qemu/hw/ppc.c
Alexander Graf fc87e18530 KVM: PPC: Add level based interrupt logic
KVM on PowerPC used to have completely broken interrupt logic. Usually,
interrupts work by having a PIC that pulls a line up/down, so the CPU knows
that an interrupt is active. This line stays active until some action is
done to the PIC to release the line.

On KVM for PPC, we just checked if there was an interrupt pending and pulled
a line in the kernel module. We never released it though, hoping that kernel
space would just declare an interrupt as released when injected - which is
wrong.

To fix this, we need to completely redesign the interrupt injection logic.
Whenever an interrupt line gets triggered, we need to notify kernel space
that the line is up. Whenever it gets released, we do the same. This way
we can assure that the interrupt state is always known to kernel space.

This fixes random stalls in KVM guests on PowerPC that were waiting for
an interrupt while everyone else thought they received it already.

Signed-off-by: Alexander Graf <agraf@suse.de>
2010-09-05 11:50:48 +02:00

1279 lines
38 KiB
C

/*
* QEMU generic PowerPC hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "nvram.h"
#include "qemu-log.h"
#include "loader.h"
#include "kvm.h"
#include "kvm_ppc.h"
//#define PPC_DEBUG_IRQ
//#define PPC_DEBUG_TB
#ifdef PPC_DEBUG_IRQ
# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#else
# define LOG_IRQ(...) do { } while (0)
#endif
#ifdef PPC_DEBUG_TB
# define LOG_TB(...) qemu_log(__VA_ARGS__)
#else
# define LOG_TB(...) do { } while (0)
#endif
static void cpu_ppc_tb_stop (CPUState *env);
static void cpu_ppc_tb_start (CPUState *env);
static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
{
unsigned int old_pending = env->pending_interrupts;
if (level) {
env->pending_interrupts |= 1 << n_IRQ;
cpu_interrupt(env, CPU_INTERRUPT_HARD);
} else {
env->pending_interrupts &= ~(1 << n_IRQ);
if (env->pending_interrupts == 0)
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
if (old_pending != env->pending_interrupts) {
#ifdef CONFIG_KVM
kvmppc_set_interrupt(env, n_IRQ, level);
#endif
}
LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
"req %08x\n", __func__, env, n_IRQ, level,
env->pending_interrupts, env->interrupt_request);
}
/* PowerPC 6xx / 7xx internal IRQ controller */
static void ppc6xx_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC6xx_INPUT_TBEN:
/* Level sensitive - active high */
LOG_IRQ("%s: %s the time base\n",
__func__, level ? "start" : "stop");
if (level) {
cpu_ppc_tb_start(env);
} else {
cpu_ppc_tb_stop(env);
}
case PPC6xx_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC6xx_INPUT_SMI:
/* Level sensitive - active high */
LOG_IRQ("%s: set the SMI IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
break;
case PPC6xx_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
LOG_IRQ("%s: raise machine check state\n",
__func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC6xx_INPUT_CKSTP_IN:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
/* XXX: Note that the only way to restart the CPU is to reset it */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
}
break;
case PPC6xx_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
LOG_IRQ("%s: reset the CPU\n", __func__);
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
/* XXX: TOFIX */
#if 0
cpu_reset(env);
#else
qemu_system_reset_request();
#endif
}
break;
case PPC6xx_INPUT_SRESET:
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc6xx_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
PPC6xx_INPUT_NB);
}
#if defined(TARGET_PPC64)
/* PowerPC 970 internal IRQ controller */
static void ppc970_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC970_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC970_INPUT_THINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
level);
ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
break;
case PPC970_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
LOG_IRQ("%s: raise machine check state\n",
__func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC970_INPUT_CKSTP:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
} else {
LOG_IRQ("%s: restart the CPU\n", __func__);
env->halted = 0;
}
break;
case PPC970_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
#if 0 // XXX: TOFIX
LOG_IRQ("%s: reset the CPU\n", __func__);
cpu_reset(env);
#endif
}
break;
case PPC970_INPUT_SRESET:
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
break;
case PPC970_INPUT_TBEN:
LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
level);
/* XXX: TODO */
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc970_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
PPC970_INPUT_NB);
}
#endif /* defined(TARGET_PPC64) */
/* PowerPC 40x internal IRQ controller */
static void ppc40x_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC40x_INPUT_RESET_SYS:
if (level) {
LOG_IRQ("%s: reset the PowerPC system\n",
__func__);
ppc40x_system_reset(env);
}
break;
case PPC40x_INPUT_RESET_CHIP:
if (level) {
LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
ppc40x_chip_reset(env);
}
break;
case PPC40x_INPUT_RESET_CORE:
/* XXX: TODO: update DBSR[MRR] */
if (level) {
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
ppc40x_core_reset(env);
}
break;
case PPC40x_INPUT_CINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the critical IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
break;
case PPC40x_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC40x_INPUT_HALT:
/* Level sensitive - active low */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
} else {
LOG_IRQ("%s: restart the CPU\n", __func__);
env->halted = 0;
}
break;
case PPC40x_INPUT_DEBUG:
/* Level sensitive - active high */
LOG_IRQ("%s: set the debug pin state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc40x_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
env, PPC40x_INPUT_NB);
}
/* PowerPC E500 internal IRQ controller */
static void ppce500_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPCE500_INPUT_MCK:
if (level) {
LOG_IRQ("%s: reset the PowerPC system\n",
__func__);
qemu_system_reset_request();
}
break;
case PPCE500_INPUT_RESET_CORE:
if (level) {
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
}
break;
case PPCE500_INPUT_CINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the critical IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
break;
case PPCE500_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the core IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPCE500_INPUT_DEBUG:
/* Level sensitive - active high */
LOG_IRQ("%s: set the debug pin state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppce500_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
env, PPCE500_INPUT_NB);
}
/*****************************************************************************/
/* PowerPC time base and decrementer emulation */
struct ppc_tb_t {
/* Time base management */
int64_t tb_offset; /* Compensation */
int64_t atb_offset; /* Compensation */
uint32_t tb_freq; /* TB frequency */
/* Decrementer management */
uint64_t decr_next; /* Tick for next decr interrupt */
uint32_t decr_freq; /* decrementer frequency */
struct QEMUTimer *decr_timer;
/* Hypervisor decrementer management */
uint64_t hdecr_next; /* Tick for next hdecr interrupt */
struct QEMUTimer *hdecr_timer;
uint64_t purr_load;
uint64_t purr_start;
void *opaque;
};
static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t tb_offset)
{
/* TB time in tb periods */
return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
}
uint64_t cpu_ppc_load_tbl (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb;
}
static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb >> 32;
}
uint32_t cpu_ppc_load_tbu (CPUState *env)
{
return _cpu_ppc_load_tbu(env);
}
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t *tb_offsetp, uint64_t value)
{
*tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
__func__, value, *tb_offsetp);
}
void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->tb_offset, tb | (uint64_t)value);
}
static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->tb_offset, ((uint64_t)value << 32) | tb);
}
void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint64_t cpu_ppc_load_atbl (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb;
}
uint32_t cpu_ppc_load_atbu (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb >> 32;
}
void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->atb_offset, tb | (uint64_t)value);
}
void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->atb_offset, ((uint64_t)value << 32) | tb);
}
static void cpu_ppc_tb_stop (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is already frozen, do nothing */
if (tb_env->tb_freq != 0) {
vmclk = qemu_get_clock(vm_clock);
/* Get the time base */
tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
/* Get the alternate time base */
atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
/* Store the time base value (ie compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value (compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
/* Set the time base frequency to zero */
tb_env->tb_freq = 0;
/* Now, the time bases are frozen to tb_offset / atb_offset value */
}
}
static void cpu_ppc_tb_start (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is not frozen, do nothing */
if (tb_env->tb_freq == 0) {
vmclk = qemu_get_clock(vm_clock);
/* Get the time base from tb_offset */
tb = tb_env->tb_offset;
/* Get the alternate time base from atb_offset */
atb = tb_env->atb_offset;
/* Restore the tb frequency from the decrementer frequency */
tb_env->tb_freq = tb_env->decr_freq;
/* Store the time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
}
}
static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
{
ppc_tb_t *tb_env = env->tb_env;
uint32_t decr;
int64_t diff;
diff = next - qemu_get_clock(vm_clock);
if (diff >= 0)
decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
else
decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
return decr;
}
uint32_t cpu_ppc_load_decr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return _cpu_ppc_load_decr(env, tb_env->decr_next);
}
uint32_t cpu_ppc_load_hdecr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
}
uint64_t cpu_ppc_load_purr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t diff;
diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
}
/* When decrementer expires,
* all we need to do is generate or queue a CPU exception
*/
static inline void cpu_ppc_decr_excp(CPUState *env)
{
/* Raise it */
LOG_TB("raise decrementer exception\n");
ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
}
static inline void cpu_ppc_hdecr_excp(CPUState *env)
{
/* Raise it */
LOG_TB("raise decrementer exception\n");
ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
}
static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
struct QEMUTimer *timer,
void (*raise_excp)(CPUState *),
uint32_t decr, uint32_t value,
int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t now, next;
LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
decr, value);
now = qemu_get_clock(vm_clock);
next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
if (is_excp)
next += *nextp - now;
if (next == now)
next++;
*nextp = next;
/* Adjust timer */
qemu_mod_timer(timer, next);
/* If we set a negative value and the decrementer was positive,
* raise an exception.
*/
if ((value & 0x80000000) && !(decr & 0x80000000))
(*raise_excp)(env);
}
static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
uint32_t value, int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
__cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
&cpu_ppc_decr_excp, decr, value, is_excp);
}
void cpu_ppc_store_decr (CPUState *env, uint32_t value)
{
_cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
}
static void cpu_ppc_decr_cb (void *opaque)
{
_cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
}
static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
uint32_t value, int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
if (tb_env->hdecr_timer != NULL) {
__cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
&cpu_ppc_hdecr_excp, hdecr, value, is_excp);
}
}
void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
{
_cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
}
static void cpu_ppc_hdecr_cb (void *opaque)
{
_cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
}
void cpu_ppc_store_purr (CPUState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
tb_env->purr_load = value;
tb_env->purr_start = qemu_get_clock(vm_clock);
}
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
{
CPUState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* There is a bug in Linux 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee at startup,
* it's not ready to handle it...
*/
_cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
_cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
cpu_ppc_store_purr(env, 0x0000000000000000ULL);
}
/* Set up (once) timebase frequency (in Hz) */
clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
{
ppc_tb_t *tb_env;
tb_env = qemu_mallocz(sizeof(ppc_tb_t));
env->tb_env = tb_env;
/* Create new timer */
tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
if (0) {
/* XXX: find a suitable condition to enable the hypervisor decrementer
*/
tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
} else {
tb_env->hdecr_timer = NULL;
}
cpu_ppc_set_tb_clk(env, freq);
return &cpu_ppc_set_tb_clk;
}
/* Specific helpers for POWER & PowerPC 601 RTC */
#if 0
static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
{
return cpu_ppc_tb_init(env, 7812500);
}
#endif
void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint32_t cpu_ppc601_load_rtcu (CPUState *env)
{
return _cpu_ppc_load_tbu(env);
}
void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
{
cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
}
uint32_t cpu_ppc601_load_rtcl (CPUState *env)
{
return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
}
/*****************************************************************************/
/* Embedded PowerPC timers */
/* PIT, FIT & WDT */
typedef struct ppcemb_timer_t ppcemb_timer_t;
struct ppcemb_timer_t {
uint64_t pit_reload; /* PIT auto-reload value */
uint64_t fit_next; /* Tick for next FIT interrupt */
struct QEMUTimer *fit_timer;
uint64_t wdt_next; /* Tick for next WDT interrupt */
struct QEMUTimer *wdt_timer;
};
/* Fixed interval timer */
static void cpu_4xx_fit_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
now = qemu_get_clock(vm_clock);
switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
case 0:
next = 1 << 9;
break;
case 1:
next = 1 << 13;
break;
case 2:
next = 1 << 17;
break;
case 3:
next = 1 << 21;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
if (next == now)
next++;
qemu_mod_timer(ppcemb_timer->fit_timer, next);
env->spr[SPR_40x_TSR] |= 1 << 26;
if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
(int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
}
/* Programmable interval timer */
static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
{
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
ppcemb_timer = tb_env->opaque;
if (ppcemb_timer->pit_reload <= 1 ||
!((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
(is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
/* Stop PIT */
LOG_TB("%s: stop PIT\n", __func__);
qemu_del_timer(tb_env->decr_timer);
} else {
LOG_TB("%s: start PIT %016" PRIx64 "\n",
__func__, ppcemb_timer->pit_reload);
now = qemu_get_clock(vm_clock);
next = now + muldiv64(ppcemb_timer->pit_reload,
get_ticks_per_sec(), tb_env->decr_freq);
if (is_excp)
next += tb_env->decr_next - now;
if (next == now)
next++;
qemu_mod_timer(tb_env->decr_timer, next);
tb_env->decr_next = next;
}
}
static void cpu_4xx_pit_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
env->spr[SPR_40x_TSR] |= 1 << 27;
if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
start_stop_pit(env, tb_env, 1);
LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
"%016" PRIx64 "\n", __func__,
(int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
(int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
ppcemb_timer->pit_reload);
}
/* Watchdog timer */
static void cpu_4xx_wdt_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
now = qemu_get_clock(vm_clock);
switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
case 0:
next = 1 << 17;
break;
case 1:
next = 1 << 21;
break;
case 2:
next = 1 << 25;
break;
case 3:
next = 1 << 29;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
if (next == now)
next++;
LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
case 0x0:
case 0x1:
qemu_mod_timer(ppcemb_timer->wdt_timer, next);
ppcemb_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 31;
break;
case 0x2:
qemu_mod_timer(ppcemb_timer->wdt_timer, next);
ppcemb_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 30;
if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
break;
case 0x3:
env->spr[SPR_40x_TSR] &= ~0x30000000;
env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
case 0x0:
/* No reset */
break;
case 0x1: /* Core reset */
ppc40x_core_reset(env);
break;
case 0x2: /* Chip reset */
ppc40x_chip_reset(env);
break;
case 0x3: /* System reset */
ppc40x_system_reset(env);
break;
}
}
}
void store_40x_pit (CPUState *env, target_ulong val)
{
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
ppcemb_timer->pit_reload = val;
start_stop_pit(env, tb_env, 0);
}
target_ulong load_40x_pit (CPUState *env)
{
return cpu_ppc_load_decr(env);
}
void store_booke_tsr (CPUState *env, target_ulong val)
{
LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
if (val & 0x80000000)
ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
}
void store_booke_tcr (CPUState *env, target_ulong val)
{
ppc_tb_t *tb_env;
tb_env = env->tb_env;
LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
env->spr[SPR_40x_TCR] = val & 0xFFC00000;
start_stop_pit(env, tb_env, 1);
cpu_4xx_wdt_cb(env);
}
static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
{
CPUState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
freq);
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* XXX: we should also update all timers */
}
clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
{
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
tb_env = qemu_mallocz(sizeof(ppc_tb_t));
env->tb_env = tb_env;
ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
tb_env->opaque = ppcemb_timer;
LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
if (ppcemb_timer != NULL) {
/* We use decr timer for PIT */
tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
ppcemb_timer->fit_timer =
qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
ppcemb_timer->wdt_timer =
qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
}
return &ppc_emb_set_tb_clk;
}
/*****************************************************************************/
/* Embedded PowerPC Device Control Registers */
typedef struct ppc_dcrn_t ppc_dcrn_t;
struct ppc_dcrn_t {
dcr_read_cb dcr_read;
dcr_write_cb dcr_write;
void *opaque;
};
/* XXX: on 460, DCR addresses are 32 bits wide,
* using DCRIPR to get the 22 upper bits of the DCR address
*/
#define DCRN_NB 1024
struct ppc_dcr_t {
ppc_dcrn_t dcrn[DCRN_NB];
int (*read_error)(int dcrn);
int (*write_error)(int dcrn);
};
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_read == NULL)
goto error;
*valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
return 0;
error:
if (dcr_env->read_error != NULL)
return (*dcr_env->read_error)(dcrn);
return -1;
}
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_write == NULL)
goto error;
(*dcr->dcr_write)(dcr->opaque, dcrn, val);
return 0;
error:
if (dcr_env->write_error != NULL)
return (*dcr_env->write_error)(dcrn);
return -1;
}
int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
dcr_read_cb dcr_read, dcr_write_cb dcr_write)
{
ppc_dcr_t *dcr_env;
ppc_dcrn_t *dcr;
dcr_env = env->dcr_env;
if (dcr_env == NULL)
return -1;
if (dcrn < 0 || dcrn >= DCRN_NB)
return -1;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->opaque != NULL ||
dcr->dcr_read != NULL ||
dcr->dcr_write != NULL)
return -1;
dcr->opaque = opaque;
dcr->dcr_read = dcr_read;
dcr->dcr_write = dcr_write;
return 0;
}
int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
int (*write_error)(int dcrn))
{
ppc_dcr_t *dcr_env;
dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
dcr_env->read_error = read_error;
dcr_env->write_error = write_error;
env->dcr_env = dcr_env;
return 0;
}
/*****************************************************************************/
/* Debug port */
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
{
addr &= 0xF;
switch (addr) {
case 0:
printf("%c", val);
break;
case 1:
printf("\n");
fflush(stdout);
break;
case 2:
printf("Set loglevel to %04" PRIx32 "\n", val);
cpu_set_log(val | 0x100);
break;
}
}
/*****************************************************************************/
/* NVRAM helpers */
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
{
return (*nvram->read_fn)(nvram->opaque, addr);;
}
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
{
(*nvram->write_fn)(nvram->opaque, addr, val);
}
void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
{
nvram_write(nvram, addr, value);
}
uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
{
return nvram_read(nvram, addr);
}
void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
{
nvram_write(nvram, addr, value >> 8);
nvram_write(nvram, addr + 1, value & 0xFF);
}
uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
{
uint16_t tmp;
tmp = nvram_read(nvram, addr) << 8;
tmp |= nvram_read(nvram, addr + 1);
return tmp;
}
void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
{
nvram_write(nvram, addr, value >> 24);
nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
nvram_write(nvram, addr + 3, value & 0xFF);
}
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
{
uint32_t tmp;
tmp = nvram_read(nvram, addr) << 24;
tmp |= nvram_read(nvram, addr + 1) << 16;
tmp |= nvram_read(nvram, addr + 2) << 8;
tmp |= nvram_read(nvram, addr + 3);
return tmp;
}
void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
const char *str, uint32_t max)
{
int i;
for (i = 0; i < max && str[i] != '\0'; i++) {
nvram_write(nvram, addr + i, str[i]);
}
nvram_write(nvram, addr + i, str[i]);
nvram_write(nvram, addr + max - 1, '\0');
}
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
{
int i;
memset(dst, 0, max);
for (i = 0; i < max; i++) {
dst[i] = NVRAM_get_byte(nvram, addr + i);
if (dst[i] == '\0')
break;
}
return i;
}
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
{
uint16_t tmp;
uint16_t pd, pd1, pd2;
tmp = prev >> 8;
pd = prev ^ value;
pd1 = pd & 0x000F;
pd2 = ((pd >> 4) & 0x000F) ^ pd1;
tmp ^= (pd1 << 3) | (pd1 << 8);
tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
return tmp;
}
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
{
uint32_t i;
uint16_t crc = 0xFFFF;
int odd;
odd = count & 1;
count &= ~1;
for (i = 0; i != count; i++) {
crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
}
if (odd) {
crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
}
return crc;
}
#define CMDLINE_ADDR 0x017ff000
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
const char *arch,
uint32_t RAM_size, int boot_device,
uint32_t kernel_image, uint32_t kernel_size,
const char *cmdline,
uint32_t initrd_image, uint32_t initrd_size,
uint32_t NVRAM_image,
int width, int height, int depth)
{
uint16_t crc;
/* Set parameters for Open Hack'Ware BIOS */
NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
NVRAM_set_word(nvram, 0x14, NVRAM_size);
NVRAM_set_string(nvram, 0x20, arch, 16);
NVRAM_set_lword(nvram, 0x30, RAM_size);
NVRAM_set_byte(nvram, 0x34, boot_device);
NVRAM_set_lword(nvram, 0x38, kernel_image);
NVRAM_set_lword(nvram, 0x3C, kernel_size);
if (cmdline) {
/* XXX: put the cmdline in NVRAM too ? */
pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
} else {
NVRAM_set_lword(nvram, 0x40, 0);
NVRAM_set_lword(nvram, 0x44, 0);
}
NVRAM_set_lword(nvram, 0x48, initrd_image);
NVRAM_set_lword(nvram, 0x4C, initrd_size);
NVRAM_set_lword(nvram, 0x50, NVRAM_image);
NVRAM_set_word(nvram, 0x54, width);
NVRAM_set_word(nvram, 0x56, height);
NVRAM_set_word(nvram, 0x58, depth);
crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
NVRAM_set_word(nvram, 0xFC, crc);
return 0;
}