s->counter_value + 1)) % (s->latch + 2);
counter = (s->latch - counter) & 0xffff;
}
/* Note: we consider the irq is raised on 0 */
if (counter == 0xffff) {
next_time = d + s->latch + 1;
} else if (counter == 0) {
next_time = d + s->latch + 2;
} else {
next_time = d + counter;
}
CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
s->latch, d, next_time - d);
next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, CUDA_TIMER_FREQ) +
s->load_time;
if (next_time <= current_time)
next_time = current_time + 1;
return next_time;
}
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
int64_t current_time)
{
if (!ti->timer)
return;
if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
timer_del(ti->timer);
} else {
ti->next_irq_time = get_next_irq_time(ti, current_time);
timer_mod(ti->timer, ti->next_irq_time);
}
}
static void cuda_timer1(void *opaque)
{
CUDAState *s = opaque;
CUDATimer *ti = &s->timers[0];
cuda_timer_update(s, ti, ti->next_irq_time);
s->ifr |= T1_INT;
cuda_update_irq(s);
}
static void cuda_timer2(void *opaque)
{
CUDAState *s = opaque;
CUDATimer *ti = &s->timers[1];
cuda_timer_update(s, ti, ti->next_irq_time);
s->ifr |= T2_INT;
cuda_update_irq(s);
}
static void cuda_set_sr_int(void *opaque)
{
CUDAState *s = opaque;
CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
s->ifr |= SR_INT;
cuda_update_irq(s);
}
static void cuda_delay_set_sr_int(CUDAState *s)
{
int64_t expire;
if (s->dirb == 0xff) {
/* Not in Mac OS, fire the IRQ directly */
cuda_set_sr_int(s);
return;
}
CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
timer_mod(s->sr_delay_timer, expire);
}
static uint32_t cuda_readb(void *opaque, hwaddr addr)
{
CUDAState *s = opaque;
uint32_t val;
addr = (addr >> 9) & 0xf;
switch(addr) {
case CUDA_REG_B:
val = s->b;
break;
case CUDA_REG_A:
val = s->a;
break;
case CUDA_REG_DIRB:
val = s->dirb;
break;
case CUDA_REG_DIRA:
val = s->dira;
break;
case CUDA_REG_T1CL:
val = get_counter(&s->timers[0]) & 0xff;
s->ifr &= ~T1_INT;
cuda_update_irq(s);
break;
case CUDA_REG_T1CH:
val = get_counter(&s->timers[0]) >> 8;
cuda_update_irq(s);
break;
case CUDA_REG_T1LL:
val = s->timers[0].latch & 0xff;
break;
case CUDA_REG_T1LH:
/* XXX: check this */
val = (s->timers[0].latch >> 8) & 0xff;
break;
case CUDA_REG_T2CL:
val = get_counter(&s->timers[1]) & 0xff;
s->ifr &= ~T2_INT;
cuda_update_irq(s);
break;
case CUDA_REG_T2CH:
val = get_counter(&s->timers[1]) >> 8;
break;
case CUDA_REG_SR:
val = s->sr;
s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
cuda_update_irq(s);
break;
case CUDA_REG_ACR:
val = s->acr;
break;
case CUDA_REG_PCR:
val = s->pcr;
break;
case CUDA_REG_IFR:
val = s->ifr;
if (s->ifr & s->ier) {
val |= 0x80;
}
break;
case CUDA_REG_IER:
val = s->ier | 0x80;
break;
default:
case CUDA_REG_ANH:
val = s->anh;
break;
}
if (addr != CUDA_REG_IFR || val != 0) {
CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
}
return val;
}
static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
{
CUDAState *s = opaque;
addr = (addr >> 9) & 0xf;
CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
switch(addr) {
case CUDA_REG_B:
s->b = val;
cuda_update(s);
break;
case CUDA_REG_A:
s->a = val;
break;
case CUDA_REG_DIRB:
s->dirb = val;
break;
case CUDA_REG_DIRA:
s->dira = val;
break;
case CUDA_REG_T1CL:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
break;
case CUDA_REG_T1CH:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
s->ifr &= ~T1_INT;
set_counter(s, &s->timers[0], s->timers[0].latch);
break;
case CUDA_REG_T1LL:
s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
break;
case CUDA_REG_T1LH:
s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
s->ifr &= ~T1_INT;
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
break;
case CUDA_REG_T2CL:
s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
break;
case CUDA_REG_T2CH:
/* To ensure T2 generates an interrupt on zero crossing with the
common timer code, write the value directly from the latch to
the counter */
s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
s->ifr &= ~T2_INT;
set_counter(s, &s->timers[1], s->timers[1].latch);
break;
case CUDA_REG_SR:
s->sr = val;
break;
case CUDA_REG_ACR:
s->acr = val;
cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
cuda_update(s);
break;
case CUDA_REG_PCR:
s->pcr = val;
break;
case CUDA_REG_IFR:
/* reset bits */
s->ifr &= ~val;
cuda_update_irq(s);
break;
case CUDA_REG_IER:
if (val & IER_SET) {
/* set bits */
s->ier |= val & 0x7f;
} else {
/* reset bits */
s->ier &= ~val;
}
cuda_update_irq(s);
break;
default:
case CUDA_REG_ANH:
s->anh = val;
break;
}
}
/* NOTE: TIP and TREQ are negated */
static void cuda_update(CUDAState *s)
{
int packet_received, len;
packet_received = 0;
if (!(s->b & TIP)) {
/* transfer requested from host */
if (s->acr & SR_OUT) {
/* data output */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
if (s->data_out_index < sizeof(s->data_out)) {
CUDA_DPRINTF("send: %02x\n", s->sr);
s->data_out[s->data_out_index++] = s->sr;
cuda_delay_set_sr_int(s);
}
}
} else {
if (s->data_in_index < s->data_in_size) {
/* data input */
if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
s->sr = s->data_in[s->data_in_index++];
CUDA_DPRINTF("recv: %02x\n", s->sr);
/* indicate end of transfer */
if (s->data_in_index >= s->data_in_size) {
s->b = (s->b | TREQ);
}
cuda_delay_set_sr_int(s);
}
}
}
} else {
/* no transfer requested: handle sync case */
if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
/* update TREQ state each time TACK change state */
if (s->b & TACK)
s->b = (s->b | TREQ);
else
s->b = (s->b & ~TREQ);
cuda_delay_set_sr_int(s);
} else {
if (!(s->last_b & TIP)) {
/* handle end of host to cuda transfer */
packet_received = (s->data_out_index > 0);
/* always an IRQ at the end of transfer */
cuda_delay_set_sr_int(s);
}
/* signal if there is data to read */
if (s->data_in_index < s->data_in_size) {
s->b = (s->b & ~TREQ);
}
}
}
s->last_acr = s->acr;
s->last_b = s->b;
/* NOTE: cuda_receive_packet_from_host() can call cuda_update()
recursively */
if (packet_received) {
len = s->data_out_index;
s->data_out_index = 0;
cuda_receive_packet_from_host(s, s->data_out, len);
}
}
static void cuda_send_packet_to_host(CUDAState *s,
const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_send_packet_to_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
memcpy(s->data_in, data, len);
s->data_in_size = len;
s->data_in_index = 0;
cuda_update(s);
cuda_delay_set_sr_int(s);
}
static void cuda_adb_poll(void *opaque)
{
CUDAState *s = opaque;
uint8_t obuf[ADB_MAX_OUT_LEN + 2];
int olen;
olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x40; /* polled data */
cuda_send_packet_to_host(s, obuf, olen + 2);
}
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
}
/* description of commands */
typedef struct CudaCommand {
uint8_t command;
const char *name;
bool (*handler)(CUDAState *s,
const uint8_t *in_args, int in_len,
uint8_t *out_args, int *out_len);
} CudaCommand;
static bool cuda_cmd_autopoll(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
int autopoll;
if (in_len != 1) {
return false;
}
autopoll = (in_data[0] != 0);
if (autopoll != s->autopoll) {
s->autopoll = autopoll;
if (autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
} else {
timer_del(s->adb_poll_timer);
}
}
return true;
}
static bool cuda_cmd_set_autorate(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
/* we don't want a period of 0 ms */
/* FIXME: check what real hardware does */
if (in_data[0] == 0) {
return false;
}
s->autopoll_rate_ms = in_data[0];
if (s->autopoll) {
timer_mod(s->adb_poll_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
}
return true;
}
static bool cuda_cmd_set_device_list(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 2) {
return false;
}
s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
return true;
}
static bool cuda_cmd_powerdown(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_shutdown_request();
return true;
}
static bool cuda_cmd_reset_system(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 0) {
return false;
}
qemu_system_reset_request();
return true;
}
static bool cuda_cmd_set_file_server_flag(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_set_power_message(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
if (in_len != 1) {
return false;
}
qemu_log_mask(LOG_UNIMP,
"CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
in_data[0]);
return true;
}
static bool cuda_cmd_get_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 0) {
return false;
}
ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ NANOSECONDS_PER_SECOND);
out_data[0] = ti >> 24;
out_data[1] = ti >> 16;
out_data[2] = ti >> 8;
out_data[3] = ti;
*out_len = 4;
return true;
}
static bool cuda_cmd_set_time(CUDAState *s,
const uint8_t *in_data, int in_len,
uint8_t *out_data, int *out_len)
{
uint32_t ti;
if (in_len != 4) {
return false;
}
ti = (((uint32_t)in_data[0]) << 24) + (((uint32_t)in_data[1]) << 16)
+ (((uint32_t)in_data[2]) << 8) + in_data[3];
s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
/ NANOSECONDS_PER_SECOND);
return true;
}
static const CudaCommand handlers[] = {
{ CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
{ CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
{ CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
{ CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
{ CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
{ CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
cuda_cmd_set_file_server_flag },
{ CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
cuda_cmd_set_power_message },
{ CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
{ CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
};
static void cuda_receive_packet(CUDAState *s,
const uint8_t *data, int len)
{
uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
int i, out_len = 0;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
const CudaCommand *desc = &handlers[i];
if (desc->command == data[0]) {
CUDA_DPRINTF("handling command %s\n", desc->name);
out_len = 0;
if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
cuda_send_packet_to_host(s, obuf, 3 + out_len);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"CUDA: %s: wrong parameters %d\n",
desc->name, len);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x5; /* bad parameters */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
}
return;
}
}
qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
obuf[0] = ERROR_PACKET;
obuf[1] = 0x2; /* unknown command */
obuf[2] = CUDA_PACKET;
obuf[3] = data[0];
cuda_send_packet_to_host(s, obuf, 4);
}
static void cuda_receive_packet_from_host(CUDAState *s,
const uint8_t *data, int len)
{
#ifdef DEBUG_CUDA_PACKET
{
int i;
printf("cuda_receive_packet_from_host:\n");
for(i = 0; i < len; i++)
printf(" %02x", data[i]);
printf("\n");
}
#endif
switch(data[0]) {
case ADB_PACKET:
{
uint8_t obuf[ADB_MAX_OUT_LEN + 3];
int olen;
olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
if (olen > 0) {
obuf[0] = ADB_PACKET;
obuf[1] = 0x00;
cuda_send_packet_to_host(s, obuf, olen + 2);
} else {
/* error */
obuf[0] = ADB_PACKET;
obuf[1] = -olen;
obuf[2] = data[1];
olen = 0;
cuda_send_packet_to_host(s, obuf, olen + 3);
}
}
break;
case CUDA_PACKET:
cuda_receive_packet(s, data + 1, len - 1);
break;
}
}
static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
{
}
static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
{
}
static uint32_t cuda_readw (void *opaque, hwaddr addr)
{
return 0;
}
static uint32_t cuda_readl (void *opaque, hwaddr addr)
{
return 0;
}
static const MemoryRegionOps cuda_ops = {
.old_mmio = {
.write = {
cuda_writeb,
cuda_writew,
cuda_writel,
},
.read = {
cuda_readb,
cuda_readw,
cuda_readl,
},
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static bool cuda_timer_exist(void *opaque, int version_id)
{
CUDATimer *s = opaque;
return s->timer != NULL;
}
static const VMStateDescription vmstate_cuda_timer = {
.name = "cuda_timer",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT16(latch, CUDATimer),
VMSTATE_UINT16(counter_value, CUDATimer),
VMSTATE_INT64(load_time, CUDATimer),
VMSTATE_INT64(next_irq_time, CUDATimer),
VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_cuda = {
.name = "cuda",
.version_id = 4,
.minimum_version_id = 4,
.fields = (VMStateField[]) {
VMSTATE_UINT8(a, CUDAState),
VMSTATE_UINT8(b, CUDAState),
VMSTATE_UINT8(last_b, CUDAState),
VMSTATE_UINT8(dira, CUDAState),
VMSTATE_UINT8(dirb, CUDAState),
VMSTATE_UINT8(sr, CUDAState),
VMSTATE_UINT8(acr, CUDAState),
VMSTATE_UINT8(last_acr, CUDAState),
VMSTATE_UINT8(pcr, CUDAState),
VMSTATE_UINT8(ifr, CUDAState),
VMSTATE_UINT8(ier, CUDAState),
VMSTATE_UINT8(anh, CUDAState),
VMSTATE_INT32(data_in_size, CUDAState),
VMSTATE_INT32(data_in_index, CUDAState),
VMSTATE_INT32(data_out_index, CUDAState),
VMSTATE_UINT8(autopoll, CUDAState),
VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
VMSTATE_UINT16(adb_poll_mask, CUDAState),
VMSTATE_BUFFER(data_in, CUDAState),
VMSTATE_BUFFER(data_out, CUDAState),
VMSTATE_UINT32(tick_offset, CUDAState),
VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
vmstate_cuda_timer, CUDATimer),
VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
VMSTATE_END_OF_LIST()
}
};
static void cuda_reset(DeviceState *dev)
{
CUDAState *s = CUDA(dev);
s->b = 0;
s->a = 0;
s->dirb = 0xff;
s->dira = 0;
s->sr = 0;
s->acr = 0;
s->pcr = 0;
s->ifr = 0;
s->ier = 0;
// s->ier = T1_INT | SR_INT;
s->anh = 0;
s->data_in_size = 0;
s->data_in_index = 0;
s->data_out_index = 0;
s->autopoll = 0;
s->timers[0].latch = 0xffff;
set_counter(s, &s->timers[0], 0xffff);
s->timers[1].latch = 0xffff;
s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
}
static void cuda_realizefn(DeviceState *dev, Error **errp)
{
CUDAState *s = CUDA(dev);
struct tm tm;
s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
s->timers[0].frequency = s->frequency;
s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
s->timers[1].frequency = (SCALE_US * 6000) / 4700;
qemu_get_timedate(&tm, 0);
s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
s->autopoll_rate_ms = 20;
s->adb_poll_mask = 0xffff;
}
static void cuda_initfn(Object *obj)
{
SysBusDevice *d = SYS_BUS_DEVICE(obj);
CUDAState *s = CUDA(obj);
int i;
memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
sysbus_init_mmio(d, &s->mem);
sysbus_init_irq(d, &s->irq);
for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
s->timers[i].index = i;
}
qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
DEVICE(obj), "adb.0");
}
static Property cuda_properties[] = {
DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
DEFINE_PROP_END_OF_LIST()
};
static void cuda_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = cuda_realizefn;
dc->reset = cuda_reset;
dc->vmsd = &vmstate_cuda;
dc->props = cuda_properties;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
}
static const TypeInfo cuda_type_info = {
.name = TYPE_CUDA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(CUDAState),
.instance_init = cuda_initfn,
.class_init = cuda_class_init,
};
static void cuda_register_types(void)
{
type_register_static(&cuda_type_info);
}
type_init(cuda_register_types)