qemu/memory.c
Avi Kivity a2d335214a memory: fix I/O port aliases
Commit e58ac72b6a0 ("ioport: change portio_list not to use
memory_region_set_offset()") started using aliases of I/O memory
regions.  Since the IORange used for the I/O was contained in the
target region, the alias information (specifically, the offset
into the region) was lost.  This broke -vga std.

Fix by allocating an independent object to hold the IORange and
also the new offset.

Note that I/O memory regions were conceptually broken wrt aliases
in a different way: an alias can cause the same region to appear
twice in an address space, but we had just one IORange to service it.
This patch fixes that problem as well, since we can now have multiple
IORange/MemoryRegion associations.

Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 17:40:12 +02:00

1646 lines
51 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "memory.h"
#include "exec-memory.h"
#include "ioport.h"
#include "bitops.h"
#include "kvm.h"
#include <assert.h>
#define WANT_EXEC_OBSOLETE
#include "exec-obsolete.h"
unsigned memory_region_transaction_depth = 0;
static bool memory_region_update_pending = false;
static bool global_dirty_log = false;
static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
= QTAILQ_HEAD_INITIALIZER(memory_listeners);
typedef struct AddrRange AddrRange;
/*
* Note using signed integers limits us to physical addresses at most
* 63 bits wide. They are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
static bool memory_listener_match(MemoryListener *listener,
MemoryRegionSection *section)
{
return !listener->address_space_filter
|| listener->address_space_filter == section->address_space;
}
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
_listener->_callback(_listener, ##_args); \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
memory_listeners, link) { \
_listener->_callback(_listener, ##_args); \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
if (memory_listener_match(_listener, _section)) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
memory_listeners, link) { \
if (memory_listener_match(_listener, _section)) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
.mr = (fr)->mr, \
.address_space = (as)->root, \
.offset_within_region = (fr)->offset_in_region, \
.size = int128_get64((fr)->addr.size), \
.offset_within_address_space = int128_get64((fr)->addr.start), \
.readonly = (fr)->readonly, \
}))
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
int fd;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
if (int128_lt(a.addr.start, b.addr.start)) {
return true;
} else if (int128_gt(a.addr.start, b.addr.start)) {
return false;
} else if (int128_lt(a.addr.size, b.addr.size)) {
return true;
} else if (int128_gt(a.addr.size, b.addr.size)) {
return false;
} else if (a.match_data < b.match_data) {
return true;
} else if (a.match_data > b.match_data) {
return false;
} else if (a.match_data) {
if (a.data < b.data) {
return true;
} else if (a.data > b.data) {
return false;
}
}
if (a.fd < b.fd) {
return true;
} else if (a.fd > b.fd) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
MemoryRegionIoeventfd b)
{
return !memory_region_ioeventfd_before(a, b)
&& !memory_region_ioeventfd_before(b, a);
}
typedef struct FlatRange FlatRange;
typedef struct FlatView FlatView;
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
target_phys_addr_t offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool readable;
bool readonly;
};
/* Flattened global view of current active memory hierarchy. Kept in sorted
* order.
*/
struct FlatView {
FlatRange *ranges;
unsigned nr;
unsigned nr_allocated;
};
typedef struct AddressSpace AddressSpace;
typedef struct AddressSpaceOps AddressSpaceOps;
/* A system address space - I/O, memory, etc. */
struct AddressSpace {
MemoryRegion *root;
FlatView current_map;
int ioeventfd_nb;
MemoryRegionIoeventfd *ioeventfds;
};
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->readable == b->readable
&& a->readonly == b->readonly;
}
static void flatview_init(FlatView *view)
{
view->ranges = NULL;
view->nr = 0;
view->nr_allocated = 0;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
g_free(view->ranges);
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->readable == r2->readable
&& r1->readonly == r2->readonly;
}
/* Attempt to simplify a view by merging ajacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static void memory_region_read_accessor(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
*value |= (tmp & mask) << shift;
}
static void memory_region_write_accessor(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask)
{
MemoryRegion *mr = opaque;
uint64_t tmp;
tmp = (*value >> shift) & mask;
mr->ops->write(mr->opaque, addr, tmp, size);
}
static void access_with_adjusted_size(target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
void (*access)(void *opaque,
target_phys_addr_t addr,
uint64_t *value,
unsigned size,
unsigned shift,
uint64_t mask),
void *opaque)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = -1ULL >> (64 - access_size * 8);
for (i = 0; i < size; i += access_size) {
/* FIXME: big-endian support */
access(opaque, addr + i, value, access_size, i * 8, access_mask);
}
}
static AddressSpace address_space_memory;
static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
unsigned width, bool write)
{
const MemoryRegionPortio *mrp;
for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
if (offset >= mrp->offset && offset < mrp->offset + mrp->len
&& width == mrp->size
&& (write ? (bool)mrp->write : (bool)mrp->read)) {
return mrp;
}
}
return NULL;
}
static void memory_region_iorange_read(IORange *iorange,
uint64_t offset,
unsigned width,
uint64_t *data)
{
MemoryRegionIORange *mrio
= container_of(iorange, MemoryRegionIORange, iorange);
MemoryRegion *mr = mrio->mr;
offset += mrio->offset;
if (mr->ops->old_portio) {
const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
width, false);
*data = ((uint64_t)1 << (width * 8)) - 1;
if (mrp) {
*data = mrp->read(mr->opaque, offset);
} else if (width == 2) {
mrp = find_portio(mr, offset - mrio->offset, 1, false);
assert(mrp);
*data = mrp->read(mr->opaque, offset) |
(mrp->read(mr->opaque, offset + 1) << 8);
}
return;
}
*data = 0;
access_with_adjusted_size(offset, data, width,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
}
static void memory_region_iorange_write(IORange *iorange,
uint64_t offset,
unsigned width,
uint64_t data)
{
MemoryRegionIORange *mrio
= container_of(iorange, MemoryRegionIORange, iorange);
MemoryRegion *mr = mrio->mr;
offset += mrio->offset;
if (mr->ops->old_portio) {
const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
width, true);
if (mrp) {
mrp->write(mr->opaque, offset, data);
} else if (width == 2) {
mrp = find_portio(mr, offset - mrio->offset, 1, false);
assert(mrp);
mrp->write(mr->opaque, offset, data & 0xff);
mrp->write(mr->opaque, offset + 1, data >> 8);
}
return;
}
access_with_adjusted_size(offset, &data, width,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
}
static void memory_region_iorange_destructor(IORange *iorange)
{
g_free(container_of(iorange, MemoryRegionIORange, iorange));
}
const IORangeOps memory_region_iorange_ops = {
.read = memory_region_iorange_read,
.write = memory_region_iorange_write,
.destructor = memory_region_iorange_destructor,
};
static AddressSpace address_space_io;
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
while (mr->parent) {
mr = mr->parent;
}
if (mr == address_space_memory.root) {
return &address_space_memory;
}
if (mr == address_space_io.root) {
return &address_space_io;
}
abort();
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly)
{
MemoryRegion *subregion;
unsigned i;
target_phys_addr_t offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip, readonly);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip, readonly);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.mr = mr;
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
fr.dirty_log_mask = mr->dirty_log_mask;
fr.readable = mr->readable;
fr.readonly = readonly;
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_eq(base, view->ranges[i].addr.start)) {
now = int128_min(remain, view->ranges[i].addr.size);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
}
if (int128_nz(remain)) {
fr.mr = mr;
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
fr.dirty_log_mask = mr->dirty_log_mask;
fr.readable = mr->readable;
fr.readonly = readonly;
flatview_insert(view, i, &fr);
}
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView generate_memory_topology(MemoryRegion *mr)
{
FlatView view;
flatview_init(&view);
render_memory_region(&view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()), false);
flatview_simplify(&view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
MemoryRegionIoeventfd *fd;
MemoryRegionSection section;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(fds_old[iold],
fds_new[inew]))) {
fd = &fds_old[iold];
section = (MemoryRegionSection) {
.address_space = as->root,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = int128_get64(fd->addr.size),
};
MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
fd->match_data, fd->data, fd->fd);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(fds_new[inew],
fds_old[iold]))) {
fd = &fds_new[inew];
section = (MemoryRegionSection) {
.address_space = as->root,
.offset_within_address_space = int128_get64(fd->addr.start),
.size = int128_get64(fd->addr.size),
};
MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
fd->match_data, fd->data, fd->fd);
++inew;
} else {
++iold;
++inew;
}
}
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatRange *fr;
unsigned ioeventfd_nb = 0;
MemoryRegionIoeventfd *ioeventfds = NULL;
AddrRange tmp;
unsigned i;
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
ioeventfds = g_realloc(ioeventfds,
ioeventfd_nb * sizeof(*ioeventfds));
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
}
static void address_space_update_topology_pass(AddressSpace *as,
FlatView old_view,
FlatView new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view.nr || inew < new_view.nr) {
if (iold < old_view.nr) {
frold = &old_view.ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view.nr) {
frnew = &new_view.ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old, but (not in new, or in new but attributes changed). */
if (!adding) {
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both (logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
} else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
}
++inew;
}
}
}
static void address_space_update_topology(AddressSpace *as)
{
FlatView old_view = as->current_map;
FlatView new_view = generate_memory_topology(as->root);
address_space_update_topology_pass(as, old_view, new_view, false);
address_space_update_topology_pass(as, old_view, new_view, true);
as->current_map = new_view;
flatview_destroy(&old_view);
address_space_update_ioeventfds(as);
}
static void memory_region_update_topology(MemoryRegion *mr)
{
if (memory_region_transaction_depth) {
memory_region_update_pending |= !mr || mr->enabled;
return;
}
if (mr && !mr->enabled) {
return;
}
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
if (address_space_memory.root) {
address_space_update_topology(&address_space_memory);
}
if (address_space_io.root) {
address_space_update_topology(&address_space_io);
}
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
memory_region_update_pending = false;
}
void memory_region_transaction_begin(void)
{
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
assert(memory_region_transaction_depth);
--memory_region_transaction_depth;
if (!memory_region_transaction_depth && memory_region_update_pending) {
memory_region_update_topology(NULL);
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_addr);
}
static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
{
qemu_ram_free_from_ptr(mr->ram_addr);
}
static void memory_region_destructor_iomem(MemoryRegion *mr)
{
cpu_unregister_io_memory(mr->ram_addr);
}
static void memory_region_destructor_rom_device(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
cpu_unregister_io_memory(mr->ram_addr & ~TARGET_PAGE_MASK);
}
static bool memory_region_wrong_endianness(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
void memory_region_init(MemoryRegion *mr,
const char *name,
uint64_t size)
{
mr->ops = NULL;
mr->parent = NULL;
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->addr = 0;
mr->subpage = false;
mr->enabled = true;
mr->terminates = false;
mr->ram = false;
mr->readable = true;
mr->readonly = false;
mr->rom_device = false;
mr->destructor = memory_region_destructor_none;
mr->priority = 0;
mr->may_overlap = false;
mr->alias = NULL;
QTAILQ_INIT(&mr->subregions);
memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
QTAILQ_INIT(&mr->coalesced);
mr->name = g_strdup(name);
mr->dirty_log_mask = 0;
mr->ioeventfd_nb = 0;
mr->ioeventfds = NULL;
}
static bool memory_region_access_valid(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool is_write)
{
if (mr->ops->valid.accepts
&& !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
return false;
}
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
return false;
}
/* Treat zero as compatibility all valid */
if (!mr->ops->valid.max_access_size) {
return true;
}
if (size > mr->ops->valid.max_access_size
|| size < mr->ops->valid.min_access_size) {
return false;
}
return true;
}
static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
uint64_t data = 0;
if (!memory_region_access_valid(mr, addr, size, false)) {
return -1U; /* FIXME: better signalling */
}
if (!mr->ops->read) {
return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor, mr);
return data;
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
{
if (memory_region_wrong_endianness(mr)) {
switch (size) {
case 1:
break;
case 2:
*data = bswap16(*data);
break;
case 4:
*data = bswap32(*data);
break;
default:
abort();
}
}
}
static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size)
{
uint64_t ret;
ret = memory_region_dispatch_read1(mr, addr, size);
adjust_endianness(mr, &ret, size);
return ret;
}
static void memory_region_dispatch_write(MemoryRegion *mr,
target_phys_addr_t addr,
uint64_t data,
unsigned size)
{
if (!memory_region_access_valid(mr, addr, size, true)) {
return; /* FIXME: better signalling */
}
adjust_endianness(mr, &data, size);
if (!mr->ops->write) {
mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
return;
}
/* FIXME: support unaligned access */
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr);
}
void memory_region_init_io(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->destructor = memory_region_destructor_iomem;
mr->ram_addr = cpu_register_io_memory(mr);
}
void memory_region_init_ram(MemoryRegion *mr,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_addr = qemu_ram_alloc(size, mr);
}
void memory_region_init_ram_ptr(MemoryRegion *mr,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram_from_ptr;
mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
}
void memory_region_init_alias(MemoryRegion *mr,
const char *name,
MemoryRegion *orig,
target_phys_addr_t offset,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_rom_device(MemoryRegion *mr,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->rom_device = true;
mr->destructor = memory_region_destructor_rom_device;
mr->ram_addr = qemu_ram_alloc(size, mr);
mr->ram_addr |= cpu_register_io_memory(mr);
}
static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
MemoryRegion *mr = opaque;
if (!mr->warning_printed) {
fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
mr->warning_printed = true;
}
return -1U;
}
static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
unsigned size)
{
MemoryRegion *mr = opaque;
if (!mr->warning_printed) {
fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
mr->warning_printed = true;
}
}
static const MemoryRegionOps reservation_ops = {
.read = invalid_read,
.write = invalid_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
void memory_region_init_reservation(MemoryRegion *mr,
const char *name,
uint64_t size)
{
memory_region_init_io(mr, &reservation_ops, mr, name, size);
}
void memory_region_destroy(MemoryRegion *mr)
{
assert(QTAILQ_EMPTY(&mr->subregions));
mr->destructor(mr);
memory_region_clear_coalescing(mr);
g_free((char *)mr->name);
g_free(mr->ioeventfds);
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(MemoryRegion *mr)
{
return mr->name;
}
bool memory_region_is_ram(MemoryRegion *mr)
{
return mr->ram;
}
bool memory_region_is_logging(MemoryRegion *mr)
{
return mr->dirty_log_mask;
}
bool memory_region_is_rom(MemoryRegion *mr)
{
return mr->ram && mr->readonly;
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
memory_region_update_topology(mr);
}
bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
target_phys_addr_t size, unsigned client)
{
assert(mr->terminates);
return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1 << client);
}
void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
target_phys_addr_t size)
{
assert(mr->terminates);
return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
}
void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
{
FlatRange *fr;
FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
if (fr->mr == mr) {
MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
Forward, log_sync);
}
}
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
mr->readonly = readonly;
memory_region_update_topology(mr);
}
}
void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
{
if (mr->readable != readable) {
mr->readable = readable;
memory_region_update_topology(mr);
}
}
void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
target_phys_addr_t size, unsigned client)
{
assert(mr->terminates);
cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
mr->ram_addr + addr + size,
1 << client);
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
if (mr->alias) {
return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
}
assert(mr->terminates);
return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
}
static void memory_region_update_coalesced_range(MemoryRegion *mr)
{
FlatRange *fr;
CoalescedMemoryRange *cmr;
AddrRange tmp;
FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
if (fr->mr == mr) {
qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
int128_get64(fr->addr.size));
QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
tmp = addrrange_shift(cmr->addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (!addrrange_intersects(tmp, fr->addr)) {
continue;
}
tmp = addrrange_intersection(tmp, fr->addr);
qemu_register_coalesced_mmio(int128_get64(tmp.start),
int128_get64(tmp.size));
}
}
}
}
void memory_region_set_coalescing(MemoryRegion *mr)
{
memory_region_clear_coalescing(mr);
memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
}
void memory_region_add_coalescing(MemoryRegion *mr,
target_phys_addr_t offset,
uint64_t size)
{
CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr);
}
void memory_region_clear_coalescing(MemoryRegion *mr)
{
CoalescedMemoryRange *cmr;
while (!QTAILQ_EMPTY(&mr->coalesced)) {
cmr = QTAILQ_FIRST(&mr->coalesced);
QTAILQ_REMOVE(&mr->coalesced, cmr, link);
g_free(cmr);
}
memory_region_update_coalesced_range(mr);
}
void memory_region_add_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.fd = fd,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
break;
}
}
++mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
mr->ioeventfds[i] = mrfd;
memory_region_update_topology(mr);
}
void memory_region_del_eventfd(MemoryRegion *mr,
target_phys_addr_t addr,
unsigned size,
bool match_data,
uint64_t data,
int fd)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.fd = fd,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
break;
}
}
assert(i != mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
--mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
memory_region_update_topology(mr);
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion)
{
MemoryRegion *other;
assert(!subregion->parent);
subregion->parent = mr;
subregion->addr = offset;
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->may_overlap || other->may_overlap) {
continue;
}
if (int128_gt(int128_make64(offset),
int128_add(int128_make64(other->addr), other->size))
|| int128_le(int128_add(int128_make64(offset), subregion->size),
int128_make64(other->addr))) {
continue;
}
#if 0
printf("warning: subregion collision %llx/%llx (%s) "
"vs %llx/%llx (%s)\n",
(unsigned long long)offset,
(unsigned long long)int128_get64(subregion->size),
subregion->name,
(unsigned long long)other->addr,
(unsigned long long)int128_get64(other->size),
other->name);
#endif
}
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
memory_region_update_topology(mr);
}
void memory_region_add_subregion(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion)
{
subregion->may_overlap = false;
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
target_phys_addr_t offset,
MemoryRegion *subregion,
unsigned priority)
{
subregion->may_overlap = true;
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
assert(subregion->parent == mr);
subregion->parent = NULL;
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_update_topology(mr);
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
mr->enabled = enabled;
memory_region_update_topology(NULL);
}
void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
{
MemoryRegion *parent = mr->parent;
unsigned priority = mr->priority;
bool may_overlap = mr->may_overlap;
if (addr == mr->addr || !parent) {
mr->addr = addr;
return;
}
memory_region_transaction_begin();
memory_region_del_subregion(parent, mr);
if (may_overlap) {
memory_region_add_subregion_overlap(parent, addr, mr, priority);
} else {
memory_region_add_subregion(parent, addr, mr);
}
memory_region_transaction_commit();
}
void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
{
target_phys_addr_t old_offset = mr->alias_offset;
assert(mr->alias);
mr->alias_offset = offset;
if (offset == old_offset || !mr->parent) {
return;
}
memory_region_update_topology(mr);
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_addr;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
{
return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
MemoryRegionSection memory_region_find(MemoryRegion *address_space,
target_phys_addr_t addr, uint64_t size)
{
AddressSpace *as = memory_region_to_address_space(address_space);
AddrRange range = addrrange_make(int128_make64(addr),
int128_make64(size));
FlatRange *fr = address_space_lookup(as, range);
MemoryRegionSection ret = { .mr = NULL, .size = 0 };
if (!fr) {
return ret;
}
while (fr > as->current_map.ranges
&& addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = int128_get64(range.size);
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
return ret;
}
void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
{
AddressSpace *as = memory_region_to_address_space(address_space);
FlatRange *fr;
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
}
}
void memory_global_dirty_log_start(void)
{
global_dirty_log = true;
MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
}
void memory_global_dirty_log_stop(void)
{
global_dirty_log = false;
MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatRange *fr;
if (global_dirty_log) {
listener->log_global_start(listener);
}
FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
MemoryRegionSection section = {
.mr = fr->mr,
.address_space = as->root,
.offset_within_region = fr->offset_in_region,
.size = int128_get64(fr->addr.size),
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
};
listener->region_add(listener, &section);
}
}
void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
{
MemoryListener *other = NULL;
listener->address_space_filter = filter;
if (QTAILQ_EMPTY(&memory_listeners)
|| listener->priority >= QTAILQ_LAST(&memory_listeners,
memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
} else {
QTAILQ_FOREACH(other, &memory_listeners, link) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link);
}
listener_add_address_space(listener, &address_space_memory);
listener_add_address_space(listener, &address_space_io);
}
void memory_listener_unregister(MemoryListener *listener)
{
QTAILQ_REMOVE(&memory_listeners, listener, link);
}
void set_system_memory_map(MemoryRegion *mr)
{
address_space_memory.root = mr;
memory_region_update_topology(NULL);
}
void set_system_io_map(MemoryRegion *mr)
{
address_space_io.root = mr;
memory_region_update_topology(NULL);
}
uint64_t io_mem_read(int io_index, target_phys_addr_t addr, unsigned size)
{
return memory_region_dispatch_read(io_mem_region[io_index], addr, size);
}
void io_mem_write(int io_index, target_phys_addr_t addr,
uint64_t val, unsigned size)
{
memory_region_dispatch_write(io_mem_region[io_index], addr, val, size);
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
bool printed;
QTAILQ_ENTRY(MemoryRegionList) queue;
};
typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
static void mtree_print_mr(fprintf_function mon_printf, void *f,
const MemoryRegion *mr, unsigned int level,
target_phys_addr_t base,
MemoryRegionListHead *alias_print_queue)
{
MemoryRegionList *new_ml, *ml, *next_ml;
MemoryRegionListHead submr_print_queue;
const MemoryRegion *submr;
unsigned int i;
if (!mr) {
return;
}
for (i = 0; i < level; i++) {
mon_printf(f, " ");
}
if (mr->alias) {
MemoryRegionList *ml;
bool found = false;
/* check if the alias is already in the queue */
QTAILQ_FOREACH(ml, alias_print_queue, queue) {
if (ml->mr == mr->alias && !ml->printed) {
found = true;
}
}
if (!found) {
ml = g_new(MemoryRegionList, 1);
ml->mr = mr->alias;
ml->printed = false;
QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
}
mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
"-" TARGET_FMT_plx "\n",
base + mr->addr,
base + mr->addr
+ (target_phys_addr_t)int128_get64(mr->size) - 1,
mr->priority,
mr->readable ? 'R' : '-',
!mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
: '-',
mr->name,
mr->alias->name,
mr->alias_offset,
mr->alias_offset
+ (target_phys_addr_t)int128_get64(mr->size) - 1);
} else {
mon_printf(f,
TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
base + mr->addr,
base + mr->addr
+ (target_phys_addr_t)int128_get64(mr->size) - 1,
mr->priority,
mr->readable ? 'R' : '-',
!mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
: '-',
mr->name);
}
QTAILQ_INIT(&submr_print_queue);
QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
new_ml = g_new(MemoryRegionList, 1);
new_ml->mr = submr;
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
if (new_ml->mr->addr < ml->mr->addr ||
(new_ml->mr->addr == ml->mr->addr &&
new_ml->mr->priority > ml->mr->priority)) {
QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
new_ml = NULL;
break;
}
}
if (new_ml) {
QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
}
}
QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
alias_print_queue);
}
QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
g_free(ml);
}
}
void mtree_info(fprintf_function mon_printf, void *f)
{
MemoryRegionListHead ml_head;
MemoryRegionList *ml, *ml2;
QTAILQ_INIT(&ml_head);
mon_printf(f, "memory\n");
mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
/* print aliased regions */
QTAILQ_FOREACH(ml, &ml_head, queue) {
if (!ml->printed) {
mon_printf(f, "%s\n", ml->mr->name);
mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
}
}
QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
g_free(ml);
}
if (address_space_io.root &&
!QTAILQ_EMPTY(&address_space_io.root->subregions)) {
QTAILQ_INIT(&ml_head);
mon_printf(f, "I/O\n");
mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
}
}