qemu/target/alpha/helper.c
Philippe Mathieu-Daudé 74781c0888 exec/cpu: Extract page-protection definitions to page-protection.h
Extract page-protection definitions from "exec/cpu-all.h"
to "exec/page-protection.h".

The list of files requiring the new header was generated
using:

$ git grep -wE \
  'PAGE_(READ|WRITE|EXEC|RWX|VALID|ANON|RESERVED|TARGET_.|PASSTHROUGH)'

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20240427155714.53669-3-philmd@linaro.org>
2024-05-06 11:17:15 +02:00

545 lines
16 KiB
C

/*
* Alpha emulation cpu helpers for qemu.
*
* Copyright (c) 2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/page-protection.h"
#include "fpu/softfloat-types.h"
#include "exec/helper-proto.h"
#include "qemu/qemu-print.h"
#define CONVERT_BIT(X, SRC, DST) \
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
uint64_t cpu_alpha_load_fpcr(CPUAlphaState *env)
{
return (uint64_t)env->fpcr << 32;
}
void cpu_alpha_store_fpcr(CPUAlphaState *env, uint64_t val)
{
static const uint8_t rm_map[] = {
[FPCR_DYN_NORMAL >> FPCR_DYN_SHIFT] = float_round_nearest_even,
[FPCR_DYN_CHOPPED >> FPCR_DYN_SHIFT] = float_round_to_zero,
[FPCR_DYN_MINUS >> FPCR_DYN_SHIFT] = float_round_down,
[FPCR_DYN_PLUS >> FPCR_DYN_SHIFT] = float_round_up,
};
uint32_t fpcr = val >> 32;
uint32_t t = 0;
/* Record the raw value before adjusting for linux-user. */
env->fpcr = fpcr;
#ifdef CONFIG_USER_ONLY
/*
* Override some of these bits with the contents of ENV->SWCR.
* In system mode, some of these would trap to the kernel, at
* which point the kernel's handler would emulate and apply
* the software exception mask.
*/
uint32_t soft_fpcr = alpha_ieee_swcr_to_fpcr(env->swcr) >> 32;
fpcr |= soft_fpcr & (FPCR_STATUS_MASK | FPCR_DNZ);
/*
* The IOV exception is disabled by the kernel with SWCR_TRAP_ENABLE_INV,
* which got mapped by alpha_ieee_swcr_to_fpcr to FPCR_INVD.
* Add FPCR_IOV to fpcr_exc_enable so that it is handled identically.
*/
t |= CONVERT_BIT(soft_fpcr, FPCR_INVD, FPCR_IOV);
#endif
t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);
env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;
env->fpcr_dyn_round = rm_map[(fpcr & FPCR_DYN_MASK) >> FPCR_DYN_SHIFT];
env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;
t = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
#ifdef CONFIG_USER_ONLY
t |= (env->swcr & SWCR_MAP_UMZ) != 0;
#endif
env->fpcr_flush_to_zero = t;
}
uint64_t helper_load_fpcr(CPUAlphaState *env)
{
return cpu_alpha_load_fpcr(env);
}
void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
{
cpu_alpha_store_fpcr(env, val);
}
static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg)
{
#ifndef CONFIG_USER_ONLY
if (env->flags & ENV_FLAG_PAL_MODE) {
if (reg >= 8 && reg <= 14) {
return &env->shadow[reg - 8];
} else if (reg == 25) {
return &env->shadow[7];
}
}
#endif
return &env->ir[reg];
}
uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg)
{
return *cpu_alpha_addr_gr(env, reg);
}
void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val)
{
*cpu_alpha_addr_gr(env, reg) = val;
}
#if defined(CONFIG_USER_ONLY)
void alpha_cpu_record_sigsegv(CPUState *cs, vaddr address,
MMUAccessType access_type,
bool maperr, uintptr_t retaddr)
{
CPUAlphaState *env = cpu_env(cs);
target_ulong mmcsr, cause;
/* Assuming !maperr, infer the missing protection. */
switch (access_type) {
case MMU_DATA_LOAD:
mmcsr = MM_K_FOR;
cause = 0;
break;
case MMU_DATA_STORE:
mmcsr = MM_K_FOW;
cause = 1;
break;
case MMU_INST_FETCH:
mmcsr = MM_K_FOE;
cause = -1;
break;
default:
g_assert_not_reached();
}
if (maperr) {
if (address < BIT_ULL(TARGET_VIRT_ADDR_SPACE_BITS - 1)) {
/* Userspace address, therefore page not mapped. */
mmcsr = MM_K_TNV;
} else {
/* Kernel or invalid address. */
mmcsr = MM_K_ACV;
}
}
/* Record the arguments that PALcode would give to the kernel. */
env->trap_arg0 = address;
env->trap_arg1 = mmcsr;
env->trap_arg2 = cause;
}
#else
/* Returns the OSF/1 entMM failure indication, or -1 on success. */
static int get_physical_address(CPUAlphaState *env, target_ulong addr,
int prot_need, int mmu_idx,
target_ulong *pphys, int *pprot)
{
CPUState *cs = env_cpu(env);
target_long saddr = addr;
target_ulong phys = 0;
target_ulong L1pte, L2pte, L3pte;
target_ulong pt, index;
int prot = 0;
int ret = MM_K_ACV;
/* Handle physical accesses. */
if (mmu_idx == MMU_PHYS_IDX) {
phys = addr;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = -1;
goto exit;
}
/* Ensure that the virtual address is properly sign-extended from
the last implemented virtual address bit. */
if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
goto exit;
}
/* Translate the superpage. */
/* ??? When we do more than emulate Unix PALcode, we'll need to
determine which KSEG is actually active. */
if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
/* User-space cannot access KSEG addresses. */
if (mmu_idx != MMU_KERNEL_IDX) {
goto exit;
}
/* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
We would not do this if the 48-bit KSEG is enabled. */
phys = saddr & ((1ull << 40) - 1);
phys |= (saddr & (1ull << 40)) << 3;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = -1;
goto exit;
}
/* Interpret the page table exactly like PALcode does. */
pt = env->ptbr;
/* TODO: rather than using ldq_phys() to read the page table we should
* use address_space_ldq() so that we can handle the case when
* the page table read gives a bus fault, rather than ignoring it.
* For the existing code the zero data that ldq_phys will return for
* an access to invalid memory will result in our treating the page
* table as invalid, which may even be the right behaviour.
*/
/* L1 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
L1pte = ldq_phys(cs->as, pt + index*8);
if (unlikely((L1pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L1pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L1pte >> 32 << TARGET_PAGE_BITS;
/* L2 page table read. */
index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
L2pte = ldq_phys(cs->as, pt + index*8);
if (unlikely((L2pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
if (unlikely((L2pte & PTE_KRE) == 0)) {
goto exit;
}
pt = L2pte >> 32 << TARGET_PAGE_BITS;
/* L3 page table read. */
index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
L3pte = ldq_phys(cs->as, pt + index*8);
phys = L3pte >> 32 << TARGET_PAGE_BITS;
if (unlikely((L3pte & PTE_VALID) == 0)) {
ret = MM_K_TNV;
goto exit;
}
#if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
# error page bits out of date
#endif
/* Check access violations. */
if (L3pte & (PTE_KRE << mmu_idx)) {
prot |= PAGE_READ | PAGE_EXEC;
}
if (L3pte & (PTE_KWE << mmu_idx)) {
prot |= PAGE_WRITE;
}
if (unlikely((prot & prot_need) == 0 && prot_need)) {
goto exit;
}
/* Check fault-on-operation violations. */
prot &= ~(L3pte >> 1);
ret = -1;
if (unlikely((prot & prot_need) == 0)) {
ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
prot_need & PAGE_WRITE ? MM_K_FOW :
prot_need & PAGE_READ ? MM_K_FOR : -1);
}
exit:
*pphys = phys;
*pprot = prot;
return ret;
}
hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
target_ulong phys;
int prot, fail;
fail = get_physical_address(cpu_env(cs), addr, 0, 0, &phys, &prot);
return (fail >= 0 ? -1 : phys);
}
bool alpha_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
CPUAlphaState *env = cpu_env(cs);
target_ulong phys;
int prot, fail;
fail = get_physical_address(env, addr, 1 << access_type,
mmu_idx, &phys, &prot);
if (unlikely(fail >= 0)) {
if (probe) {
return false;
}
cs->exception_index = EXCP_MMFAULT;
env->trap_arg0 = addr;
env->trap_arg1 = fail;
env->trap_arg2 = (access_type == MMU_DATA_LOAD ? 0ull :
access_type == MMU_DATA_STORE ? 1ull :
/* access_type == MMU_INST_FETCH */ -1ull);
cpu_loop_exit_restore(cs, retaddr);
}
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
void alpha_cpu_do_interrupt(CPUState *cs)
{
CPUAlphaState *env = cpu_env(cs);
int i = cs->exception_index;
if (qemu_loglevel_mask(CPU_LOG_INT)) {
static int count;
const char *name = "<unknown>";
switch (i) {
case EXCP_RESET:
name = "reset";
break;
case EXCP_MCHK:
name = "mchk";
break;
case EXCP_SMP_INTERRUPT:
name = "smp_interrupt";
break;
case EXCP_CLK_INTERRUPT:
name = "clk_interrupt";
break;
case EXCP_DEV_INTERRUPT:
name = "dev_interrupt";
break;
case EXCP_MMFAULT:
name = "mmfault";
break;
case EXCP_UNALIGN:
name = "unalign";
break;
case EXCP_OPCDEC:
name = "opcdec";
break;
case EXCP_ARITH:
name = "arith";
break;
case EXCP_FEN:
name = "fen";
break;
case EXCP_CALL_PAL:
name = "call_pal";
break;
}
qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016"
PRIx64 " sp=%016" PRIx64 "\n",
++count, name, env->error_code, cs->cpu_index,
env->pc, env->ir[IR_SP]);
}
cs->exception_index = -1;
switch (i) {
case EXCP_RESET:
i = 0x0000;
break;
case EXCP_MCHK:
i = 0x0080;
break;
case EXCP_SMP_INTERRUPT:
i = 0x0100;
break;
case EXCP_CLK_INTERRUPT:
i = 0x0180;
break;
case EXCP_DEV_INTERRUPT:
i = 0x0200;
break;
case EXCP_MMFAULT:
i = 0x0280;
break;
case EXCP_UNALIGN:
i = 0x0300;
break;
case EXCP_OPCDEC:
i = 0x0380;
break;
case EXCP_ARITH:
i = 0x0400;
break;
case EXCP_FEN:
i = 0x0480;
break;
case EXCP_CALL_PAL:
i = env->error_code;
/* There are 64 entry points for both privileged and unprivileged,
with bit 0x80 indicating unprivileged. Each entry point gets
64 bytes to do its job. */
if (i & 0x80) {
i = 0x2000 + (i - 0x80) * 64;
} else {
i = 0x1000 + i * 64;
}
break;
default:
cpu_abort(cs, "Unhandled CPU exception");
}
/* Remember where the exception happened. Emulate real hardware in
that the low bit of the PC indicates PALmode. */
env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE);
/* Continue execution at the PALcode entry point. */
env->pc = env->palbr + i;
/* Switch to PALmode. */
env->flags |= ENV_FLAG_PAL_MODE;
}
bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUAlphaState *env = cpu_env(cs);
int idx = -1;
/* We never take interrupts while in PALmode. */
if (env->flags & ENV_FLAG_PAL_MODE) {
return false;
}
/* Fall through the switch, collecting the highest priority
interrupt that isn't masked by the processor status IPL. */
/* ??? This hard-codes the OSF/1 interrupt levels. */
switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) {
case 0 ... 3:
if (interrupt_request & CPU_INTERRUPT_HARD) {
idx = EXCP_DEV_INTERRUPT;
}
/* FALLTHRU */
case 4:
if (interrupt_request & CPU_INTERRUPT_TIMER) {
idx = EXCP_CLK_INTERRUPT;
}
/* FALLTHRU */
case 5:
if (interrupt_request & CPU_INTERRUPT_SMP) {
idx = EXCP_SMP_INTERRUPT;
}
/* FALLTHRU */
case 6:
if (interrupt_request & CPU_INTERRUPT_MCHK) {
idx = EXCP_MCHK;
}
}
if (idx >= 0) {
cs->exception_index = idx;
env->error_code = 0;
alpha_cpu_do_interrupt(cs);
return true;
}
return false;
}
#endif /* !CONFIG_USER_ONLY */
void alpha_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
static const char linux_reg_names[31][4] = {
"v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
"t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
"a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
"t10", "t11", "ra", "t12", "at", "gp", "sp"
};
CPUAlphaState *env = cpu_env(cs);
int i;
qemu_fprintf(f, "PC " TARGET_FMT_lx " PS %02x\n",
env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8));
for (i = 0; i < 31; i++) {
qemu_fprintf(f, "%-8s" TARGET_FMT_lx "%c",
linux_reg_names[i], cpu_alpha_load_gr(env, i),
(i % 3) == 2 ? '\n' : ' ');
}
qemu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n",
env->lock_addr, env->lock_value);
if (flags & CPU_DUMP_FPU) {
for (i = 0; i < 31; i++) {
qemu_fprintf(f, "f%-7d%016" PRIx64 "%c", i, env->fir[i],
(i % 3) == 2 ? '\n' : ' ');
}
qemu_fprintf(f, "fpcr %016" PRIx64 "\n", cpu_alpha_load_fpcr(env));
}
qemu_fprintf(f, "\n");
}
/* This should only be called from translate, via gen_excp.
We expect that ENV->PC has already been updated. */
G_NORETURN void helper_excp(CPUAlphaState *env, int excp, int error)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
env->error_code = error;
cpu_loop_exit(cs);
}
/* This may be called from any of the helpers to set up EXCEPTION_INDEX. */
G_NORETURN void dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
int excp, int error)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
env->error_code = error;
if (retaddr) {
cpu_restore_state(cs, retaddr);
/* Floating-point exceptions (our only users) point to the next PC. */
env->pc += 4;
}
cpu_loop_exit(cs);
}
G_NORETURN void arith_excp(CPUAlphaState *env, uintptr_t retaddr,
int exc, uint64_t mask)
{
env->trap_arg0 = exc;
env->trap_arg1 = mask;
dynamic_excp(env, retaddr, EXCP_ARITH, 0);
}