qemu/softmmu/memory.c
Peter Xu a5c90c61a1 memory: Fix qemu crash on starting dirty log twice with stopped VM
QEMU can now easily crash with two continuous migration carried out:

(qemu) migrate -d exec:cat>out
(qemu) migrate_cancel
(qemu) migrate -d exec:cat>out
[crash] ../softmmu/memory.c:2782: memory_global_dirty_log_start: Assertion
`!(global_dirty_tracking & flags)' failed.

It's because memory API provides a way to postpone dirty log stop if the VM is
stopped, and that'll be re-done until the next VM start.  It was added in 2017
with commit 1931076077 ("migration: optimize the downtime", 2017-08-01).

However the recent work on allowing dirty tracking to be bitmask broke it,
which is commit 63b41db4bc ("memory: make global_dirty_tracking a bitmask",
2021-11-01).

The fix proposed in this patch contains two things:

  (1) Instead of passing over the flags to postpone stop dirty track, we add a
      global variable (along with current vmstate_change variable) to record
      what flags to stop dirty tracking.

  (2) When start dirty tracking, instead if remove the vmstate hook directly,
      we also execute the postponed stop process so that we make sure all the
      starts and stops will be paired.

This procedure is overlooked in the bitmask-ify work in 2021.

Cc: Hyman Huang <huangy81@chinatelecom.cn>
Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=2044818
Fixes: 63b41db4bc ("memory: make global_dirty_tracking a bitmask")
Signed-off-by: Peter Xu <peterx@redhat.com>
Message-Id: <20220207123019.27223-1-peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-02-16 15:01:33 +01:00

3577 lines
111 KiB
C

/*
* Physical memory management
*
* Copyright 2011 Red Hat, Inc. and/or its affiliates
*
* Authors:
* Avi Kivity <avi@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "exec/memory.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/qemu-print.h"
#include "qom/object.h"
#include "trace.h"
#include "exec/memory-internal.h"
#include "exec/ram_addr.h"
#include "sysemu/kvm.h"
#include "sysemu/runstate.h"
#include "sysemu/tcg.h"
#include "qemu/accel.h"
#include "hw/boards.h"
#include "migration/vmstate.h"
//#define DEBUG_UNASSIGNED
static unsigned memory_region_transaction_depth;
static bool memory_region_update_pending;
static bool ioeventfd_update_pending;
unsigned int global_dirty_tracking;
static QTAILQ_HEAD(, MemoryListener) memory_listeners
= QTAILQ_HEAD_INITIALIZER(memory_listeners);
static QTAILQ_HEAD(, AddressSpace) address_spaces
= QTAILQ_HEAD_INITIALIZER(address_spaces);
static GHashTable *flat_views;
typedef struct AddrRange AddrRange;
/*
* Note that signed integers are needed for negative offsetting in aliases
* (large MemoryRegion::alias_offset).
*/
struct AddrRange {
Int128 start;
Int128 size;
};
static AddrRange addrrange_make(Int128 start, Int128 size)
{
return (AddrRange) { start, size };
}
static bool addrrange_equal(AddrRange r1, AddrRange r2)
{
return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
}
static Int128 addrrange_end(AddrRange r)
{
return int128_add(r.start, r.size);
}
static AddrRange addrrange_shift(AddrRange range, Int128 delta)
{
int128_addto(&range.start, delta);
return range;
}
static bool addrrange_contains(AddrRange range, Int128 addr)
{
return int128_ge(addr, range.start)
&& int128_lt(addr, addrrange_end(range));
}
static bool addrrange_intersects(AddrRange r1, AddrRange r2)
{
return addrrange_contains(r1, r2.start)
|| addrrange_contains(r2, r1.start);
}
static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
{
Int128 start = int128_max(r1.start, r2.start);
Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
return addrrange_make(start, int128_sub(end, start));
}
enum ListenerDirection { Forward, Reverse };
#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
if (_listener->_callback) { \
_listener->_callback(_listener, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
do { \
MemoryListener *_listener; \
\
switch (_direction) { \
case Forward: \
QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
case Reverse: \
QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
if (_listener->_callback) { \
_listener->_callback(_listener, _section, ##_args); \
} \
} \
break; \
default: \
abort(); \
} \
} while (0)
/* No need to ref/unref .mr, the FlatRange keeps it alive. */
#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
do { \
MemoryRegionSection mrs = section_from_flat_range(fr, \
address_space_to_flatview(as)); \
MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
} while(0)
struct CoalescedMemoryRange {
AddrRange addr;
QTAILQ_ENTRY(CoalescedMemoryRange) link;
};
struct MemoryRegionIoeventfd {
AddrRange addr;
bool match_data;
uint64_t data;
EventNotifier *e;
};
static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
MemoryRegionIoeventfd *b)
{
if (int128_lt(a->addr.start, b->addr.start)) {
return true;
} else if (int128_gt(a->addr.start, b->addr.start)) {
return false;
} else if (int128_lt(a->addr.size, b->addr.size)) {
return true;
} else if (int128_gt(a->addr.size, b->addr.size)) {
return false;
} else if (a->match_data < b->match_data) {
return true;
} else if (a->match_data > b->match_data) {
return false;
} else if (a->match_data) {
if (a->data < b->data) {
return true;
} else if (a->data > b->data) {
return false;
}
}
if (a->e < b->e) {
return true;
} else if (a->e > b->e) {
return false;
}
return false;
}
static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
MemoryRegionIoeventfd *b)
{
if (int128_eq(a->addr.start, b->addr.start) &&
(!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
(int128_eq(a->addr.size, b->addr.size) &&
(a->match_data == b->match_data) &&
((a->match_data && (a->data == b->data)) || !a->match_data) &&
(a->e == b->e))))
return true;
return false;
}
/* Range of memory in the global map. Addresses are absolute. */
struct FlatRange {
MemoryRegion *mr;
hwaddr offset_in_region;
AddrRange addr;
uint8_t dirty_log_mask;
bool romd_mode;
bool readonly;
bool nonvolatile;
};
#define FOR_EACH_FLAT_RANGE(var, view) \
for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
static inline MemoryRegionSection
section_from_flat_range(FlatRange *fr, FlatView *fv)
{
return (MemoryRegionSection) {
.mr = fr->mr,
.fv = fv,
.offset_within_region = fr->offset_in_region,
.size = fr->addr.size,
.offset_within_address_space = int128_get64(fr->addr.start),
.readonly = fr->readonly,
.nonvolatile = fr->nonvolatile,
};
}
static bool flatrange_equal(FlatRange *a, FlatRange *b)
{
return a->mr == b->mr
&& addrrange_equal(a->addr, b->addr)
&& a->offset_in_region == b->offset_in_region
&& a->romd_mode == b->romd_mode
&& a->readonly == b->readonly
&& a->nonvolatile == b->nonvolatile;
}
static FlatView *flatview_new(MemoryRegion *mr_root)
{
FlatView *view;
view = g_new0(FlatView, 1);
view->ref = 1;
view->root = mr_root;
memory_region_ref(mr_root);
trace_flatview_new(view, mr_root);
return view;
}
/* Insert a range into a given position. Caller is responsible for maintaining
* sorting order.
*/
static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
{
if (view->nr == view->nr_allocated) {
view->nr_allocated = MAX(2 * view->nr, 10);
view->ranges = g_realloc(view->ranges,
view->nr_allocated * sizeof(*view->ranges));
}
memmove(view->ranges + pos + 1, view->ranges + pos,
(view->nr - pos) * sizeof(FlatRange));
view->ranges[pos] = *range;
memory_region_ref(range->mr);
++view->nr;
}
static void flatview_destroy(FlatView *view)
{
int i;
trace_flatview_destroy(view, view->root);
if (view->dispatch) {
address_space_dispatch_free(view->dispatch);
}
for (i = 0; i < view->nr; i++) {
memory_region_unref(view->ranges[i].mr);
}
g_free(view->ranges);
memory_region_unref(view->root);
g_free(view);
}
static bool flatview_ref(FlatView *view)
{
return qatomic_fetch_inc_nonzero(&view->ref) > 0;
}
void flatview_unref(FlatView *view)
{
if (qatomic_fetch_dec(&view->ref) == 1) {
trace_flatview_destroy_rcu(view, view->root);
assert(view->root);
call_rcu(view, flatview_destroy, rcu);
}
}
static bool can_merge(FlatRange *r1, FlatRange *r2)
{
return int128_eq(addrrange_end(r1->addr), r2->addr.start)
&& r1->mr == r2->mr
&& int128_eq(int128_add(int128_make64(r1->offset_in_region),
r1->addr.size),
int128_make64(r2->offset_in_region))
&& r1->dirty_log_mask == r2->dirty_log_mask
&& r1->romd_mode == r2->romd_mode
&& r1->readonly == r2->readonly
&& r1->nonvolatile == r2->nonvolatile;
}
/* Attempt to simplify a view by merging adjacent ranges */
static void flatview_simplify(FlatView *view)
{
unsigned i, j, k;
i = 0;
while (i < view->nr) {
j = i + 1;
while (j < view->nr
&& can_merge(&view->ranges[j-1], &view->ranges[j])) {
int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
++j;
}
++i;
for (k = i; k < j; k++) {
memory_region_unref(view->ranges[k].mr);
}
memmove(&view->ranges[i], &view->ranges[j],
(view->nr - j) * sizeof(view->ranges[j]));
view->nr -= j - i;
}
}
static bool memory_region_big_endian(MemoryRegion *mr)
{
#ifdef TARGET_WORDS_BIGENDIAN
return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
#else
return mr->ops->endianness == DEVICE_BIG_ENDIAN;
#endif
}
static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
{
if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
switch (op & MO_SIZE) {
case MO_8:
break;
case MO_16:
*data = bswap16(*data);
break;
case MO_32:
*data = bswap32(*data);
break;
case MO_64:
*data = bswap64(*data);
break;
default:
g_assert_not_reached();
}
}
}
static inline void memory_region_shift_read_access(uint64_t *value,
signed shift,
uint64_t mask,
uint64_t tmp)
{
if (shift >= 0) {
*value |= (tmp & mask) << shift;
} else {
*value |= (tmp & mask) >> -shift;
}
}
static inline uint64_t memory_region_shift_write_access(uint64_t *value,
signed shift,
uint64_t mask)
{
uint64_t tmp;
if (shift >= 0) {
tmp = (*value >> shift) & mask;
} else {
tmp = (*value << -shift) & mask;
}
return tmp;
}
static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
{
MemoryRegion *root;
hwaddr abs_addr = offset;
abs_addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
abs_addr += root->addr;
}
return abs_addr;
}
static int get_cpu_index(void)
{
if (current_cpu) {
return current_cpu->cpu_index;
}
return -1;
}
static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp;
tmp = mr->ops->read(mr->opaque, addr, size);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
memory_region_name(mr));
}
memory_region_shift_read_access(value, shift, mask, tmp);
return MEMTX_OK;
}
static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = 0;
MemTxResult r;
r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
if (mr->subpage) {
trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
} else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
memory_region_name(mr));
}
memory_region_shift_read_access(value, shift, mask, tmp);
return r;
}
static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
memory_region_name(mr));
}
mr->ops->write(mr->opaque, addr, tmp, size);
return MEMTX_OK;
}
static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs)
{
uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
if (mr->subpage) {
trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
} else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
memory_region_name(mr));
}
return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
}
static MemTxResult access_with_adjusted_size(hwaddr addr,
uint64_t *value,
unsigned size,
unsigned access_size_min,
unsigned access_size_max,
MemTxResult (*access_fn)
(MemoryRegion *mr,
hwaddr addr,
uint64_t *value,
unsigned size,
signed shift,
uint64_t mask,
MemTxAttrs attrs),
MemoryRegion *mr,
MemTxAttrs attrs)
{
uint64_t access_mask;
unsigned access_size;
unsigned i;
MemTxResult r = MEMTX_OK;
if (!access_size_min) {
access_size_min = 1;
}
if (!access_size_max) {
access_size_max = 4;
}
/* FIXME: support unaligned access? */
access_size = MAX(MIN(size, access_size_max), access_size_min);
access_mask = MAKE_64BIT_MASK(0, access_size * 8);
if (memory_region_big_endian(mr)) {
for (i = 0; i < size; i += access_size) {
r |= access_fn(mr, addr + i, value, access_size,
(size - access_size - i) * 8, access_mask, attrs);
}
} else {
for (i = 0; i < size; i += access_size) {
r |= access_fn(mr, addr + i, value, access_size, i * 8,
access_mask, attrs);
}
}
return r;
}
static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
{
AddressSpace *as;
while (mr->container) {
mr = mr->container;
}
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
if (mr == as->root) {
return as;
}
}
return NULL;
}
/* Render a memory region into the global view. Ranges in @view obscure
* ranges in @mr.
*/
static void render_memory_region(FlatView *view,
MemoryRegion *mr,
Int128 base,
AddrRange clip,
bool readonly,
bool nonvolatile)
{
MemoryRegion *subregion;
unsigned i;
hwaddr offset_in_region;
Int128 remain;
Int128 now;
FlatRange fr;
AddrRange tmp;
if (!mr->enabled) {
return;
}
int128_addto(&base, int128_make64(mr->addr));
readonly |= mr->readonly;
nonvolatile |= mr->nonvolatile;
tmp = addrrange_make(base, mr->size);
if (!addrrange_intersects(tmp, clip)) {
return;
}
clip = addrrange_intersection(tmp, clip);
if (mr->alias) {
int128_subfrom(&base, int128_make64(mr->alias->addr));
int128_subfrom(&base, int128_make64(mr->alias_offset));
render_memory_region(view, mr->alias, base, clip,
readonly, nonvolatile);
return;
}
/* Render subregions in priority order. */
QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
render_memory_region(view, subregion, base, clip,
readonly, nonvolatile);
}
if (!mr->terminates) {
return;
}
offset_in_region = int128_get64(int128_sub(clip.start, base));
base = clip.start;
remain = clip.size;
fr.mr = mr;
fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
fr.romd_mode = mr->romd_mode;
fr.readonly = readonly;
fr.nonvolatile = nonvolatile;
/* Render the region itself into any gaps left by the current view. */
for (i = 0; i < view->nr && int128_nz(remain); ++i) {
if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
continue;
}
if (int128_lt(base, view->ranges[i].addr.start)) {
now = int128_min(remain,
int128_sub(view->ranges[i].addr.start, base));
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, now);
flatview_insert(view, i, &fr);
++i;
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
now = int128_sub(int128_min(int128_add(base, remain),
addrrange_end(view->ranges[i].addr)),
base);
int128_addto(&base, now);
offset_in_region += int128_get64(now);
int128_subfrom(&remain, now);
}
if (int128_nz(remain)) {
fr.offset_in_region = offset_in_region;
fr.addr = addrrange_make(base, remain);
flatview_insert(view, i, &fr);
}
}
void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
{
FlatRange *fr;
assert(fv);
assert(cb);
FOR_EACH_FLAT_RANGE(fr, fv) {
if (cb(fr->addr.start, fr->addr.size, fr->mr,
fr->offset_in_region, opaque)) {
break;
}
}
}
static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
{
while (mr->enabled) {
if (mr->alias) {
if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
/* The alias is included in its entirety. Use it as
* the "real" root, so that we can share more FlatViews.
*/
mr = mr->alias;
continue;
}
} else if (!mr->terminates) {
unsigned int found = 0;
MemoryRegion *child, *next = NULL;
QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
if (child->enabled) {
if (++found > 1) {
next = NULL;
break;
}
if (!child->addr && int128_ge(mr->size, child->size)) {
/* A child is included in its entirety. If it's the only
* enabled one, use it in the hope of finding an alias down the
* way. This will also let us share FlatViews.
*/
next = child;
}
}
}
if (found == 0) {
return NULL;
}
if (next) {
mr = next;
continue;
}
}
return mr;
}
return NULL;
}
/* Render a memory topology into a list of disjoint absolute ranges. */
static FlatView *generate_memory_topology(MemoryRegion *mr)
{
int i;
FlatView *view;
view = flatview_new(mr);
if (mr) {
render_memory_region(view, mr, int128_zero(),
addrrange_make(int128_zero(), int128_2_64()),
false, false);
}
flatview_simplify(view);
view->dispatch = address_space_dispatch_new(view);
for (i = 0; i < view->nr; i++) {
MemoryRegionSection mrs =
section_from_flat_range(&view->ranges[i], view);
flatview_add_to_dispatch(view, &mrs);
}
address_space_dispatch_compact(view->dispatch);
g_hash_table_replace(flat_views, mr, view);
return view;
}
static void address_space_add_del_ioeventfds(AddressSpace *as,
MemoryRegionIoeventfd *fds_new,
unsigned fds_new_nb,
MemoryRegionIoeventfd *fds_old,
unsigned fds_old_nb)
{
unsigned iold, inew;
MemoryRegionIoeventfd *fd;
MemoryRegionSection section;
/* Generate a symmetric difference of the old and new fd sets, adding
* and deleting as necessary.
*/
iold = inew = 0;
while (iold < fds_old_nb || inew < fds_new_nb) {
if (iold < fds_old_nb
&& (inew == fds_new_nb
|| memory_region_ioeventfd_before(&fds_old[iold],
&fds_new[inew]))) {
fd = &fds_old[iold];
section = (MemoryRegionSection) {
.fv = address_space_to_flatview(as),
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
fd->match_data, fd->data, fd->e);
++iold;
} else if (inew < fds_new_nb
&& (iold == fds_old_nb
|| memory_region_ioeventfd_before(&fds_new[inew],
&fds_old[iold]))) {
fd = &fds_new[inew];
section = (MemoryRegionSection) {
.fv = address_space_to_flatview(as),
.offset_within_address_space = int128_get64(fd->addr.start),
.size = fd->addr.size,
};
MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
fd->match_data, fd->data, fd->e);
++inew;
} else {
++iold;
++inew;
}
}
}
FlatView *address_space_get_flatview(AddressSpace *as)
{
FlatView *view;
RCU_READ_LOCK_GUARD();
do {
view = address_space_to_flatview(as);
/* If somebody has replaced as->current_map concurrently,
* flatview_ref returns false.
*/
} while (!flatview_ref(view));
return view;
}
static void address_space_update_ioeventfds(AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
unsigned ioeventfd_nb = 0;
unsigned ioeventfd_max;
MemoryRegionIoeventfd *ioeventfds;
AddrRange tmp;
unsigned i;
/*
* It is likely that the number of ioeventfds hasn't changed much, so use
* the previous size as the starting value, with some headroom to avoid
* gratuitous reallocations.
*/
ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (addrrange_intersects(fr->addr, tmp)) {
++ioeventfd_nb;
if (ioeventfd_nb > ioeventfd_max) {
ioeventfd_max = MAX(ioeventfd_max * 2, 4);
ioeventfds = g_realloc(ioeventfds,
ioeventfd_max * sizeof(*ioeventfds));
}
ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
ioeventfds[ioeventfd_nb-1].addr = tmp;
}
}
}
address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
as->ioeventfds, as->ioeventfd_nb);
g_free(as->ioeventfds);
as->ioeventfds = ioeventfds;
as->ioeventfd_nb = ioeventfd_nb;
flatview_unref(view);
}
/*
* Notify the memory listeners about the coalesced IO change events of
* range `cmr'. Only the part that has intersection of the specified
* FlatRange will be sent.
*/
static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
CoalescedMemoryRange *cmr, bool add)
{
AddrRange tmp;
tmp = addrrange_shift(cmr->addr,
int128_sub(fr->addr.start,
int128_make64(fr->offset_in_region)));
if (!addrrange_intersects(tmp, fr->addr)) {
return;
}
tmp = addrrange_intersection(tmp, fr->addr);
if (add) {
MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
int128_get64(tmp.start),
int128_get64(tmp.size));
} else {
MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
int128_get64(tmp.start),
int128_get64(tmp.size));
}
}
static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
{
CoalescedMemoryRange *cmr;
QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
flat_range_coalesced_io_notify(fr, as, cmr, false);
}
}
static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
{
MemoryRegion *mr = fr->mr;
CoalescedMemoryRange *cmr;
if (QTAILQ_EMPTY(&mr->coalesced)) {
return;
}
QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
flat_range_coalesced_io_notify(fr, as, cmr, true);
}
}
static void address_space_update_topology_pass(AddressSpace *as,
const FlatView *old_view,
const FlatView *new_view,
bool adding)
{
unsigned iold, inew;
FlatRange *frold, *frnew;
/* Generate a symmetric difference of the old and new memory maps.
* Kill ranges in the old map, and instantiate ranges in the new map.
*/
iold = inew = 0;
while (iold < old_view->nr || inew < new_view->nr) {
if (iold < old_view->nr) {
frold = &old_view->ranges[iold];
} else {
frold = NULL;
}
if (inew < new_view->nr) {
frnew = &new_view->ranges[inew];
} else {
frnew = NULL;
}
if (frold
&& (!frnew
|| int128_lt(frold->addr.start, frnew->addr.start)
|| (int128_eq(frold->addr.start, frnew->addr.start)
&& !flatrange_equal(frold, frnew)))) {
/* In old but not in new, or in both but attributes changed. */
if (!adding) {
flat_range_coalesced_io_del(frold, as);
MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
}
++iold;
} else if (frold && frnew && flatrange_equal(frold, frnew)) {
/* In both and unchanged (except logging may have changed) */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
frold->dirty_log_mask,
frnew->dirty_log_mask);
}
}
++iold;
++inew;
} else {
/* In new */
if (adding) {
MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
flat_range_coalesced_io_add(frnew, as);
}
++inew;
}
}
}
static void flatviews_init(void)
{
static FlatView *empty_view;
if (flat_views) {
return;
}
flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
(GDestroyNotify) flatview_unref);
if (!empty_view) {
empty_view = generate_memory_topology(NULL);
/* We keep it alive forever in the global variable. */
flatview_ref(empty_view);
} else {
g_hash_table_replace(flat_views, NULL, empty_view);
flatview_ref(empty_view);
}
}
static void flatviews_reset(void)
{
AddressSpace *as;
if (flat_views) {
g_hash_table_unref(flat_views);
flat_views = NULL;
}
flatviews_init();
/* Render unique FVs */
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
if (g_hash_table_lookup(flat_views, physmr)) {
continue;
}
generate_memory_topology(physmr);
}
}
static void address_space_set_flatview(AddressSpace *as)
{
FlatView *old_view = address_space_to_flatview(as);
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
assert(new_view);
if (old_view == new_view) {
return;
}
if (old_view) {
flatview_ref(old_view);
}
flatview_ref(new_view);
if (!QTAILQ_EMPTY(&as->listeners)) {
FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
if (!old_view2) {
old_view2 = &tmpview;
}
address_space_update_topology_pass(as, old_view2, new_view, false);
address_space_update_topology_pass(as, old_view2, new_view, true);
}
/* Writes are protected by the BQL. */
qatomic_rcu_set(&as->current_map, new_view);
if (old_view) {
flatview_unref(old_view);
}
/* Note that all the old MemoryRegions are still alive up to this
* point. This relieves most MemoryListeners from the need to
* ref/unref the MemoryRegions they get---unless they use them
* outside the iothread mutex, in which case precise reference
* counting is necessary.
*/
if (old_view) {
flatview_unref(old_view);
}
}
static void address_space_update_topology(AddressSpace *as)
{
MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
flatviews_init();
if (!g_hash_table_lookup(flat_views, physmr)) {
generate_memory_topology(physmr);
}
address_space_set_flatview(as);
}
void memory_region_transaction_begin(void)
{
qemu_flush_coalesced_mmio_buffer();
++memory_region_transaction_depth;
}
void memory_region_transaction_commit(void)
{
AddressSpace *as;
assert(memory_region_transaction_depth);
assert(qemu_mutex_iothread_locked());
--memory_region_transaction_depth;
if (!memory_region_transaction_depth) {
if (memory_region_update_pending) {
flatviews_reset();
MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_set_flatview(as);
address_space_update_ioeventfds(as);
}
memory_region_update_pending = false;
ioeventfd_update_pending = false;
MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
} else if (ioeventfd_update_pending) {
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
address_space_update_ioeventfds(as);
}
ioeventfd_update_pending = false;
}
}
}
static void memory_region_destructor_none(MemoryRegion *mr)
{
}
static void memory_region_destructor_ram(MemoryRegion *mr)
{
qemu_ram_free(mr->ram_block);
}
static bool memory_region_need_escape(char c)
{
return c == '/' || c == '[' || c == '\\' || c == ']';
}
static char *memory_region_escape_name(const char *name)
{
const char *p;
char *escaped, *q;
uint8_t c;
size_t bytes = 0;
for (p = name; *p; p++) {
bytes += memory_region_need_escape(*p) ? 4 : 1;
}
if (bytes == p - name) {
return g_memdup(name, bytes + 1);
}
escaped = g_malloc(bytes + 1);
for (p = name, q = escaped; *p; p++) {
c = *p;
if (unlikely(memory_region_need_escape(c))) {
*q++ = '\\';
*q++ = 'x';
*q++ = "0123456789abcdef"[c >> 4];
c = "0123456789abcdef"[c & 15];
}
*q++ = c;
}
*q = 0;
return escaped;
}
static void memory_region_do_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
mr->size = int128_make64(size);
if (size == UINT64_MAX) {
mr->size = int128_2_64();
}
mr->name = g_strdup(name);
mr->owner = owner;
mr->ram_block = NULL;
if (name) {
char *escaped_name = memory_region_escape_name(name);
char *name_array = g_strdup_printf("%s[*]", escaped_name);
if (!owner) {
owner = container_get(qdev_get_machine(), "/unattached");
}
object_property_add_child(owner, name_array, OBJECT(mr));
object_unref(OBJECT(mr));
g_free(name_array);
g_free(escaped_name);
}
}
void memory_region_init(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size)
{
object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
memory_region_do_init(mr, owner, name, size);
}
static void memory_region_get_container(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
char *path = (char *)"";
if (mr->container) {
path = object_get_canonical_path(OBJECT(mr->container));
}
visit_type_str(v, name, &path, errp);
if (mr->container) {
g_free(path);
}
}
static Object *memory_region_resolve_container(Object *obj, void *opaque,
const char *part)
{
MemoryRegion *mr = MEMORY_REGION(obj);
return OBJECT(mr->container);
}
static void memory_region_get_priority(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
int32_t value = mr->priority;
visit_type_int32(v, name, &value, errp);
}
static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MemoryRegion *mr = MEMORY_REGION(obj);
uint64_t value = memory_region_size(mr);
visit_type_uint64(v, name, &value, errp);
}
static void memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
ObjectProperty *op;
mr->ops = &unassigned_mem_ops;
mr->enabled = true;
mr->romd_mode = true;
mr->destructor = memory_region_destructor_none;
QTAILQ_INIT(&mr->subregions);
QTAILQ_INIT(&mr->coalesced);
op = object_property_add(OBJECT(mr), "container",
"link<" TYPE_MEMORY_REGION ">",
memory_region_get_container,
NULL, /* memory_region_set_container */
NULL, NULL);
op->resolve = memory_region_resolve_container;
object_property_add_uint64_ptr(OBJECT(mr), "addr",
&mr->addr, OBJ_PROP_FLAG_READ);
object_property_add(OBJECT(mr), "priority", "uint32",
memory_region_get_priority,
NULL, /* memory_region_set_priority */
NULL, NULL);
object_property_add(OBJECT(mr), "size", "uint64",
memory_region_get_size,
NULL, /* memory_region_set_size, */
NULL, NULL);
}
static void iommu_memory_region_initfn(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
mr->is_iommu = true;
}
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
return 0;
}
static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
#endif
}
static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return false;
}
const MemoryRegionOps unassigned_mem_ops = {
.valid.accepts = unassigned_mem_accepts,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint64_t memory_region_ram_device_read(void *opaque,
hwaddr addr, unsigned size)
{
MemoryRegion *mr = opaque;
uint64_t data = (uint64_t)~0;
switch (size) {
case 1:
data = *(uint8_t *)(mr->ram_block->host + addr);
break;
case 2:
data = *(uint16_t *)(mr->ram_block->host + addr);
break;
case 4:
data = *(uint32_t *)(mr->ram_block->host + addr);
break;
case 8:
data = *(uint64_t *)(mr->ram_block->host + addr);
break;
}
trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
return data;
}
static void memory_region_ram_device_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
MemoryRegion *mr = opaque;
trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
switch (size) {
case 1:
*(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
break;
case 2:
*(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
break;
case 4:
*(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
break;
case 8:
*(uint64_t *)(mr->ram_block->host + addr) = data;
break;
}
}
static const MemoryRegionOps ram_device_mem_ops = {
.read = memory_region_ram_device_read,
.write = memory_region_ram_device_write,
.endianness = DEVICE_HOST_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
.unaligned = true,
},
};
bool memory_region_access_valid(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool is_write,
MemTxAttrs attrs)
{
if (mr->ops->valid.accepts
&& !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
", size %u, region '%s', reason: rejected\n",
is_write ? "write" : "read",
addr, size, memory_region_name(mr));
return false;
}
if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
", size %u, region '%s', reason: unaligned\n",
is_write ? "write" : "read",
addr, size, memory_region_name(mr));
return false;
}
/* Treat zero as compatibility all valid */
if (!mr->ops->valid.max_access_size) {
return true;
}
if (size > mr->ops->valid.max_access_size
|| size < mr->ops->valid.min_access_size) {
qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX
", size %u, region '%s', reason: invalid size "
"(min:%u max:%u)\n",
is_write ? "write" : "read",
addr, size, memory_region_name(mr),
mr->ops->valid.min_access_size,
mr->ops->valid.max_access_size);
return false;
}
return true;
}
static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
unsigned size,
MemTxAttrs attrs)
{
*pval = 0;
if (mr->ops->read) {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_accessor,
mr, attrs);
} else {
return access_with_adjusted_size(addr, pval, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_read_with_attrs_accessor,
mr, attrs);
}
}
MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
hwaddr addr,
uint64_t *pval,
MemOp op,
MemTxAttrs attrs)
{
unsigned size = memop_size(op);
MemTxResult r;
if (mr->alias) {
return memory_region_dispatch_read(mr->alias,
mr->alias_offset + addr,
pval, op, attrs);
}
if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
*pval = unassigned_mem_read(mr, addr, size);
return MEMTX_DECODE_ERROR;
}
r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
adjust_endianness(mr, pval, op);
return r;
}
/* Return true if an eventfd was signalled */
static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
unsigned size,
MemTxAttrs attrs)
{
MemoryRegionIoeventfd ioeventfd = {
.addr = addrrange_make(int128_make64(addr), int128_make64(size)),
.data = data,
};
unsigned i;
for (i = 0; i < mr->ioeventfd_nb; i++) {
ioeventfd.match_data = mr->ioeventfds[i].match_data;
ioeventfd.e = mr->ioeventfds[i].e;
if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
event_notifier_set(ioeventfd.e);
return true;
}
}
return false;
}
MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
hwaddr addr,
uint64_t data,
MemOp op,
MemTxAttrs attrs)
{
unsigned size = memop_size(op);
if (mr->alias) {
return memory_region_dispatch_write(mr->alias,
mr->alias_offset + addr,
data, op, attrs);
}
if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
unassigned_mem_write(mr, addr, data, size);
return MEMTX_DECODE_ERROR;
}
adjust_endianness(mr, &data, op);
if ((!kvm_eventfds_enabled()) &&
memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
return MEMTX_OK;
}
if (mr->ops->write) {
return access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_accessor, mr,
attrs);
} else {
return
access_with_adjusted_size(addr, &data, size,
mr->ops->impl.min_access_size,
mr->ops->impl.max_access_size,
memory_region_write_with_attrs_accessor,
mr, attrs);
}
}
void memory_region_init_io(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->ops = ops ? ops : &unassigned_mem_ops;
mr->opaque = opaque;
mr->terminates = true;
}
void memory_region_init_ram_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
}
void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint32_t ram_flags,
Error **errp)
{
Error *err = NULL;
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
if (err) {
mr->size = int128_zero();
object_unparent(OBJECT(mr));
error_propagate(errp, err);
}
}
void memory_region_init_resizeable_ram(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint64_t max_size,
void (*resized)(const char*,
uint64_t length,
void *host),
Error **errp)
{
Error *err = NULL;
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
mr, &err);
if (err) {
mr->size = int128_zero();
object_unparent(OBJECT(mr));
error_propagate(errp, err);
}
}
#ifdef CONFIG_POSIX
void memory_region_init_ram_from_file(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint64_t align,
uint32_t ram_flags,
const char *path,
bool readonly,
Error **errp)
{
Error *err = NULL;
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->readonly = readonly;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->align = align;
mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
readonly, &err);
if (err) {
mr->size = int128_zero();
object_unparent(OBJECT(mr));
error_propagate(errp, err);
}
}
void memory_region_init_ram_from_fd(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
uint32_t ram_flags,
int fd,
ram_addr_t offset,
Error **errp)
{
Error *err = NULL;
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
false, &err);
if (err) {
mr->size = int128_zero();
object_unparent(OBJECT(mr));
error_propagate(errp, err);
}
}
#endif
void memory_region_init_ram_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->destructor = memory_region_destructor_ram;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
}
void memory_region_init_ram_device_ptr(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
void *ptr)
{
memory_region_init(mr, owner, name, size);
mr->ram = true;
mr->terminates = true;
mr->ram_device = true;
mr->ops = &ram_device_mem_ops;
mr->opaque = mr;
mr->destructor = memory_region_destructor_ram;
/* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
assert(ptr != NULL);
mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
}
void memory_region_init_alias(MemoryRegion *mr,
Object *owner,
const char *name,
MemoryRegion *orig,
hwaddr offset,
uint64_t size)
{
memory_region_init(mr, owner, name, size);
mr->alias = orig;
mr->alias_offset = offset;
}
void memory_region_init_rom_nomigrate(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
mr->readonly = true;
}
void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
Error *err = NULL;
assert(ops);
memory_region_init(mr, owner, name, size);
mr->ops = ops;
mr->opaque = opaque;
mr->terminates = true;
mr->rom_device = true;
mr->destructor = memory_region_destructor_ram;
mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
if (err) {
mr->size = int128_zero();
object_unparent(OBJECT(mr));
error_propagate(errp, err);
}
}
void memory_region_init_iommu(void *_iommu_mr,
size_t instance_size,
const char *mrtypename,
Object *owner,
const char *name,
uint64_t size)
{
struct IOMMUMemoryRegion *iommu_mr;
struct MemoryRegion *mr;
object_initialize(_iommu_mr, instance_size, mrtypename);
mr = MEMORY_REGION(_iommu_mr);
memory_region_do_init(mr, owner, name, size);
iommu_mr = IOMMU_MEMORY_REGION(mr);
mr->terminates = true; /* then re-forwards */
QLIST_INIT(&iommu_mr->iommu_notify);
iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
}
static void memory_region_finalize(Object *obj)
{
MemoryRegion *mr = MEMORY_REGION(obj);
assert(!mr->container);
/* We know the region is not visible in any address space (it
* does not have a container and cannot be a root either because
* it has no references, so we can blindly clear mr->enabled.
* memory_region_set_enabled instead could trigger a transaction
* and cause an infinite loop.
*/
mr->enabled = false;
memory_region_transaction_begin();
while (!QTAILQ_EMPTY(&mr->subregions)) {
MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
memory_region_del_subregion(mr, subregion);
}
memory_region_transaction_commit();
mr->destructor(mr);
memory_region_clear_coalescing(mr);
g_free((char *)mr->name);
g_free(mr->ioeventfds);
}
Object *memory_region_owner(MemoryRegion *mr)
{
Object *obj = OBJECT(mr);
return obj->parent;
}
void memory_region_ref(MemoryRegion *mr)
{
/* MMIO callbacks most likely will access data that belongs
* to the owner, hence the need to ref/unref the owner whenever
* the memory region is in use.
*
* The memory region is a child of its owner. As long as the
* owner doesn't call unparent itself on the memory region,
* ref-ing the owner will also keep the memory region alive.
* Memory regions without an owner are supposed to never go away;
* we do not ref/unref them because it slows down DMA sensibly.
*/
if (mr && mr->owner) {
object_ref(mr->owner);
}
}
void memory_region_unref(MemoryRegion *mr)
{
if (mr && mr->owner) {
object_unref(mr->owner);
}
}
uint64_t memory_region_size(MemoryRegion *mr)
{
if (int128_eq(mr->size, int128_2_64())) {
return UINT64_MAX;
}
return int128_get64(mr->size);
}
const char *memory_region_name(const MemoryRegion *mr)
{
if (!mr->name) {
((MemoryRegion *)mr)->name =
g_strdup(object_get_canonical_path_component(OBJECT(mr)));
}
return mr->name;
}
bool memory_region_is_ram_device(MemoryRegion *mr)
{
return mr->ram_device;
}
bool memory_region_is_protected(MemoryRegion *mr)
{
return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
}
uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
{
uint8_t mask = mr->dirty_log_mask;
RAMBlock *rb = mr->ram_block;
if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
memory_region_is_iommu(mr))) {
mask |= (1 << DIRTY_MEMORY_MIGRATION);
}
if (tcg_enabled() && rb) {
/* TCG only cares about dirty memory logging for RAM, not IOMMU. */
mask |= (1 << DIRTY_MEMORY_CODE);
}
return mask;
}
bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
{
return memory_region_get_dirty_log_mask(mr) & (1 << client);
}
static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
Error **errp)
{
IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
IOMMUNotifier *iommu_notifier;
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
int ret = 0;
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
flags |= iommu_notifier->notifier_flags;
}
if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
ret = imrc->notify_flag_changed(iommu_mr,
iommu_mr->iommu_notify_flags,
flags, errp);
}
if (!ret) {
iommu_mr->iommu_notify_flags = flags;
}
return ret;
}
int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
uint64_t page_size_mask,
Error **errp)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
int ret = 0;
if (imrc->iommu_set_page_size_mask) {
ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
}
return ret;
}
int memory_region_register_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n, Error **errp)
{
IOMMUMemoryRegion *iommu_mr;
int ret;
if (mr->alias) {
return memory_region_register_iommu_notifier(mr->alias, n, errp);
}
/* We need to register for at least one bitfield */
iommu_mr = IOMMU_MEMORY_REGION(mr);
assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
assert(n->start <= n->end);
assert(n->iommu_idx >= 0 &&
n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
if (ret) {
QLIST_REMOVE(n, node);
}
return ret;
}
uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (imrc->get_min_page_size) {
return imrc->get_min_page_size(iommu_mr);
}
return TARGET_PAGE_SIZE;
}
void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
{
MemoryRegion *mr = MEMORY_REGION(iommu_mr);
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
hwaddr addr, granularity;
IOMMUTLBEntry iotlb;
/* If the IOMMU has its own replay callback, override */
if (imrc->replay) {
imrc->replay(iommu_mr, n);
return;
}
granularity = memory_region_iommu_get_min_page_size(iommu_mr);
for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
if (iotlb.perm != IOMMU_NONE) {
n->notify(n, &iotlb);
}
/* if (2^64 - MR size) < granularity, it's possible to get an
* infinite loop here. This should catch such a wraparound */
if ((addr + granularity) < addr) {
break;
}
}
}
void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
IOMMUNotifier *n)
{
IOMMUMemoryRegion *iommu_mr;
if (mr->alias) {
memory_region_unregister_iommu_notifier(mr->alias, n);
return;
}
QLIST_REMOVE(n, node);
iommu_mr = IOMMU_MEMORY_REGION(mr);
memory_region_update_iommu_notify_flags(iommu_mr, NULL);
}
void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
IOMMUTLBEvent *event)
{
IOMMUTLBEntry *entry = &event->entry;
hwaddr entry_end = entry->iova + entry->addr_mask;
IOMMUTLBEntry tmp = *entry;
if (event->type == IOMMU_NOTIFIER_UNMAP) {
assert(entry->perm == IOMMU_NONE);
}
/*
* Skip the notification if the notification does not overlap
* with registered range.
*/
if (notifier->start > entry_end || notifier->end < entry->iova) {
return;
}
if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
/* Crop (iova, addr_mask) to range */
tmp.iova = MAX(tmp.iova, notifier->start);
tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
} else {
assert(entry->iova >= notifier->start && entry_end <= notifier->end);
}
if (event->type & notifier->notifier_flags) {
notifier->notify(notifier, &tmp);
}
}
void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
int iommu_idx,
IOMMUTLBEvent event)
{
IOMMUNotifier *iommu_notifier;
assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
if (iommu_notifier->iommu_idx == iommu_idx) {
memory_region_notify_iommu_one(iommu_notifier, &event);
}
}
}
int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
enum IOMMUMemoryRegionAttr attr,
void *data)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->get_attr) {
return -EINVAL;
}
return imrc->get_attr(iommu_mr, attr, data);
}
int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
MemTxAttrs attrs)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->attrs_to_index) {
return 0;
}
return imrc->attrs_to_index(iommu_mr, attrs);
}
int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
{
IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
if (!imrc->num_indexes) {
return 1;
}
return imrc->num_indexes(iommu_mr);
}
RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
{
if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
return NULL;
}
return mr->rdm;
}
void memory_region_set_ram_discard_manager(MemoryRegion *mr,
RamDiscardManager *rdm)
{
g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
g_assert(!rdm || !mr->rdm);
mr->rdm = rdm;
}
uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
const MemoryRegion *mr)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->get_min_granularity);
return rdmc->get_min_granularity(rdm, mr);
}
bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
const MemoryRegionSection *section)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->is_populated);
return rdmc->is_populated(rdm, section);
}
int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
MemoryRegionSection *section,
ReplayRamPopulate replay_fn,
void *opaque)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->replay_populated);
return rdmc->replay_populated(rdm, section, replay_fn, opaque);
}
void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
MemoryRegionSection *section,
ReplayRamDiscard replay_fn,
void *opaque)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->replay_discarded);
rdmc->replay_discarded(rdm, section, replay_fn, opaque);
}
void ram_discard_manager_register_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl,
MemoryRegionSection *section)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->register_listener);
rdmc->register_listener(rdm, rdl, section);
}
void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
RamDiscardListener *rdl)
{
RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
g_assert(rdmc->unregister_listener);
rdmc->unregister_listener(rdm, rdl);
}
void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
{
uint8_t mask = 1 << client;
uint8_t old_logging;
assert(client == DIRTY_MEMORY_VGA);
old_logging = mr->vga_logging_count;
mr->vga_logging_count += log ? 1 : -1;
if (!!old_logging == !!mr->vga_logging_count) {
return;
}
memory_region_transaction_begin();
mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size)
{
assert(mr->ram_block);
cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
size,
memory_region_get_dirty_log_mask(mr));
}
/*
* If memory region `mr' is NULL, do global sync. Otherwise, sync
* dirty bitmap for the specified memory region.
*/
static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
{
MemoryListener *listener;
AddressSpace *as;
FlatView *view;
FlatRange *fr;
/* If the same address space has multiple log_sync listeners, we
* visit that address space's FlatView multiple times. But because
* log_sync listeners are rare, it's still cheaper than walking each
* address space once.
*/
QTAILQ_FOREACH(listener, &memory_listeners, link) {
if (listener->log_sync) {
as = listener->address_space;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
MemoryRegionSection mrs = section_from_flat_range(fr, view);
listener->log_sync(listener, &mrs);
}
}
flatview_unref(view);
trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
} else if (listener->log_sync_global) {
/*
* No matter whether MR is specified, what we can do here
* is to do a global sync, because we are not capable to
* sync in a finer granularity.
*/
listener->log_sync_global(listener);
trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
}
}
}
void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
hwaddr len)
{
MemoryRegionSection mrs;
MemoryListener *listener;
AddressSpace *as;
FlatView *view;
FlatRange *fr;
hwaddr sec_start, sec_end, sec_size;
QTAILQ_FOREACH(listener, &memory_listeners, link) {
if (!listener->log_clear) {
continue;
}
as = listener->address_space;
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (!fr->dirty_log_mask || fr->mr != mr) {
/*
* Clear dirty bitmap operation only applies to those
* regions whose dirty logging is at least enabled
*/
continue;
}
mrs = section_from_flat_range(fr, view);
sec_start = MAX(mrs.offset_within_region, start);
sec_end = mrs.offset_within_region + int128_get64(mrs.size);
sec_end = MIN(sec_end, start + len);
if (sec_start >= sec_end) {
/*
* If this memory region section has no intersection
* with the requested range, skip.
*/
continue;
}
/* Valid case; shrink the section if needed */
mrs.offset_within_address_space +=
sec_start - mrs.offset_within_region;
mrs.offset_within_region = sec_start;
sec_size = sec_end - sec_start;
mrs.size = int128_make64(sec_size);
listener->log_clear(listener, &mrs);
}
flatview_unref(view);
}
}
DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
hwaddr addr,
hwaddr size,
unsigned client)
{
DirtyBitmapSnapshot *snapshot;
assert(mr->ram_block);
memory_region_sync_dirty_bitmap(mr);
snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
memory_global_after_dirty_log_sync();
return snapshot;
}
bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
hwaddr addr, hwaddr size)
{
assert(mr->ram_block);
return cpu_physical_memory_snapshot_get_dirty(snap,
memory_region_get_ram_addr(mr) + addr, size);
}
void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
{
if (mr->readonly != readonly) {
memory_region_transaction_begin();
mr->readonly = readonly;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
{
if (mr->nonvolatile != nonvolatile) {
memory_region_transaction_begin();
mr->nonvolatile = nonvolatile;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
{
if (mr->romd_mode != romd_mode) {
memory_region_transaction_begin();
mr->romd_mode = romd_mode;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
}
void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
hwaddr size, unsigned client)
{
assert(mr->ram_block);
cpu_physical_memory_test_and_clear_dirty(
memory_region_get_ram_addr(mr) + addr, size, client);
}
int memory_region_get_fd(MemoryRegion *mr)
{
int fd;
RCU_READ_LOCK_GUARD();
while (mr->alias) {
mr = mr->alias;
}
fd = mr->ram_block->fd;
return fd;
}
void *memory_region_get_ram_ptr(MemoryRegion *mr)
{
void *ptr;
uint64_t offset = 0;
RCU_READ_LOCK_GUARD();
while (mr->alias) {
offset += mr->alias_offset;
mr = mr->alias;
}
assert(mr->ram_block);
ptr = qemu_map_ram_ptr(mr->ram_block, offset);
return ptr;
}
MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
{
RAMBlock *block;
block = qemu_ram_block_from_host(ptr, false, offset);
if (!block) {
return NULL;
}
return block->mr;
}
ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
{
return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
}
void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
{
assert(mr->ram_block);
qemu_ram_resize(mr->ram_block, newsize, errp);
}
void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
if (mr->ram_block) {
qemu_ram_msync(mr->ram_block, addr, size);
}
}
void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
{
/*
* Might be extended case needed to cover
* different types of memory regions
*/
if (mr->dirty_log_mask) {
memory_region_msync(mr, addr, size);
}
}
/*
* Call proper memory listeners about the change on the newly
* added/removed CoalescedMemoryRange.
*/
static void memory_region_update_coalesced_range(MemoryRegion *mr,
CoalescedMemoryRange *cmr,
bool add)
{
AddressSpace *as;
FlatView *view;
FlatRange *fr;
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
if (fr->mr == mr) {
flat_range_coalesced_io_notify(fr, as, cmr, add);
}
}
flatview_unref(view);
}
}
void memory_region_set_coalescing(MemoryRegion *mr)
{
memory_region_clear_coalescing(mr);
memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
}
void memory_region_add_coalescing(MemoryRegion *mr,
hwaddr offset,
uint64_t size)
{
CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr, cmr, true);
memory_region_set_flush_coalesced(mr);
}
void memory_region_clear_coalescing(MemoryRegion *mr)
{
CoalescedMemoryRange *cmr;
if (QTAILQ_EMPTY(&mr->coalesced)) {
return;
}
qemu_flush_coalesced_mmio_buffer();
mr->flush_coalesced_mmio = false;
while (!QTAILQ_EMPTY(&mr->coalesced)) {
cmr = QTAILQ_FIRST(&mr->coalesced);
QTAILQ_REMOVE(&mr->coalesced, cmr, link);
memory_region_update_coalesced_range(mr, cmr, false);
g_free(cmr);
}
}
void memory_region_set_flush_coalesced(MemoryRegion *mr)
{
mr->flush_coalesced_mmio = true;
}
void memory_region_clear_flush_coalesced(MemoryRegion *mr)
{
qemu_flush_coalesced_mmio_buffer();
if (QTAILQ_EMPTY(&mr->coalesced)) {
mr->flush_coalesced_mmio = false;
}
}
static bool userspace_eventfd_warning;
void memory_region_add_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
userspace_eventfd_warning))) {
userspace_eventfd_warning = true;
error_report("Using eventfd without MMIO binding in KVM. "
"Suboptimal performance expected");
}
if (size) {
adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
break;
}
}
++mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
mr->ioeventfds[i] = mrfd;
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
void memory_region_del_eventfd(MemoryRegion *mr,
hwaddr addr,
unsigned size,
bool match_data,
uint64_t data,
EventNotifier *e)
{
MemoryRegionIoeventfd mrfd = {
.addr.start = int128_make64(addr),
.addr.size = int128_make64(size),
.match_data = match_data,
.data = data,
.e = e,
};
unsigned i;
if (size) {
adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
}
memory_region_transaction_begin();
for (i = 0; i < mr->ioeventfd_nb; ++i) {
if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
break;
}
}
assert(i != mr->ioeventfd_nb);
memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
--mr->ioeventfd_nb;
mr->ioeventfds = g_realloc(mr->ioeventfds,
sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
ioeventfd_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
static void memory_region_update_container_subregions(MemoryRegion *subregion)
{
MemoryRegion *mr = subregion->container;
MemoryRegion *other;
memory_region_transaction_begin();
memory_region_ref(subregion);
QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
if (subregion->priority >= other->priority) {
QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
goto done;
}
}
QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
done:
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
static void memory_region_add_subregion_common(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
MemoryRegion *alias;
assert(!subregion->container);
subregion->container = mr;
for (alias = subregion->alias; alias; alias = alias->alias) {
alias->mapped_via_alias++;
}
subregion->addr = offset;
memory_region_update_container_subregions(subregion);
}
void memory_region_add_subregion(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion)
{
subregion->priority = 0;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_add_subregion_overlap(MemoryRegion *mr,
hwaddr offset,
MemoryRegion *subregion,
int priority)
{
subregion->priority = priority;
memory_region_add_subregion_common(mr, offset, subregion);
}
void memory_region_del_subregion(MemoryRegion *mr,
MemoryRegion *subregion)
{
MemoryRegion *alias;
memory_region_transaction_begin();
assert(subregion->container == mr);
subregion->container = NULL;
for (alias = subregion->alias; alias; alias = alias->alias) {
alias->mapped_via_alias--;
assert(alias->mapped_via_alias >= 0);
}
QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
memory_region_unref(subregion);
memory_region_update_pending |= mr->enabled && subregion->enabled;
memory_region_transaction_commit();
}
void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
{
if (enabled == mr->enabled) {
return;
}
memory_region_transaction_begin();
mr->enabled = enabled;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
void memory_region_set_size(MemoryRegion *mr, uint64_t size)
{
Int128 s = int128_make64(size);
if (size == UINT64_MAX) {
s = int128_2_64();
}
if (int128_eq(s, mr->size)) {
return;
}
memory_region_transaction_begin();
mr->size = s;
memory_region_update_pending = true;
memory_region_transaction_commit();
}
static void memory_region_readd_subregion(MemoryRegion *mr)
{
MemoryRegion *container = mr->container;
if (container) {
memory_region_transaction_begin();
memory_region_ref(mr);
memory_region_del_subregion(container, mr);
mr->container = container;
memory_region_update_container_subregions(mr);
memory_region_unref(mr);
memory_region_transaction_commit();
}
}
void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
{
if (addr != mr->addr) {
mr->addr = addr;
memory_region_readd_subregion(mr);
}
}
void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
{
assert(mr->alias);
if (offset == mr->alias_offset) {
return;
}
memory_region_transaction_begin();
mr->alias_offset = offset;
memory_region_update_pending |= mr->enabled;
memory_region_transaction_commit();
}
uint64_t memory_region_get_alignment(const MemoryRegion *mr)
{
return mr->align;
}
static int cmp_flatrange_addr(const void *addr_, const void *fr_)
{
const AddrRange *addr = addr_;
const FlatRange *fr = fr_;
if (int128_le(addrrange_end(*addr), fr->addr.start)) {
return -1;
} else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
return 1;
}
return 0;
}
static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
{
return bsearch(&addr, view->ranges, view->nr,
sizeof(FlatRange), cmp_flatrange_addr);
}
bool memory_region_is_mapped(MemoryRegion *mr)
{
return !!mr->container || mr->mapped_via_alias;
}
/* Same as memory_region_find, but it does not add a reference to the
* returned region. It must be called from an RCU critical section.
*/
static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret = { .mr = NULL };
MemoryRegion *root;
AddressSpace *as;
AddrRange range;
FlatView *view;
FlatRange *fr;
addr += mr->addr;
for (root = mr; root->container; ) {
root = root->container;
addr += root->addr;
}
as = memory_region_to_address_space(root);
if (!as) {
return ret;
}
range = addrrange_make(int128_make64(addr), int128_make64(size));
view = address_space_to_flatview(as);
fr = flatview_lookup(view, range);
if (!fr) {
return ret;
}
while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
--fr;
}
ret.mr = fr->mr;
ret.fv = view;
range = addrrange_intersection(range, fr->addr);
ret.offset_within_region = fr->offset_in_region;
ret.offset_within_region += int128_get64(int128_sub(range.start,
fr->addr.start));
ret.size = range.size;
ret.offset_within_address_space = int128_get64(range.start);
ret.readonly = fr->readonly;
ret.nonvolatile = fr->nonvolatile;
return ret;
}
MemoryRegionSection memory_region_find(MemoryRegion *mr,
hwaddr addr, uint64_t size)
{
MemoryRegionSection ret;
RCU_READ_LOCK_GUARD();
ret = memory_region_find_rcu(mr, addr, size);
if (ret.mr) {
memory_region_ref(ret.mr);
}
return ret;
}
MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
{
MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
*tmp = *s;
if (tmp->mr) {
memory_region_ref(tmp->mr);
}
if (tmp->fv) {
bool ret = flatview_ref(tmp->fv);
g_assert(ret);
}
return tmp;
}
void memory_region_section_free_copy(MemoryRegionSection *s)
{
if (s->fv) {
flatview_unref(s->fv);
}
if (s->mr) {
memory_region_unref(s->mr);
}
g_free(s);
}
bool memory_region_present(MemoryRegion *container, hwaddr addr)
{
MemoryRegion *mr;
RCU_READ_LOCK_GUARD();
mr = memory_region_find_rcu(container, addr, 1).mr;
return mr && mr != container;
}
void memory_global_dirty_log_sync(void)
{
memory_region_sync_dirty_bitmap(NULL);
}
void memory_global_after_dirty_log_sync(void)
{
MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
}
/*
* Dirty track stop flags that are postponed due to VM being stopped. Should
* only be used within vmstate_change hook.
*/
static unsigned int postponed_stop_flags;
static VMChangeStateEntry *vmstate_change;
static void memory_global_dirty_log_stop_postponed_run(void);
void memory_global_dirty_log_start(unsigned int flags)
{
unsigned int old_flags;
assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
if (vmstate_change) {
/* If there is postponed stop(), operate on it first */
postponed_stop_flags &= ~flags;
memory_global_dirty_log_stop_postponed_run();
}
flags &= ~global_dirty_tracking;
if (!flags) {
return;
}
old_flags = global_dirty_tracking;
global_dirty_tracking |= flags;
trace_global_dirty_changed(global_dirty_tracking);
if (!old_flags) {
MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
}
}
static void memory_global_dirty_log_do_stop(unsigned int flags)
{
assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
assert((global_dirty_tracking & flags) == flags);
global_dirty_tracking &= ~flags;
trace_global_dirty_changed(global_dirty_tracking);
if (!global_dirty_tracking) {
memory_region_transaction_begin();
memory_region_update_pending = true;
memory_region_transaction_commit();
MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
}
}
/*
* Execute the postponed dirty log stop operations if there is, then reset
* everything (including the flags and the vmstate change hook).
*/
static void memory_global_dirty_log_stop_postponed_run(void)
{
/* This must be called with the vmstate handler registered */
assert(vmstate_change);
/* Note: postponed_stop_flags can be cleared in log start routine */
if (postponed_stop_flags) {
memory_global_dirty_log_do_stop(postponed_stop_flags);
postponed_stop_flags = 0;
}
qemu_del_vm_change_state_handler(vmstate_change);
vmstate_change = NULL;
}
static void memory_vm_change_state_handler(void *opaque, bool running,
RunState state)
{
if (running) {
memory_global_dirty_log_stop_postponed_run();
}
}
void memory_global_dirty_log_stop(unsigned int flags)
{
if (!runstate_is_running()) {
/* Postpone the dirty log stop, e.g., to when VM starts again */
if (vmstate_change) {
/* Batch with previous postponed flags */
postponed_stop_flags |= flags;
} else {
postponed_stop_flags = flags;
vmstate_change = qemu_add_vm_change_state_handler(
memory_vm_change_state_handler, NULL);
}
return;
}
memory_global_dirty_log_do_stop(flags);
}
static void listener_add_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
if (global_dirty_tracking) {
if (listener->log_global_start) {
listener->log_global_start(listener);
}
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (listener->region_add) {
listener->region_add(listener, &section);
}
if (fr->dirty_log_mask && listener->log_start) {
listener->log_start(listener, &section, 0, fr->dirty_log_mask);
}
}
if (listener->commit) {
listener->commit(listener);
}
flatview_unref(view);
}
static void listener_del_address_space(MemoryListener *listener,
AddressSpace *as)
{
FlatView *view;
FlatRange *fr;
if (listener->begin) {
listener->begin(listener);
}
view = address_space_get_flatview(as);
FOR_EACH_FLAT_RANGE(fr, view) {
MemoryRegionSection section = section_from_flat_range(fr, view);
if (fr->dirty_log_mask && listener->log_stop) {
listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
}
if (listener->region_del) {
listener->region_del(listener, &section);
}
}
if (listener->commit) {
listener->commit(listener);
}
flatview_unref(view);
}
void memory_listener_register(MemoryListener *listener, AddressSpace *as)
{
MemoryListener *other = NULL;
/* Only one of them can be defined for a listener */
assert(!(listener->log_sync && listener->log_sync_global));
listener->address_space = as;
if (QTAILQ_EMPTY(&memory_listeners)
|| listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
} else {
QTAILQ_FOREACH(other, &memory_listeners, link) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link);
}
if (QTAILQ_EMPTY(&as->listeners)
|| listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
} else {
QTAILQ_FOREACH(other, &as->listeners, link_as) {
if (listener->priority < other->priority) {
break;
}
}
QTAILQ_INSERT_BEFORE(other, listener, link_as);
}
listener_add_address_space(listener, as);
}
void memory_listener_unregister(MemoryListener *listener)
{
if (!listener->address_space) {
return;
}
listener_del_address_space(listener, listener->address_space);
QTAILQ_REMOVE(&memory_listeners, listener, link);
QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
listener->address_space = NULL;
}
void address_space_remove_listeners(AddressSpace *as)
{
while (!QTAILQ_EMPTY(&as->listeners)) {
memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
}
}
void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
{
memory_region_ref(root);
as->root = root;
as->current_map = NULL;
as->ioeventfd_nb = 0;
as->ioeventfds = NULL;
QTAILQ_INIT(&as->listeners);
QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
as->name = g_strdup(name ? name : "anonymous");
address_space_update_topology(as);
address_space_update_ioeventfds(as);
}
static void do_address_space_destroy(AddressSpace *as)
{
assert(QTAILQ_EMPTY(&as->listeners));
flatview_unref(as->current_map);
g_free(as->name);
g_free(as->ioeventfds);
memory_region_unref(as->root);
}
void address_space_destroy(AddressSpace *as)
{
MemoryRegion *root = as->root;
/* Flush out anything from MemoryListeners listening in on this */
memory_region_transaction_begin();
as->root = NULL;
memory_region_transaction_commit();
QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
/* At this point, as->dispatch and as->current_map are dummy
* entries that the guest should never use. Wait for the old
* values to expire before freeing the data.
*/
as->root = root;
call_rcu(as, do_address_space_destroy, rcu);
}
static const char *memory_region_type(MemoryRegion *mr)
{
if (mr->alias) {
return memory_region_type(mr->alias);
}
if (memory_region_is_ram_device(mr)) {
return "ramd";
} else if (memory_region_is_romd(mr)) {
return "romd";
} else if (memory_region_is_rom(mr)) {
return "rom";
} else if (memory_region_is_ram(mr)) {
return "ram";
} else {
return "i/o";
}
}
typedef struct MemoryRegionList MemoryRegionList;
struct MemoryRegionList {
const MemoryRegion *mr;
QTAILQ_ENTRY(MemoryRegionList) mrqueue;
};
typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
int128_sub((size), int128_one())) : 0)
#define MTREE_INDENT " "
static void mtree_expand_owner(const char *label, Object *obj)
{
DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
if (dev && dev->id) {
qemu_printf(" id=%s", dev->id);
} else {
char *canonical_path = object_get_canonical_path(obj);
if (canonical_path) {
qemu_printf(" path=%s", canonical_path);
g_free(canonical_path);
} else {
qemu_printf(" type=%s", object_get_typename(obj));
}
}
qemu_printf("}");
}
static void mtree_print_mr_owner(const MemoryRegion *mr)
{
Object *owner = mr->owner;
Object *parent = memory_region_owner((MemoryRegion *)mr);
if (!owner && !parent) {
qemu_printf(" orphan");
return;
}
if (owner) {
mtree_expand_owner("owner", owner);
}
if (parent && parent != owner) {
mtree_expand_owner("parent", parent);
}
}
static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
hwaddr base,
MemoryRegionListHead *alias_print_queue,
bool owner, bool display_disabled)
{
MemoryRegionList *new_ml, *ml, *next_ml;
MemoryRegionListHead submr_print_queue;
const MemoryRegion *submr;
unsigned int i;
hwaddr cur_start, cur_end;
if (!mr) {
return;
}
cur_start = base + mr->addr;
cur_end = cur_start + MR_SIZE(mr->size);
/*
* Try to detect overflow of memory region. This should never
* happen normally. When it happens, we dump something to warn the
* user who is observing this.
*/
if (cur_start < base || cur_end < cur_start) {
qemu_printf("[DETECTED OVERFLOW!] ");
}
if (mr->alias) {
MemoryRegionList *ml;
bool found = false;
/* check if the alias is already in the queue */
QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
if (ml->mr == mr->alias) {
found = true;
}
}
if (!found) {
ml = g_new(MemoryRegionList, 1);
ml->mr = mr->alias;
QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
}
if (mr->enabled || display_disabled) {
for (i = 0; i < level; i++) {
qemu_printf(MTREE_INDENT);
}
qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
"-" TARGET_FMT_plx "%s",
cur_start, cur_end,
mr->priority,
mr->nonvolatile ? "nv-" : "",
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
memory_region_name(mr->alias),
mr->alias_offset,
mr->alias_offset + MR_SIZE(mr->size),
mr->enabled ? "" : " [disabled]");
if (owner) {
mtree_print_mr_owner(mr);
}
qemu_printf("\n");
}
} else {
if (mr->enabled || display_disabled) {
for (i = 0; i < level; i++) {
qemu_printf(MTREE_INDENT);
}
qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s%s): %s%s",
cur_start, cur_end,
mr->priority,
mr->nonvolatile ? "nv-" : "",
memory_region_type((MemoryRegion *)mr),
memory_region_name(mr),
mr->enabled ? "" : " [disabled]");
if (owner) {
mtree_print_mr_owner(mr);
}
qemu_printf("\n");
}
}
QTAILQ_INIT(&submr_print_queue);
QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
new_ml = g_new(MemoryRegionList, 1);
new_ml->mr = submr;
QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
if (new_ml->mr->addr < ml->mr->addr ||
(new_ml->mr->addr == ml->mr->addr &&
new_ml->mr->priority > ml->mr->priority)) {
QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
new_ml = NULL;
break;
}
}
if (new_ml) {
QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
}
}
QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
mtree_print_mr(ml->mr, level + 1, cur_start,
alias_print_queue, owner, display_disabled);
}
QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
g_free(ml);
}
}
struct FlatViewInfo {
int counter;
bool dispatch_tree;
bool owner;
AccelClass *ac;
};
static void mtree_print_flatview(gpointer key, gpointer value,
gpointer user_data)
{
FlatView *view = key;
GArray *fv_address_spaces = value;
struct FlatViewInfo *fvi = user_data;
FlatRange *range = &view->ranges[0];
MemoryRegion *mr;
int n = view->nr;
int i;
AddressSpace *as;
qemu_printf("FlatView #%d\n", fvi->counter);
++fvi->counter;
for (i = 0; i < fv_address_spaces->len; ++i) {
as = g_array_index(fv_address_spaces, AddressSpace*, i);
qemu_printf(" AS \"%s\", root: %s",
as->name, memory_region_name(as->root));
if (as->root->alias) {
qemu_printf(", alias %s", memory_region_name(as->root->alias));
}
qemu_printf("\n");
}
qemu_printf(" Root memory region: %s\n",
view->root ? memory_region_name(view->root) : "(none)");
if (n <= 0) {
qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
return;
}
while (n--) {
mr = range->mr;
if (range->offset_in_region) {
qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s%s): %s @" TARGET_FMT_plx,
int128_get64(range->addr.start),
int128_get64(range->addr.start)
+ MR_SIZE(range->addr.size),
mr->priority,
range->nonvolatile ? "nv-" : "",
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr),
range->offset_in_region);
} else {
qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
" (prio %d, %s%s): %s",
int128_get64(range->addr.start),
int128_get64(range->addr.start)
+ MR_SIZE(range->addr.size),
mr->priority,
range->nonvolatile ? "nv-" : "",
range->readonly ? "rom" : memory_region_type(mr),
memory_region_name(mr));
}
if (fvi->owner) {
mtree_print_mr_owner(mr);
}
if (fvi->ac) {
for (i = 0; i < fv_address_spaces->len; ++i) {
as = g_array_index(fv_address_spaces, AddressSpace*, i);
if (fvi->ac->has_memory(current_machine, as,
int128_get64(range->addr.start),
MR_SIZE(range->addr.size) + 1)) {
qemu_printf(" %s", fvi->ac->name);
}
}
}
qemu_printf("\n");
range++;
}
#if !defined(CONFIG_USER_ONLY)
if (fvi->dispatch_tree && view->root) {
mtree_print_dispatch(view->dispatch, view->root);
}
#endif
qemu_printf("\n");
}
static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
gpointer user_data)
{
FlatView *view = key;
GArray *fv_address_spaces = value;
g_array_unref(fv_address_spaces);
flatview_unref(view);
return true;
}
static void mtree_info_flatview(bool dispatch_tree, bool owner)
{
struct FlatViewInfo fvi = {
.counter = 0,
.dispatch_tree = dispatch_tree,
.owner = owner,
};
AddressSpace *as;
FlatView *view;
GArray *fv_address_spaces;
GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
AccelClass *ac = ACCEL_GET_CLASS(current_accel());
if (ac->has_memory) {
fvi.ac = ac;
}
/* Gather all FVs in one table */
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
view = address_space_get_flatview(as);
fv_address_spaces = g_hash_table_lookup(views, view);
if (!fv_address_spaces) {
fv_address_spaces = g_array_new(false, false, sizeof(as));
g_hash_table_insert(views, view, fv_address_spaces);
}
g_array_append_val(fv_address_spaces, as);
}
/* Print */
g_hash_table_foreach(views, mtree_print_flatview, &fvi);
/* Free */
g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
g_hash_table_unref(views);
}
struct AddressSpaceInfo {
MemoryRegionListHead *ml_head;
bool owner;
bool disabled;
};
/* Returns negative value if a < b; zero if a = b; positive value if a > b. */
static gint address_space_compare_name(gconstpointer a, gconstpointer b)
{
const AddressSpace *as_a = a;
const AddressSpace *as_b = b;
return g_strcmp0(as_a->name, as_b->name);
}
static void mtree_print_as_name(gpointer data, gpointer user_data)
{
AddressSpace *as = data;
qemu_printf("address-space: %s\n", as->name);
}
static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
{
MemoryRegion *mr = key;
GSList *as_same_root_mr_list = value;
struct AddressSpaceInfo *asi = user_data;
g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
qemu_printf("\n");
}
static gboolean mtree_info_as_free(gpointer key, gpointer value,
gpointer user_data)
{
GSList *as_same_root_mr_list = value;
g_slist_free(as_same_root_mr_list);
return true;
}
static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
{
MemoryRegionListHead ml_head;
MemoryRegionList *ml, *ml2;
AddressSpace *as;
GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
GSList *as_same_root_mr_list;
struct AddressSpaceInfo asi = {
.ml_head = &ml_head,
.owner = owner,
.disabled = disabled,
};
QTAILQ_INIT(&ml_head);
QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
/* Create hashtable, key=AS root MR, value = list of AS */
as_same_root_mr_list = g_hash_table_lookup(views, as->root);
as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
address_space_compare_name);
g_hash_table_insert(views, as->root, as_same_root_mr_list);
}
/* print address spaces */
g_hash_table_foreach(views, mtree_print_as, &asi);
g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
g_hash_table_unref(views);
/* print aliased regions */
QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
qemu_printf("\n");
}
QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
g_free(ml);
}
}
void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
{
if (flatview) {
mtree_info_flatview(dispatch_tree, owner);
} else {
mtree_info_as(dispatch_tree, owner, disabled);
}
}
void memory_region_init_ram(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom(MemoryRegion *mr,
Object *owner,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
void memory_region_init_rom_device(MemoryRegion *mr,
Object *owner,
const MemoryRegionOps *ops,
void *opaque,
const char *name,
uint64_t size,
Error **errp)
{
DeviceState *owner_dev;
Error *err = NULL;
memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
name, size, &err);
if (err) {
error_propagate(errp, err);
return;
}
/* This will assert if owner is neither NULL nor a DeviceState.
* We only want the owner here for the purposes of defining a
* unique name for migration. TODO: Ideally we should implement
* a naming scheme for Objects which are not DeviceStates, in
* which case we can relax this restriction.
*/
owner_dev = DEVICE(owner);
vmstate_register_ram(mr, owner_dev);
}
/*
* Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
* the fuzz_dma_read_cb callback
*/
#ifdef CONFIG_FUZZ
void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
size_t len,
MemoryRegion *mr)
{
}
#endif
static const TypeInfo memory_region_info = {
.parent = TYPE_OBJECT,
.name = TYPE_MEMORY_REGION,
.class_size = sizeof(MemoryRegionClass),
.instance_size = sizeof(MemoryRegion),
.instance_init = memory_region_initfn,
.instance_finalize = memory_region_finalize,
};
static const TypeInfo iommu_memory_region_info = {
.parent = TYPE_MEMORY_REGION,
.name = TYPE_IOMMU_MEMORY_REGION,
.class_size = sizeof(IOMMUMemoryRegionClass),
.instance_size = sizeof(IOMMUMemoryRegion),
.instance_init = iommu_memory_region_initfn,
.abstract = true,
};
static const TypeInfo ram_discard_manager_info = {
.parent = TYPE_INTERFACE,
.name = TYPE_RAM_DISCARD_MANAGER,
.class_size = sizeof(RamDiscardManagerClass),
};
static void memory_register_types(void)
{
type_register_static(&memory_region_info);
type_register_static(&iommu_memory_region_info);
type_register_static(&ram_discard_manager_info);
}
type_init(memory_register_types)