qemu/target/hppa/cpu.c
Peter Maydell 4f7b1ecba8 target: Set TCGCPUOps::cpu_exec_halt to target's has_work implementation
Currently the TCGCPUOps::cpu_exec_halt method is optional, and if it
is not set then the default is to call the CPUClass::has_work
method (which has an identical function signature).

We would like to make the cpu_exec_halt method mandatory so we can
remove the runtime check and fallback handling.  In preparation for
that, make all the targets which don't need special handling in their
cpu_exec_halt set it to their cpu_has_work implementation instead of
leaving it unset.  (This is every target except for arm and i386.)

In the riscv case this requires us to make the function not
be local to the source file it's defined in.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
2024-07-11 11:41:34 +01:00

282 lines
8.1 KiB
C

/*
* QEMU HPPA CPU
*
* Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/qemu-print.h"
#include "qemu/timer.h"
#include "cpu.h"
#include "qemu/module.h"
#include "exec/exec-all.h"
#include "fpu/softfloat.h"
#include "tcg/tcg.h"
static void hppa_cpu_set_pc(CPUState *cs, vaddr value)
{
HPPACPU *cpu = HPPA_CPU(cs);
#ifdef CONFIG_USER_ONLY
value |= PRIV_USER;
#endif
cpu->env.iaoq_f = value;
cpu->env.iaoq_b = value + 4;
}
static vaddr hppa_cpu_get_pc(CPUState *cs)
{
CPUHPPAState *env = cpu_env(cs);
return hppa_form_gva_psw(env->psw, (env->psw & PSW_C ? env->iasq_f : 0),
env->iaoq_f & -4);
}
void cpu_get_tb_cpu_state(CPUHPPAState *env, vaddr *pc,
uint64_t *pcsbase, uint32_t *pflags)
{
uint32_t flags = 0;
uint64_t cs_base = 0;
/*
* TB lookup assumes that PC contains the complete virtual address.
* If we leave space+offset separate, we'll get ITLB misses to an
* incomplete virtual address. This also means that we must separate
* out current cpu privilege from the low bits of IAOQ_F.
*/
*pc = hppa_cpu_get_pc(env_cpu(env));
flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
/*
* The only really interesting case is if IAQ_Back is on the same page
* as IAQ_Front, so that we can use goto_tb between the blocks. In all
* other cases, we'll be ending the TranslationBlock with one insn and
* not linking between them.
*/
if (env->iasq_f != env->iasq_b) {
cs_base |= CS_BASE_DIFFSPACE;
} else if ((env->iaoq_f ^ env->iaoq_b) & TARGET_PAGE_MASK) {
cs_base |= CS_BASE_DIFFPAGE;
} else {
cs_base |= env->iaoq_b & ~TARGET_PAGE_MASK;
}
/* ??? E, T, H, L bits need to be here, when implemented. */
flags |= env->psw_n * PSW_N;
flags |= env->psw_xb;
flags |= env->psw & (PSW_W | PSW_C | PSW_D | PSW_P);
#ifdef CONFIG_USER_ONLY
flags |= TB_FLAG_UNALIGN * !env_cpu(env)->prctl_unalign_sigbus;
#else
if ((env->sr[4] == env->sr[5])
& (env->sr[4] == env->sr[6])
& (env->sr[4] == env->sr[7])) {
flags |= TB_FLAG_SR_SAME;
}
#endif
*pcsbase = cs_base;
*pflags = flags;
}
static void hppa_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
HPPACPU *cpu = HPPA_CPU(cs);
/* IAQ is always up-to-date before goto_tb. */
cpu->env.psw_n = (tb->flags & PSW_N) != 0;
cpu->env.psw_xb = tb->flags & (PSW_X | PSW_B);
}
static void hppa_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data)
{
CPUHPPAState *env = cpu_env(cs);
env->iaoq_f = (env->iaoq_f & TARGET_PAGE_MASK) | data[0];
if (data[1] != INT32_MIN) {
env->iaoq_b = env->iaoq_f + data[1];
}
env->unwind_breg = data[2];
/*
* Since we were executing the instruction at IAOQ_F, and took some
* sort of action that provoked the cpu_restore_state, we can infer
* that the instruction was not nullified.
*/
env->psw_n = 0;
}
static bool hppa_cpu_has_work(CPUState *cs)
{
return cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI);
}
static int hppa_cpu_mmu_index(CPUState *cs, bool ifetch)
{
CPUHPPAState *env = cpu_env(cs);
if (env->psw & (ifetch ? PSW_C : PSW_D)) {
return PRIV_P_TO_MMU_IDX(env->iaoq_f & 3, env->psw & PSW_P);
}
/* mmu disabled */
return env->psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX;
}
static void hppa_cpu_disas_set_info(CPUState *cs, disassemble_info *info)
{
info->mach = bfd_mach_hppa20;
info->print_insn = print_insn_hppa;
}
#ifndef CONFIG_USER_ONLY
static G_NORETURN
void hppa_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type, int mmu_idx,
uintptr_t retaddr)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
cs->exception_index = EXCP_UNALIGN;
cpu_restore_state(cs, retaddr);
hppa_set_ior_and_isr(env, addr, MMU_IDX_MMU_DISABLED(mmu_idx));
cpu_loop_exit(cs);
}
#endif /* CONFIG_USER_ONLY */
static void hppa_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
HPPACPUClass *acc = HPPA_CPU_GET_CLASS(dev);
Error *local_err = NULL;
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
qemu_init_vcpu(cs);
acc->parent_realize(dev, errp);
#ifndef CONFIG_USER_ONLY
{
HPPACPU *cpu = HPPA_CPU(cs);
cpu->alarm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
hppa_cpu_alarm_timer, cpu);
hppa_ptlbe(&cpu->env);
}
#endif
/* Use pc-relative instructions always to simplify the translator. */
tcg_cflags_set(cs, CF_PCREL);
}
static void hppa_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
HPPACPU *cpu = HPPA_CPU(obj);
CPUHPPAState *env = &cpu->env;
cs->exception_index = -1;
cpu_hppa_loaded_fr0(env);
cpu_hppa_put_psw(env, PSW_W);
}
static ObjectClass *hppa_cpu_class_by_name(const char *cpu_model)
{
g_autofree char *typename = g_strconcat(cpu_model, "-cpu", NULL);
return object_class_by_name(typename);
}
#ifndef CONFIG_USER_ONLY
#include "hw/core/sysemu-cpu-ops.h"
static const struct SysemuCPUOps hppa_sysemu_ops = {
.get_phys_page_debug = hppa_cpu_get_phys_page_debug,
};
#endif
#include "hw/core/tcg-cpu-ops.h"
static const TCGCPUOps hppa_tcg_ops = {
.initialize = hppa_translate_init,
.synchronize_from_tb = hppa_cpu_synchronize_from_tb,
.restore_state_to_opc = hppa_restore_state_to_opc,
#ifndef CONFIG_USER_ONLY
.tlb_fill = hppa_cpu_tlb_fill,
.cpu_exec_interrupt = hppa_cpu_exec_interrupt,
.cpu_exec_halt = hppa_cpu_has_work,
.do_interrupt = hppa_cpu_do_interrupt,
.do_unaligned_access = hppa_cpu_do_unaligned_access,
.do_transaction_failed = hppa_cpu_do_transaction_failed,
#endif /* !CONFIG_USER_ONLY */
};
static void hppa_cpu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
HPPACPUClass *acc = HPPA_CPU_CLASS(oc);
device_class_set_parent_realize(dc, hppa_cpu_realizefn,
&acc->parent_realize);
cc->class_by_name = hppa_cpu_class_by_name;
cc->has_work = hppa_cpu_has_work;
cc->mmu_index = hppa_cpu_mmu_index;
cc->dump_state = hppa_cpu_dump_state;
cc->set_pc = hppa_cpu_set_pc;
cc->get_pc = hppa_cpu_get_pc;
cc->gdb_read_register = hppa_cpu_gdb_read_register;
cc->gdb_write_register = hppa_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
dc->vmsd = &vmstate_hppa_cpu;
cc->sysemu_ops = &hppa_sysemu_ops;
#endif
cc->disas_set_info = hppa_cpu_disas_set_info;
cc->gdb_num_core_regs = 128;
cc->tcg_ops = &hppa_tcg_ops;
}
static const TypeInfo hppa_cpu_type_infos[] = {
{
.name = TYPE_HPPA_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(HPPACPU),
.instance_align = __alignof(HPPACPU),
.instance_init = hppa_cpu_initfn,
.abstract = false,
.class_size = sizeof(HPPACPUClass),
.class_init = hppa_cpu_class_init,
},
{
.name = TYPE_HPPA64_CPU,
.parent = TYPE_HPPA_CPU,
},
};
DEFINE_TYPES(hppa_cpu_type_infos)