qemu/hw/fw_cfg.c
Vagrant Cascadian 66c80e7575 spelling typo (compatibilty) in hw/fw_cfg.c
here's a trivial patch to fix the spelling of "compatibility":

Signed-off-by: Vagrant Cascadian <vagrant@freegeek.org>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-03-14 08:52:55 +00:00

360 lines
9.8 KiB
C

/*
* QEMU Firmware configuration device emulation
*
* Copyright (c) 2008 Gleb Natapov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sysemu.h"
#include "isa.h"
#include "fw_cfg.h"
/* debug firmware config */
//#define DEBUG_FW_CFG
#ifdef DEBUG_FW_CFG
#define FW_CFG_DPRINTF(fmt, ...) \
do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
#else
#define FW_CFG_DPRINTF(fmt, ...)
#endif
#define FW_CFG_SIZE 2
typedef struct FWCfgEntry {
uint32_t len;
uint8_t *data;
void *callback_opaque;
FWCfgCallback callback;
} FWCfgEntry;
struct FWCfgState {
FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
FWCfgFiles *files;
uint16_t cur_entry;
uint32_t cur_offset;
};
static void fw_cfg_write(FWCfgState *s, uint8_t value)
{
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
FW_CFG_DPRINTF("write %d\n", value);
if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
e->data[s->cur_offset++] = value;
if (s->cur_offset == e->len) {
e->callback(e->callback_opaque, e->data);
s->cur_offset = 0;
}
}
}
static int fw_cfg_select(FWCfgState *s, uint16_t key)
{
int ret;
s->cur_offset = 0;
if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
s->cur_entry = FW_CFG_INVALID;
ret = 0;
} else {
s->cur_entry = key;
ret = 1;
}
FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
return ret;
}
static uint8_t fw_cfg_read(FWCfgState *s)
{
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
uint8_t ret;
if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
ret = 0;
else
ret = e->data[s->cur_offset++];
FW_CFG_DPRINTF("read %d\n", ret);
return ret;
}
static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
{
return fw_cfg_read(opaque);
}
static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
{
fw_cfg_write(opaque, (uint8_t)value);
}
static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
{
return fw_cfg_read(opaque);
}
static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
fw_cfg_write(opaque, (uint8_t)value);
}
static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
NULL,
NULL,
NULL,
};
static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
NULL,
fw_cfg_mem_writew,
NULL,
};
static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
fw_cfg_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
fw_cfg_mem_writeb,
NULL,
NULL,
};
static void fw_cfg_reset(void *opaque)
{
FWCfgState *s = opaque;
fw_cfg_select(s, 0);
}
/* Save restore 32 bit int as uint16_t
This is a Big hack, but it is how the old state did it.
Or we broke compatibility in the state, or we can't use struct tm
*/
static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
*v = qemu_get_be16(f);
return 0;
}
static void put_unused(QEMUFile *f, void *pv, size_t size)
{
fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
fprintf(stderr, "This functions shouldn't be called.\n");
}
static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
.name = "int32_as_uint16",
.get = get_uint32_as_uint16,
.put = put_unused,
};
#define VMSTATE_UINT16_HACK(_f, _s, _t) \
VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
static const VMStateDescription vmstate_fw_cfg = {
.name = "fw_cfg",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT16(cur_entry, FWCfgState),
VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
VMSTATE_END_OF_LIST()
}
};
int fw_cfg_add_bytes(FWCfgState *s, uint16_t key, uint8_t *data, uint32_t len)
{
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
if (key >= FW_CFG_MAX_ENTRY)
return 0;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
return 1;
}
int fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
{
uint16_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le16(value);
return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
{
uint32_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le32(value);
return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
{
uint64_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le64(value);
return fw_cfg_add_bytes(s, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_callback(FWCfgState *s, uint16_t key, FWCfgCallback callback,
void *callback_opaque, uint8_t *data, size_t len)
{
int arch = !!(key & FW_CFG_ARCH_LOCAL);
if (!(key & FW_CFG_WRITE_CHANNEL))
return 0;
key &= FW_CFG_ENTRY_MASK;
if (key >= FW_CFG_MAX_ENTRY || len > 65535)
return 0;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
s->entries[arch][key].callback_opaque = callback_opaque;
s->entries[arch][key].callback = callback;
return 1;
}
int fw_cfg_add_file(FWCfgState *s, const char *dir, const char *filename,
uint8_t *data, uint32_t len)
{
const char *basename;
int i, index;
if (!s->files) {
int dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS;
s->files = qemu_mallocz(dsize);
fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, (uint8_t*)s->files, dsize);
}
index = be32_to_cpu(s->files->count);
if (index == FW_CFG_FILE_SLOTS) {
fprintf(stderr, "fw_cfg: out of file slots\n");
return 0;
}
fw_cfg_add_bytes(s, FW_CFG_FILE_FIRST + index, data, len);
basename = strrchr(filename, '/');
if (basename) {
basename++;
} else {
basename = filename;
}
snprintf(s->files->f[index].name, sizeof(s->files->f[index].name),
"%s/%s", dir, basename);
for (i = 0; i < index; i++) {
if (strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
FW_CFG_DPRINTF("%s: skip duplicate: %s\n", __FUNCTION__,
s->files->f[index].name);
return 1;
}
}
s->files->f[index].size = cpu_to_be32(len);
s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
FW_CFG_DPRINTF("%s: #%d: %s (%d bytes)\n", __FUNCTION__,
index, s->files->f[index].name, len);
s->files->count = cpu_to_be32(index+1);
return 1;
}
FWCfgState *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
target_phys_addr_t ctl_addr, target_phys_addr_t data_addr)
{
FWCfgState *s;
int io_ctl_memory, io_data_memory;
s = qemu_mallocz(sizeof(FWCfgState));
if (ctl_port) {
register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
}
if (data_port) {
register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
}
if (ctl_addr) {
io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
fw_cfg_ctl_mem_write, s);
cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
}
if (data_addr) {
io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
fw_cfg_data_mem_write, s);
cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
}
fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
vmstate_register(-1, &vmstate_fw_cfg, s);
qemu_register_reset(fw_cfg_reset, s);
return s;
}