qemu/linux-user/arm/nwfpe/fpa11_cpdt.c
Marc-André Lureau e03b56863d Replace config-time define HOST_WORDS_BIGENDIAN
Replace a config-time define with a compile time condition
define (compatible with clang and gcc) that must be declared prior to
its usage. This avoids having a global configure time define, but also
prevents from bad usage, if the config header wasn't included before.

This can help to make some code independent from qemu too.

gcc supports __BYTE_ORDER__ from about 4.6 and clang from 3.2.

Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
[ For the s390x parts I'm involved in ]
Acked-by: Halil Pasic <pasic@linux.ibm.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220323155743.1585078-7-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-06 10:50:37 +02:00

383 lines
9.3 KiB
C

/*
NetWinder Floating Point Emulator
(c) Rebel.com, 1998-1999
(c) Philip Blundell, 1998
Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "fpa11.h"
#include "fpu/softfloat.h"
#include "fpopcode.h"
//#include "fpmodule.h"
//#include "fpmodule.inl"
//#include <asm/uaccess.h>
static inline
void loadSingle(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
fpa11->fType[Fn] = typeSingle;
/* FIXME - handle failure of get_user() */
get_user_u32(float32_val(fpa11->fpreg[Fn].fSingle), addr);
}
static inline
void loadDouble(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
unsigned int *p;
p = (unsigned int*)&fpa11->fpreg[Fn].fDouble;
fpa11->fType[Fn] = typeDouble;
#if HOST_BIG_ENDIAN
/* FIXME - handle failure of get_user() */
get_user_u32(p[0], addr); /* sign & exponent */
get_user_u32(p[1], addr + 4);
#else
/* FIXME - handle failure of get_user() */
get_user_u32(p[0], addr + 4);
get_user_u32(p[1], addr); /* sign & exponent */
#endif
}
static inline
void loadExtended(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
unsigned int *p;
p = (unsigned int*)&fpa11->fpreg[Fn].fExtended;
fpa11->fType[Fn] = typeExtended;
/* FIXME - handle failure of get_user() */
get_user_u32(p[0], addr); /* sign & exponent */
get_user_u32(p[1], addr + 8); /* ls bits */
get_user_u32(p[2], addr + 4); /* ms bits */
}
static inline
void loadMultiple(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
register unsigned int *p;
unsigned long x;
p = (unsigned int*)&(fpa11->fpreg[Fn]);
/* FIXME - handle failure of get_user() */
get_user_u32(x, addr);
fpa11->fType[Fn] = (x >> 14) & 0x00000003;
switch (fpa11->fType[Fn])
{
case typeSingle:
case typeDouble:
{
/* FIXME - handle failure of get_user() */
get_user_u32(p[0], addr + 8); /* Single */
get_user_u32(p[1], addr + 4); /* double msw */
p[2] = 0; /* empty */
}
break;
case typeExtended:
{
/* FIXME - handle failure of get_user() */
get_user_u32(p[1], addr + 8);
get_user_u32(p[2], addr + 4); /* msw */
p[0] = (x & 0x80003fff);
}
break;
}
}
static inline
void storeSingle(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
float32 val;
register unsigned int *p = (unsigned int*)&val;
switch (fpa11->fType[Fn])
{
case typeDouble:
val = float64_to_float32(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
break;
case typeExtended:
val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status);
break;
default: val = fpa11->fpreg[Fn].fSingle;
}
/* FIXME - handle put_user() failures */
put_user_u32(p[0], addr);
}
static inline
void storeDouble(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
float64 val;
register unsigned int *p = (unsigned int*)&val;
switch (fpa11->fType[Fn])
{
case typeSingle:
val = float32_to_float64(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
break;
case typeExtended:
val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended, &fpa11->fp_status);
break;
default: val = fpa11->fpreg[Fn].fDouble;
}
/* FIXME - handle put_user() failures */
#if HOST_BIG_ENDIAN
put_user_u32(p[0], addr); /* msw */
put_user_u32(p[1], addr + 4); /* lsw */
#else
put_user_u32(p[1], addr); /* msw */
put_user_u32(p[0], addr + 4); /* lsw */
#endif
}
static inline
void storeExtended(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
floatx80 val;
register unsigned int *p = (unsigned int*)&val;
switch (fpa11->fType[Fn])
{
case typeSingle:
val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle, &fpa11->fp_status);
break;
case typeDouble:
val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble, &fpa11->fp_status);
break;
default: val = fpa11->fpreg[Fn].fExtended;
}
/* FIXME - handle put_user() failures */
put_user_u32(p[0], addr); /* sign & exp */
put_user_u32(p[1], addr + 8);
put_user_u32(p[2], addr + 4); /* msw */
}
static inline
void storeMultiple(const unsigned int Fn, target_ulong addr)
{
FPA11 *fpa11 = GET_FPA11();
register unsigned int nType, *p;
p = (unsigned int*)&(fpa11->fpreg[Fn]);
nType = fpa11->fType[Fn];
switch (nType)
{
case typeSingle:
case typeDouble:
{
put_user_u32(p[0], addr + 8); /* single */
put_user_u32(p[1], addr + 4); /* double msw */
put_user_u32(nType << 14, addr);
}
break;
case typeExtended:
{
put_user_u32(p[2], addr + 4); /* msw */
put_user_u32(p[1], addr + 8);
put_user_u32((p[0] & 0x80003fff) | (nType << 14), addr);
}
break;
}
}
static unsigned int PerformLDF(const unsigned int opcode)
{
target_ulong pBase, pAddress, pFinal;
unsigned int nRc = 1,
write_back = WRITE_BACK(opcode);
//printk("PerformLDF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
pBase = readRegister(getRn(opcode));
if (ARM_REG_PC == getRn(opcode))
{
pBase += 8;
write_back = 0;
}
pFinal = pBase;
if (BIT_UP_SET(opcode))
pFinal += getOffset(opcode) * 4;
else
pFinal -= getOffset(opcode) * 4;
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
switch (opcode & MASK_TRANSFER_LENGTH)
{
case TRANSFER_SINGLE : loadSingle(getFd(opcode),pAddress); break;
case TRANSFER_DOUBLE : loadDouble(getFd(opcode),pAddress); break;
case TRANSFER_EXTENDED: loadExtended(getFd(opcode),pAddress); break;
default: nRc = 0;
}
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
return nRc;
}
static unsigned int PerformSTF(const unsigned int opcode)
{
target_ulong pBase, pAddress, pFinal;
unsigned int nRc = 1,
write_back = WRITE_BACK(opcode);
//printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
SetRoundingMode(ROUND_TO_NEAREST);
pBase = readRegister(getRn(opcode));
if (ARM_REG_PC == getRn(opcode))
{
pBase += 8;
write_back = 0;
}
pFinal = pBase;
if (BIT_UP_SET(opcode))
pFinal += getOffset(opcode) * 4;
else
pFinal -= getOffset(opcode) * 4;
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
switch (opcode & MASK_TRANSFER_LENGTH)
{
case TRANSFER_SINGLE : storeSingle(getFd(opcode),pAddress); break;
case TRANSFER_DOUBLE : storeDouble(getFd(opcode),pAddress); break;
case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break;
default: nRc = 0;
}
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
return nRc;
}
static unsigned int PerformLFM(const unsigned int opcode)
{
unsigned int i, Fd,
write_back = WRITE_BACK(opcode);
target_ulong pBase, pAddress, pFinal;
pBase = readRegister(getRn(opcode));
if (ARM_REG_PC == getRn(opcode))
{
pBase += 8;
write_back = 0;
}
pFinal = pBase;
if (BIT_UP_SET(opcode))
pFinal += getOffset(opcode) * 4;
else
pFinal -= getOffset(opcode) * 4;
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
Fd = getFd(opcode);
for (i=getRegisterCount(opcode);i>0;i--)
{
loadMultiple(Fd,pAddress);
pAddress += 12; Fd++;
if (Fd == 8) Fd = 0;
}
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
return 1;
}
static unsigned int PerformSFM(const unsigned int opcode)
{
unsigned int i, Fd,
write_back = WRITE_BACK(opcode);
target_ulong pBase, pAddress, pFinal;
pBase = readRegister(getRn(opcode));
if (ARM_REG_PC == getRn(opcode))
{
pBase += 8;
write_back = 0;
}
pFinal = pBase;
if (BIT_UP_SET(opcode))
pFinal += getOffset(opcode) * 4;
else
pFinal -= getOffset(opcode) * 4;
if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;
Fd = getFd(opcode);
for (i=getRegisterCount(opcode);i>0;i--)
{
storeMultiple(Fd,pAddress);
pAddress += 12; Fd++;
if (Fd == 8) Fd = 0;
}
if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
return 1;
}
#if 1
unsigned int EmulateCPDT(const unsigned int opcode)
{
unsigned int nRc = 0;
//printk("EmulateCPDT(0x%08x)\n",opcode);
if (LDF_OP(opcode))
{
nRc = PerformLDF(opcode);
}
else if (LFM_OP(opcode))
{
nRc = PerformLFM(opcode);
}
else if (STF_OP(opcode))
{
nRc = PerformSTF(opcode);
}
else if (SFM_OP(opcode))
{
nRc = PerformSFM(opcode);
}
else
{
nRc = 0;
}
return nRc;
}
#endif