qemu/target-i386/helper.c
Jan Kiszka f5c848eed7 x86: Optionally dump code bytes on cpu_dump_state
Introduce the cpu_dump_state flag CPU_DUMP_CODE and implement it for
x86. This writes out the code bytes around the current instruction
pointer. Make use of this feature in KVM to help debugging fatal vm
exits.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-01-23 02:27:20 -02:00

1252 lines
39 KiB
C

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include "cpu.h"
#include "exec-all.h"
#include "qemu-common.h"
#include "kvm.h"
#include "kvm_x86.h"
//#define DEBUG_MMU
/* NOTE: must be called outside the CPU execute loop */
void cpu_reset(CPUX86State *env)
{
int i;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
}
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for(i = 0;i < 8; i++)
env->fptags[i] = 1;
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(env, BP_CPU);
cpu_watchpoint_remove_all(env, BP_CPU);
env->mcg_status = 0;
}
void cpu_x86_close(CPUX86State *env)
{
qemu_free(env);
}
static void cpu_x86_version(CPUState *env, int *family, int *model)
{
int cpuver = env->cpuid_version;
if (family == NULL || model == NULL) {
return;
}
*family = (cpuver >> 8) & 0x0f;
*model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
}
/* Broadcast MCA signal for processor version 06H_EH and above */
int cpu_x86_support_mca_broadcast(CPUState *env)
{
int family = 0;
int model = 0;
cpu_x86_version(env, &family, &model);
if ((family == 6 && model >= 14) || family > 6) {
return 1;
}
return 0;
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
};
static void
cpu_x86_dump_seg_cache(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
const char *name, struct SegmentCache *sc)
{
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00);
} else
#endif
{
cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
(uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00);
}
if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
goto done;
cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
if (sc->flags & DESC_S_MASK) {
if (sc->flags & DESC_CS_MASK) {
cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
(sc->flags & DESC_R_MASK) ? 'R' : '-');
} else {
cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16");
cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
(sc->flags & DESC_W_MASK) ? 'W' : '-');
}
cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
} else {
static const char *sys_type_name[2][16] = {
{ /* 32 bit mode */
"Reserved", "TSS16-avl", "LDT", "TSS16-busy",
"CallGate16", "TaskGate", "IntGate16", "TrapGate16",
"Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
"CallGate32", "Reserved", "IntGate32", "TrapGate32"
},
{ /* 64 bit mode */
"<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
"Reserved", "IntGate64", "TrapGate64"
}
};
cpu_fprintf(f, "%s",
sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
[(sc->flags & DESC_TYPE_MASK)
>> DESC_TYPE_SHIFT]);
}
done:
cpu_fprintf(f, "\n");
}
#define DUMP_CODE_BYTES_TOTAL 50
#define DUMP_CODE_BYTES_BACKWARD 20
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
cpu_synchronize_state(env);
eflags = env->eflags;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f,
"RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
"RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
"R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
"R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
"RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
} else
#endif
{
cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_SMM_SHIFT) & 1,
env->halted);
}
for(i = 0; i < 6; i++) {
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
&env->segs[i]);
}
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++)
cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
env->dr[6], env->dr[7]);
} else
#endif
{
cpu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
for(i = 0; i < 4; i++) {
cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
}
cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
env->dr[6], env->dr[7]);
}
if (flags & X86_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
if (flags & X86_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
#if defined(USE_X86LDOUBLE)
union {
long double d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} tmp;
tmp.d = env->fpregs[i].d;
cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
i, tmp.l.lower, tmp.l.upper);
#else
cpu_fprintf(f, "FPR%d=%016" PRIx64,
i, env->fpregs[i].mmx.q);
#endif
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].XMM_L(3),
env->xmm_regs[i].XMM_L(2),
env->xmm_regs[i].XMM_L(1),
env->xmm_regs[i].XMM_L(0));
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
}
if (flags & CPU_DUMP_CODE) {
target_ulong base = env->segs[R_CS].base + env->eip;
target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
uint8_t code;
char codestr[3];
cpu_fprintf(f, "Code=");
for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
if (cpu_memory_rw_debug(env, base - offs + i, &code, 1, 0) == 0) {
snprintf(codestr, sizeof(codestr), "%02x", code);
} else {
snprintf(codestr, sizeof(codestr), "??");
}
cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
i == offs ? "<" : "", codestr, i == offs ? ">" : "");
}
cpu_fprintf(f, "\n");
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void cpu_x86_set_a20(CPUX86State *env, int a20_state)
{
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
#if defined(DEBUG_MMU)
printf("A20 update: a20=%d\n", a20_state);
#endif
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(env, 1);
env->a20_mask = ~(1 << 20) | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
int pe_state;
#if defined(DEBUG_MMU)
printf("CR0 update: CR0=0x%08x\n", new_cr0);
#endif
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(env, 1);
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
#if defined(DEBUG_MMU)
printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
#endif
tlb_flush(env, 0);
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
#if defined(DEBUG_MMU)
printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
#endif
if ((new_cr4 & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK)) !=
(env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) {
tlb_flush(env, 1);
}
/* SSE handling */
if (!(env->cpuid_features & CPUID_SSE))
new_cr4 &= ~CR4_OSFXSR_MASK;
if (new_cr4 & CR4_OSFXSR_MASK)
env->hflags |= HF_OSFXSR_MASK;
else
env->hflags &= ~HF_OSFXSR_MASK;
env->cr[4] = new_cr4;
}
#if defined(CONFIG_USER_ONLY)
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int mmu_idx, int is_softmmu)
{
/* user mode only emulation */
is_write &= 1;
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT);
env->error_code |= PG_ERROR_U_MASK;
env->exception_index = EXCP0E_PAGE;
return 1;
}
#else
/* XXX: This value should match the one returned by CPUID
* and in exec.c */
# if defined(TARGET_X86_64)
# define PHYS_ADDR_MASK 0xfffffff000LL
# else
# define PHYS_ADDR_MASK 0xffffff000LL
# endif
/* return value:
-1 = cannot handle fault
0 = nothing more to do
1 = generate PF fault
*/
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write1, int mmu_idx, int is_softmmu)
{
uint64_t ptep, pte;
target_ulong pde_addr, pte_addr;
int error_code, is_dirty, prot, page_size, is_write, is_user;
target_phys_addr_t paddr;
uint32_t page_offset;
target_ulong vaddr, virt_addr;
is_user = mmu_idx == MMU_USER_IDX;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
addr, is_write1, is_user, env->eip);
#endif
is_write = is_write1 & 1;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
page_size = 4096;
goto do_mapping;
}
if (env->cr[4] & CR4_PAE_MASK) {
uint64_t pde, pdpe;
target_ulong pdpe_addr;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
env->error_code = 0;
env->exception_index = EXCP0D_GPF;
return 1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
if (!(pml4e & PG_ACCESSED_MASK)) {
pml4e |= PG_ACCESSED_MASK;
stl_phys_notdirty(pml4e_addr, pml4e);
}
ptep = pml4e ^ PG_NX_MASK;
pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pdpe ^ PG_NX_MASK;
if (!(pdpe & PG_ACCESSED_MASK)) {
pdpe |= PG_ACCESSED_MASK;
stl_phys_notdirty(pdpe_addr, pdpe);
}
} else
#endif
{
/* XXX: load them when cr3 is loaded ? */
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
}
pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pde ^ PG_NX_MASK;
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* align to page_size */
pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
virt_addr = addr & ~(page_size - 1);
} else {
/* 4 KB page */
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
pte = ldq_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
/* combine pde and pte nx, user and rw protections */
ptep &= pte ^ PG_NX_MASK;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
pte = pte & (PHYS_ADDR_MASK | 0xfff);
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
page_size = 4096 * 1024;
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
ptep = pte;
virt_addr = addr & ~(page_size - 1);
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep = pte & pde;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
}
/* the page can be put in the TLB */
prot = PAGE_READ;
if (!(ptep & PG_NX_MASK))
prot |= PAGE_EXEC;
if (pte & PG_DIRTY_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (is_user) {
if (ptep & PG_RW_MASK)
prot |= PAGE_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) ||
(ptep & PG_RW_MASK))
prot |= PAGE_WRITE;
}
}
do_mapping:
pte = pte & env->a20_mask;
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
vaddr = virt_addr + page_offset;
tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
return 0;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
error_code |= (is_write << PG_ERROR_W_BIT);
if (is_user)
error_code |= PG_ERROR_U_MASK;
if (is_write1 == 2 &&
(env->efer & MSR_EFER_NXE) &&
(env->cr[4] & CR4_PAE_MASK))
error_code |= PG_ERROR_I_D_MASK;
if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
/* cr2 is not modified in case of exceptions */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
addr);
} else {
env->cr[2] = addr;
}
env->error_code = error_code;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
target_ulong pde_addr, pte_addr;
uint64_t pte;
target_phys_addr_t paddr;
uint32_t page_offset;
int page_size;
if (env->cr[4] & CR4_PAE_MASK) {
target_ulong pdpe_addr;
uint64_t pde, pdpe;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint64_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1)
return -1;
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK))
return -1;
pdpe_addr = ((pml4e & ~0xfff) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & ~0xfff) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
} else {
/* 4 KB page */
pte_addr = ((pde & ~0xfff) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
page_size = 4096;
pte = ldq_phys(pte_addr);
}
if (!(pte & PG_PRESENT_MASK))
return -1;
} else {
uint32_t pde;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
page_size = 4096;
} else {
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde & ~0x003ff000; /* align to 4MB */
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK))
return -1;
page_size = 4096;
}
}
pte = pte & env->a20_mask;
}
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
return paddr;
}
void hw_breakpoint_insert(CPUState *env, int index)
{
int type, err = 0;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU,
&env->cpu_breakpoint[index]);
break;
case 1:
type = BP_CPU | BP_MEM_WRITE;
goto insert_wp;
case 2:
/* No support for I/O watchpoints yet */
break;
case 3:
type = BP_CPU | BP_MEM_ACCESS;
insert_wp:
err = cpu_watchpoint_insert(env, env->dr[index],
hw_breakpoint_len(env->dr[7], index),
type, &env->cpu_watchpoint[index]);
break;
}
if (err)
env->cpu_breakpoint[index] = NULL;
}
void hw_breakpoint_remove(CPUState *env, int index)
{
if (!env->cpu_breakpoint[index])
return;
switch (hw_breakpoint_type(env->dr[7], index)) {
case 0:
if (hw_breakpoint_enabled(env->dr[7], index))
cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]);
break;
case 1:
case 3:
cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]);
break;
case 2:
/* No support for I/O watchpoints yet */
break;
}
}
int check_hw_breakpoints(CPUState *env, int force_dr6_update)
{
target_ulong dr6;
int reg, type;
int hit_enabled = 0;
dr6 = env->dr[6] & ~0xf;
for (reg = 0; reg < 4; reg++) {
type = hw_breakpoint_type(env->dr[7], reg);
if ((type == 0 && env->dr[reg] == env->eip) ||
((type & 1) && env->cpu_watchpoint[reg] &&
(env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT))) {
dr6 |= 1 << reg;
if (hw_breakpoint_enabled(env->dr[7], reg))
hit_enabled = 1;
}
}
if (hit_enabled || force_dr6_update)
env->dr[6] = dr6;
return hit_enabled;
}
static CPUDebugExcpHandler *prev_debug_excp_handler;
void raise_exception_env(int exception_index, CPUState *env);
static void breakpoint_handler(CPUState *env)
{
CPUBreakpoint *bp;
if (env->watchpoint_hit) {
if (env->watchpoint_hit->flags & BP_CPU) {
env->watchpoint_hit = NULL;
if (check_hw_breakpoints(env, 0))
raise_exception_env(EXCP01_DB, env);
else
cpu_resume_from_signal(env, NULL);
}
} else {
QTAILQ_FOREACH(bp, &env->breakpoints, entry)
if (bp->pc == env->eip) {
if (bp->flags & BP_CPU) {
check_hw_breakpoints(env, 1);
raise_exception_env(EXCP01_DB, env);
}
break;
}
}
if (prev_debug_excp_handler)
prev_debug_excp_handler(env);
}
/* This should come from sysemu.h - if we could include it here... */
void qemu_system_reset_request(void);
static void qemu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc)
{
uint64_t mcg_cap = cenv->mcg_cap;
uint64_t *banks = cenv->mce_banks;
/*
* if MSR_MCG_CTL is not all 1s, the uncorrected error
* reporting is disabled
*/
if ((status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
cenv->mcg_ctl != ~(uint64_t)0)
return;
banks += 4 * bank;
/*
* if MSR_MCi_CTL is not all 1s, the uncorrected error
* reporting is disabled for the bank
*/
if ((status & MCI_STATUS_UC) && banks[0] != ~(uint64_t)0)
return;
if (status & MCI_STATUS_UC) {
if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
!(cenv->cr[4] & CR4_MCE_MASK)) {
fprintf(stderr, "injects mce exception while previous "
"one is in progress!\n");
qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
qemu_system_reset_request();
return;
}
if (banks[1] & MCI_STATUS_VAL)
status |= MCI_STATUS_OVER;
banks[2] = addr;
banks[3] = misc;
cenv->mcg_status = mcg_status;
banks[1] = status;
cpu_interrupt(cenv, CPU_INTERRUPT_MCE);
} else if (!(banks[1] & MCI_STATUS_VAL)
|| !(banks[1] & MCI_STATUS_UC)) {
if (banks[1] & MCI_STATUS_VAL)
status |= MCI_STATUS_OVER;
banks[2] = addr;
banks[3] = misc;
banks[1] = status;
} else
banks[1] |= MCI_STATUS_OVER;
}
void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc,
int broadcast)
{
unsigned bank_num = cenv->mcg_cap & 0xff;
CPUState *env;
int flag = 0;
if (bank >= bank_num || !(status & MCI_STATUS_VAL)) {
return;
}
if (broadcast) {
if (!cpu_x86_support_mca_broadcast(cenv)) {
fprintf(stderr, "Current CPU does not support broadcast\n");
return;
}
}
if (kvm_enabled()) {
if (broadcast) {
flag |= MCE_BROADCAST;
}
kvm_inject_x86_mce(cenv, bank, status, mcg_status, addr, misc, flag);
} else {
qemu_inject_x86_mce(cenv, bank, status, mcg_status, addr, misc);
if (broadcast) {
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (cenv == env) {
continue;
}
qemu_inject_x86_mce(env, 1, 0xa000000000000000, 0, 0, 0);
}
}
}
}
#endif /* !CONFIG_USER_ONLY */
static void mce_init(CPUX86State *cenv)
{
unsigned int bank, bank_num;
if (((cenv->cpuid_version >> 8)&0xf) >= 6
&& (cenv->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF;
cenv->mcg_ctl = ~(uint64_t)0;
bank_num = MCE_BANKS_DEF;
for (bank = 0; bank < bank_num; bank++)
cenv->mce_banks[bank*4] = ~(uint64_t)0;
}
}
int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
target_ulong *base, unsigned int *limit,
unsigned int *flags)
{
SegmentCache *dt;
target_ulong ptr;
uint32_t e1, e2;
int index;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
ptr = dt->base + index;
if ((index + 7) > dt->limit
|| cpu_memory_rw_debug(env, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
|| cpu_memory_rw_debug(env, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
return 0;
*base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
*limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
*limit = (*limit << 12) | 0xfff;
*flags = e2;
return 1;
}
CPUX86State *cpu_x86_init(const char *cpu_model)
{
CPUX86State *env;
static int inited;
env = qemu_mallocz(sizeof(CPUX86State));
cpu_exec_init(env);
env->cpu_model_str = cpu_model;
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
#ifndef CONFIG_USER_ONLY
prev_debug_excp_handler =
cpu_set_debug_excp_handler(breakpoint_handler);
#endif
}
if (cpu_x86_register(env, cpu_model) < 0) {
cpu_x86_close(env);
return NULL;
}
mce_init(env);
qemu_init_vcpu(env);
return env;
}
#if !defined(CONFIG_USER_ONLY)
void do_cpu_init(CPUState *env)
{
int sipi = env->interrupt_request & CPU_INTERRUPT_SIPI;
cpu_reset(env);
env->interrupt_request = sipi;
apic_init_reset(env->apic_state);
env->halted = !cpu_is_bsp(env);
}
void do_cpu_sipi(CPUState *env)
{
apic_sipi(env->apic_state);
}
#else
void do_cpu_init(CPUState *env)
{
}
void do_cpu_sipi(CPUState *env)
{
}
#endif