qemu/hw/ssi/xlnx-versal-ospi.c
Sai Pavan Boddu 3b3e4c2803 xlnx-versal-ospi: disable reentrancy detection for iomem_dac
The OSPI DMA reads flash data through the OSPI linear address space (the
iomem_dac region), because of this the reentrancy guard introduced in
commit a2e1753b ("memory: prevent dma-reentracy issues") is disabled for
the memory region.

Signed-off-by: Sai Pavan Boddu <sai.pavan.boddu@amd.com>
Message-id: 20240219105637.65052-1-sai.pavan.boddu@amd.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-02-27 13:01:41 +00:00

1859 lines
61 KiB
C

/*
* QEMU model of Xilinx Versal's OSPI controller.
*
* Copyright (c) 2021 Xilinx Inc.
* Written by Francisco Iglesias <francisco.iglesias@xilinx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/qdev-properties.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "hw/irq.h"
#include "hw/ssi/xlnx-versal-ospi.h"
#ifndef XILINX_VERSAL_OSPI_ERR_DEBUG
#define XILINX_VERSAL_OSPI_ERR_DEBUG 0
#endif
REG32(CONFIG_REG, 0x0)
FIELD(CONFIG_REG, IDLE_FLD, 31, 1)
FIELD(CONFIG_REG, DUAL_BYTE_OPCODE_EN_FLD, 30, 1)
FIELD(CONFIG_REG, CRC_ENABLE_FLD, 29, 1)
FIELD(CONFIG_REG, CONFIG_RESV2_FLD, 26, 3)
FIELD(CONFIG_REG, PIPELINE_PHY_FLD, 25, 1)
FIELD(CONFIG_REG, ENABLE_DTR_PROTOCOL_FLD, 24, 1)
FIELD(CONFIG_REG, ENABLE_AHB_DECODER_FLD, 23, 1)
FIELD(CONFIG_REG, MSTR_BAUD_DIV_FLD, 19, 4)
FIELD(CONFIG_REG, ENTER_XIP_MODE_IMM_FLD, 18, 1)
FIELD(CONFIG_REG, ENTER_XIP_MODE_FLD, 17, 1)
FIELD(CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD, 16, 1)
FIELD(CONFIG_REG, ENB_DMA_IF_FLD, 15, 1)
FIELD(CONFIG_REG, WR_PROT_FLASH_FLD, 14, 1)
FIELD(CONFIG_REG, PERIPH_CS_LINES_FLD, 10, 4)
FIELD(CONFIG_REG, PERIPH_SEL_DEC_FLD, 9, 1)
FIELD(CONFIG_REG, ENB_LEGACY_IP_MODE_FLD, 8, 1)
FIELD(CONFIG_REG, ENB_DIR_ACC_CTLR_FLD, 7, 1)
FIELD(CONFIG_REG, RESET_CFG_FLD, 6, 1)
FIELD(CONFIG_REG, RESET_PIN_FLD, 5, 1)
FIELD(CONFIG_REG, HOLD_PIN_FLD, 4, 1)
FIELD(CONFIG_REG, PHY_MODE_ENABLE_FLD, 3, 1)
FIELD(CONFIG_REG, SEL_CLK_PHASE_FLD, 2, 1)
FIELD(CONFIG_REG, SEL_CLK_POL_FLD, 1, 1)
FIELD(CONFIG_REG, ENB_SPI_FLD, 0, 1)
REG32(DEV_INSTR_RD_CONFIG_REG, 0x4)
FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV5_FLD, 29, 3)
FIELD(DEV_INSTR_RD_CONFIG_REG, DUMMY_RD_CLK_CYCLES_FLD, 24, 5)
FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV4_FLD, 21, 3)
FIELD(DEV_INSTR_RD_CONFIG_REG, MODE_BIT_ENABLE_FLD, 20, 1)
FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV3_FLD, 18, 2)
FIELD(DEV_INSTR_RD_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV2_FLD, 14, 2)
FIELD(DEV_INSTR_RD_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
FIELD(DEV_INSTR_RD_CONFIG_REG, PRED_DIS_FLD, 11, 1)
FIELD(DEV_INSTR_RD_CONFIG_REG, DDR_EN_FLD, 10, 1)
FIELD(DEV_INSTR_RD_CONFIG_REG, INSTR_TYPE_FLD, 8, 2)
FIELD(DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD, 0, 8)
REG32(DEV_INSTR_WR_CONFIG_REG, 0x8)
FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV4_FLD, 29, 3)
FIELD(DEV_INSTR_WR_CONFIG_REG, DUMMY_WR_CLK_CYCLES_FLD, 24, 5)
FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV3_FLD, 18, 6)
FIELD(DEV_INSTR_WR_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV2_FLD, 14, 2)
FIELD(DEV_INSTR_WR_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV1_FLD, 9, 3)
FIELD(DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD, 8, 1)
FIELD(DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD, 0, 8)
REG32(DEV_DELAY_REG, 0xc)
FIELD(DEV_DELAY_REG, D_NSS_FLD, 24, 8)
FIELD(DEV_DELAY_REG, D_BTWN_FLD, 16, 8)
FIELD(DEV_DELAY_REG, D_AFTER_FLD, 8, 8)
FIELD(DEV_DELAY_REG, D_INIT_FLD, 0, 8)
REG32(RD_DATA_CAPTURE_REG, 0x10)
FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV3_FLD, 20, 12)
FIELD(RD_DATA_CAPTURE_REG, DDR_READ_DELAY_FLD, 16, 4)
FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV2_FLD, 9, 7)
FIELD(RD_DATA_CAPTURE_REG, DQS_ENABLE_FLD, 8, 1)
FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV1_FLD, 6, 2)
FIELD(RD_DATA_CAPTURE_REG, SAMPLE_EDGE_SEL_FLD, 5, 1)
FIELD(RD_DATA_CAPTURE_REG, DELAY_FLD, 1, 4)
FIELD(RD_DATA_CAPTURE_REG, BYPASS_FLD, 0, 1)
REG32(DEV_SIZE_CONFIG_REG, 0x14)
FIELD(DEV_SIZE_CONFIG_REG, DEV_SIZE_RESV_FLD, 29, 3)
FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS3_FLD, 27, 2)
FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS2_FLD, 25, 2)
FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS1_FLD, 23, 2)
FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD, 21, 2)
FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_SUBSECTOR_FLD, 16, 5)
FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD, 4, 12)
FIELD(DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD, 0, 4)
REG32(SRAM_PARTITION_CFG_REG, 0x18)
FIELD(SRAM_PARTITION_CFG_REG, SRAM_PARTITION_RESV_FLD, 8, 24)
FIELD(SRAM_PARTITION_CFG_REG, ADDR_FLD, 0, 8)
REG32(IND_AHB_ADDR_TRIGGER_REG, 0x1c)
REG32(DMA_PERIPH_CONFIG_REG, 0x20)
FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV2_FLD, 12, 20)
FIELD(DMA_PERIPH_CONFIG_REG, NUM_BURST_REQ_BYTES_FLD, 8, 4)
FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV1_FLD, 4, 4)
FIELD(DMA_PERIPH_CONFIG_REG, NUM_SINGLE_REQ_BYTES_FLD, 0, 4)
REG32(REMAP_ADDR_REG, 0x24)
REG32(MODE_BIT_CONFIG_REG, 0x28)
FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_LOW_FLD, 24, 8)
FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_UP_FLD, 16, 8)
FIELD(MODE_BIT_CONFIG_REG, CRC_OUT_ENABLE_FLD, 15, 1)
FIELD(MODE_BIT_CONFIG_REG, MODE_BIT_RESV1_FLD, 11, 4)
FIELD(MODE_BIT_CONFIG_REG, CHUNK_SIZE_FLD, 8, 3)
FIELD(MODE_BIT_CONFIG_REG, MODE_FLD, 0, 8)
REG32(SRAM_FILL_REG, 0x2c)
FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_WRITE_FLD, 16, 16)
FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_READ_FLD, 0, 16)
REG32(TX_THRESH_REG, 0x30)
FIELD(TX_THRESH_REG, TX_THRESH_RESV_FLD, 5, 27)
FIELD(TX_THRESH_REG, LEVEL_FLD, 0, 5)
REG32(RX_THRESH_REG, 0x34)
FIELD(RX_THRESH_REG, RX_THRESH_RESV_FLD, 5, 27)
FIELD(RX_THRESH_REG, LEVEL_FLD, 0, 5)
REG32(WRITE_COMPLETION_CTRL_REG, 0x38)
FIELD(WRITE_COMPLETION_CTRL_REG, POLL_REP_DELAY_FLD, 24, 8)
FIELD(WRITE_COMPLETION_CTRL_REG, POLL_COUNT_FLD, 16, 8)
FIELD(WRITE_COMPLETION_CTRL_REG, ENABLE_POLLING_EXP_FLD, 15, 1)
FIELD(WRITE_COMPLETION_CTRL_REG, DISABLE_POLLING_FLD, 14, 1)
FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_POLARITY_FLD, 13, 1)
FIELD(WRITE_COMPLETION_CTRL_REG, WR_COMP_CTRL_RESV1_FLD, 12, 1)
FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_ADDR_EN_FLD, 11, 1)
FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_BIT_INDEX_FLD, 8, 3)
FIELD(WRITE_COMPLETION_CTRL_REG, OPCODE_FLD, 0, 8)
REG32(NO_OF_POLLS_BEF_EXP_REG, 0x3c)
REG32(IRQ_STATUS_REG, 0x40)
FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV_FLD, 20, 12)
FIELD(IRQ_STATUS_REG, ECC_FAIL_FLD, 19, 1)
FIELD(IRQ_STATUS_REG, TX_CRC_CHUNK_BRK_FLD, 18, 1)
FIELD(IRQ_STATUS_REG, RX_CRC_DATA_VAL_FLD, 17, 1)
FIELD(IRQ_STATUS_REG, RX_CRC_DATA_ERR_FLD, 16, 1)
FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV1_FLD, 15, 1)
FIELD(IRQ_STATUS_REG, STIG_REQ_INT_FLD, 14, 1)
FIELD(IRQ_STATUS_REG, POLL_EXP_INT_FLD, 13, 1)
FIELD(IRQ_STATUS_REG, INDRD_SRAM_FULL_FLD, 12, 1)
FIELD(IRQ_STATUS_REG, RX_FIFO_FULL_FLD, 11, 1)
FIELD(IRQ_STATUS_REG, RX_FIFO_NOT_EMPTY_FLD, 10, 1)
FIELD(IRQ_STATUS_REG, TX_FIFO_FULL_FLD, 9, 1)
FIELD(IRQ_STATUS_REG, TX_FIFO_NOT_FULL_FLD, 8, 1)
FIELD(IRQ_STATUS_REG, RECV_OVERFLOW_FLD, 7, 1)
FIELD(IRQ_STATUS_REG, INDIRECT_XFER_LEVEL_BREACH_FLD, 6, 1)
FIELD(IRQ_STATUS_REG, ILLEGAL_ACCESS_DET_FLD, 5, 1)
FIELD(IRQ_STATUS_REG, PROT_WR_ATTEMPT_FLD, 4, 1)
FIELD(IRQ_STATUS_REG, INDIRECT_TRANSFER_REJECT_FLD, 3, 1)
FIELD(IRQ_STATUS_REG, INDIRECT_OP_DONE_FLD, 2, 1)
FIELD(IRQ_STATUS_REG, UNDERFLOW_DET_FLD, 1, 1)
FIELD(IRQ_STATUS_REG, MODE_M_FAIL_FLD, 0, 1)
REG32(IRQ_MASK_REG, 0x44)
FIELD(IRQ_MASK_REG, IRQ_MASK_RESV_FLD, 20, 12)
FIELD(IRQ_MASK_REG, ECC_FAIL_MASK_FLD, 19, 1)
FIELD(IRQ_MASK_REG, TX_CRC_CHUNK_BRK_MASK_FLD, 18, 1)
FIELD(IRQ_MASK_REG, RX_CRC_DATA_VAL_MASK_FLD, 17, 1)
FIELD(IRQ_MASK_REG, RX_CRC_DATA_ERR_MASK_FLD, 16, 1)
FIELD(IRQ_MASK_REG, IRQ_MASK_RESV1_FLD, 15, 1)
FIELD(IRQ_MASK_REG, STIG_REQ_MASK_FLD, 14, 1)
FIELD(IRQ_MASK_REG, POLL_EXP_INT_MASK_FLD, 13, 1)
FIELD(IRQ_MASK_REG, INDRD_SRAM_FULL_MASK_FLD, 12, 1)
FIELD(IRQ_MASK_REG, RX_FIFO_FULL_MASK_FLD, 11, 1)
FIELD(IRQ_MASK_REG, RX_FIFO_NOT_EMPTY_MASK_FLD, 10, 1)
FIELD(IRQ_MASK_REG, TX_FIFO_FULL_MASK_FLD, 9, 1)
FIELD(IRQ_MASK_REG, TX_FIFO_NOT_FULL_MASK_FLD, 8, 1)
FIELD(IRQ_MASK_REG, RECV_OVERFLOW_MASK_FLD, 7, 1)
FIELD(IRQ_MASK_REG, INDIRECT_XFER_LEVEL_BREACH_MASK_FLD, 6, 1)
FIELD(IRQ_MASK_REG, ILLEGAL_ACCESS_DET_MASK_FLD, 5, 1)
FIELD(IRQ_MASK_REG, PROT_WR_ATTEMPT_MASK_FLD, 4, 1)
FIELD(IRQ_MASK_REG, INDIRECT_TRANSFER_REJECT_MASK_FLD, 3, 1)
FIELD(IRQ_MASK_REG, INDIRECT_OP_DONE_MASK_FLD, 2, 1)
FIELD(IRQ_MASK_REG, UNDERFLOW_DET_MASK_FLD, 1, 1)
FIELD(IRQ_MASK_REG, MODE_M_FAIL_MASK_FLD, 0, 1)
REG32(LOWER_WR_PROT_REG, 0x50)
REG32(UPPER_WR_PROT_REG, 0x54)
REG32(WR_PROT_CTRL_REG, 0x58)
FIELD(WR_PROT_CTRL_REG, WR_PROT_CTRL_RESV_FLD, 2, 30)
FIELD(WR_PROT_CTRL_REG, ENB_FLD, 1, 1)
FIELD(WR_PROT_CTRL_REG, INV_FLD, 0, 1)
REG32(INDIRECT_READ_XFER_CTRL_REG, 0x60)
FIELD(INDIRECT_READ_XFER_CTRL_REG, INDIR_RD_XFER_RESV_FLD, 8, 24)
FIELD(INDIRECT_READ_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
FIELD(INDIRECT_READ_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_QUEUED_FLD, 4, 1)
FIELD(INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 3, 1)
FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 2, 1)
FIELD(INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
FIELD(INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0, 1)
REG32(INDIRECT_READ_XFER_WATERMARK_REG, 0x64)
REG32(INDIRECT_READ_XFER_START_REG, 0x68)
REG32(INDIRECT_READ_XFER_NUM_BYTES_REG, 0x6c)
REG32(INDIRECT_WRITE_XFER_CTRL_REG, 0x70)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV2_FLD, 8, 24)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_QUEUED_FLD, 4, 1)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV1_FLD, 3, 1)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 2, 1)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
FIELD(INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0, 1)
REG32(INDIRECT_WRITE_XFER_WATERMARK_REG, 0x74)
REG32(INDIRECT_WRITE_XFER_START_REG, 0x78)
REG32(INDIRECT_WRITE_XFER_NUM_BYTES_REG, 0x7c)
REG32(INDIRECT_TRIGGER_ADDR_RANGE_REG, 0x80)
FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_RESV1_FLD, 4, 28)
FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_WIDTH_FLD, 0, 4)
REG32(FLASH_COMMAND_CTRL_MEM_REG, 0x8c)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV1_FLD, 29, 3)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD, 20, 9)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV2_FLD, 19, 1)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, NB_OF_STIG_READ_BYTES_FLD, 16, 3)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_READ_DATA_FLD, 8, 8)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV3_FLD, 2, 6)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_REQ_IN_PROGRESS_FLD, 1, 1)
FIELD(FLASH_COMMAND_CTRL_MEM_REG, TRIGGER_MEM_BANK_REQ_FLD, 0, 1)
REG32(FLASH_CMD_CTRL_REG, 0x90)
FIELD(FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD, 24, 8)
FIELD(FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD, 23, 1)
FIELD(FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD, 20, 3)
FIELD(FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD, 19, 1)
FIELD(FLASH_CMD_CTRL_REG, ENB_MODE_BIT_FLD, 18, 1)
FIELD(FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD, 16, 2)
FIELD(FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD, 15, 1)
FIELD(FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD, 12, 3)
FIELD(FLASH_CMD_CTRL_REG, NUM_DUMMY_CYCLES_FLD, 7, 5)
FIELD(FLASH_CMD_CTRL_REG, FLASH_CMD_CTRL_RESV1_FLD, 3, 4)
FIELD(FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD, 2, 1)
FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_STATUS_FLD, 1, 1)
FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0, 1)
REG32(FLASH_CMD_ADDR_REG, 0x94)
REG32(FLASH_RD_DATA_LOWER_REG, 0xa0)
REG32(FLASH_RD_DATA_UPPER_REG, 0xa4)
REG32(FLASH_WR_DATA_LOWER_REG, 0xa8)
REG32(FLASH_WR_DATA_UPPER_REG, 0xac)
REG32(POLLING_FLASH_STATUS_REG, 0xb0)
FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD2, 21, 11)
FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_NB_DUMMY, 16, 5)
FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD1, 9, 7)
FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_VALID_FLD, 8, 1)
FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_FLD, 0, 8)
REG32(PHY_CONFIGURATION_REG, 0xb4)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESYNC_FLD, 31, 1)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESET_FLD, 30, 1)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_BYPASS_FLD, 29, 1)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV2_FLD, 23, 6)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_TX_DLL_DELAY_FLD, 16, 7)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV1_FLD, 7, 9)
FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_DELAY_FLD, 0, 7)
REG32(PHY_MASTER_CONTROL_REG, 0xb8)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV3_FLD, 25, 7)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_LOCK_MODE_FLD, 24, 1)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_BYPASS_MODE_FLD, 23, 1)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_PHASE_DETECT_SELECTOR_FLD, 20, 3)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV2_FLD, 19, 1)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_NB_INDICATIONS_FLD, 16, 3)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV1_FLD, 7, 9)
FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_INITIAL_DELAY_FLD, 0, 7)
REG32(DLL_OBSERVABLE_LOWER_REG, 0xbc)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_DLL_LOCK_INC_FLD, 24, 8)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_DLL_LOCK_DEC_FLD, 16, 8)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 15, 1)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_LOCK_VALUE_FLD, 8, 7)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_UNLOCK_COUNTER_FLD, 3, 5)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_LOCK_MODE_FLD, 1, 2)
FIELD(DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 0, 1)
REG32(DLL_OBSERVABLE_UPPER_REG, 0xc0)
FIELD(DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE_UPPER_RESV2_FLD, 23, 9)
FIELD(DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE_UPPER_TX_DECODER_OUTPUT_FLD, 16, 7)
FIELD(DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE_UPPER_RESV1_FLD, 7, 9)
FIELD(DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD, 0, 7)
REG32(OPCODE_EXT_LOWER_REG, 0xe0)
FIELD(OPCODE_EXT_LOWER_REG, EXT_READ_OPCODE_FLD, 24, 8)
FIELD(OPCODE_EXT_LOWER_REG, EXT_WRITE_OPCODE_FLD, 16, 8)
FIELD(OPCODE_EXT_LOWER_REG, EXT_POLL_OPCODE_FLD, 8, 8)
FIELD(OPCODE_EXT_LOWER_REG, EXT_STIG_OPCODE_FLD, 0, 8)
REG32(OPCODE_EXT_UPPER_REG, 0xe4)
FIELD(OPCODE_EXT_UPPER_REG, WEL_OPCODE_FLD, 24, 8)
FIELD(OPCODE_EXT_UPPER_REG, EXT_WEL_OPCODE_FLD, 16, 8)
FIELD(OPCODE_EXT_UPPER_REG, OPCODE_EXT_UPPER_RESV1_FLD, 0, 16)
REG32(MODULE_ID_REG, 0xfc)
FIELD(MODULE_ID_REG, FIX_PATCH_FLD, 24, 8)
FIELD(MODULE_ID_REG, MODULE_ID_FLD, 8, 16)
FIELD(MODULE_ID_REG, MODULE_ID_RESV_FLD, 2, 6)
FIELD(MODULE_ID_REG, CONF_FLD, 0, 2)
#define RXFF_SZ 1024
#define TXFF_SZ 1024
#define MAX_RX_DEC_OUT 8
#define SZ_512MBIT (512 * 1024 * 1024)
#define SZ_1GBIT (1024 * 1024 * 1024)
#define SZ_2GBIT (2ULL * SZ_1GBIT)
#define SZ_4GBIT (4ULL * SZ_1GBIT)
#define IS_IND_DMA_START(op) (op->done_bytes == 0)
/*
* Bit field size of R_INDIRECT_WRITE_XFER_CTRL_REG_NUM_IND_OPS_DONE_FLD
* is 2 bits, which can record max of 3 indac operations.
*/
#define IND_OPS_DONE_MAX 3
typedef enum {
WREN = 0x6,
} FlashCMD;
static unsigned int ospi_stig_addr_len(XlnxVersalOspi *s)
{
/* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
return ARRAY_FIELD_EX32(s->regs,
FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD) + 1;
}
static unsigned int ospi_stig_wr_data_len(XlnxVersalOspi *s)
{
/* Num write data bytes is NUM_WR_DATA_BYTES_FLD + 1 */
return ARRAY_FIELD_EX32(s->regs,
FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD) + 1;
}
static unsigned int ospi_stig_rd_data_len(XlnxVersalOspi *s)
{
/* Num read data bytes is NUM_RD_DATA_BYTES_FLD + 1 */
return ARRAY_FIELD_EX32(s->regs,
FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD) + 1;
}
/*
* Status bits in R_IRQ_STATUS_REG are set when the event occurs and the
* interrupt is enabled in the mask register ([1] Section 2.3.17)
*/
static void set_irq(XlnxVersalOspi *s, uint32_t set_mask)
{
s->regs[R_IRQ_STATUS_REG] |= s->regs[R_IRQ_MASK_REG] & set_mask;
}
static void ospi_update_irq_line(XlnxVersalOspi *s)
{
qemu_set_irq(s->irq, !!(s->regs[R_IRQ_STATUS_REG] &
s->regs[R_IRQ_MASK_REG]));
}
static uint8_t ospi_get_wr_opcode(XlnxVersalOspi *s)
{
return ARRAY_FIELD_EX32(s->regs,
DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD);
}
static uint8_t ospi_get_rd_opcode(XlnxVersalOspi *s)
{
return ARRAY_FIELD_EX32(s->regs,
DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD);
}
static uint32_t ospi_get_num_addr_bytes(XlnxVersalOspi *s)
{
/* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
return ARRAY_FIELD_EX32(s->regs,
DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD) + 1;
}
static void ospi_stig_membank_req(XlnxVersalOspi *s)
{
int idx = ARRAY_FIELD_EX32(s->regs,
FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD);
ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
MEM_BANK_READ_DATA_FLD, s->stig_membank[idx]);
}
static int ospi_stig_membank_rd_bytes(XlnxVersalOspi *s)
{
int rd_data_fld = ARRAY_FIELD_EX32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
NB_OF_STIG_READ_BYTES_FLD);
static const int sizes[6] = { 16, 32, 64, 128, 256, 512 };
return (rd_data_fld < 6) ? sizes[rd_data_fld] : 0;
}
static uint32_t ospi_get_page_sz(XlnxVersalOspi *s)
{
return ARRAY_FIELD_EX32(s->regs,
DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD);
}
static bool ospi_ind_rd_watermark_enabled(XlnxVersalOspi *s)
{
return s->regs[R_INDIRECT_READ_XFER_WATERMARK_REG];
}
static void ind_op_advance(IndOp *op, unsigned int len)
{
op->done_bytes += len;
assert(op->done_bytes <= op->num_bytes);
if (op->done_bytes == op->num_bytes) {
op->completed = true;
}
}
static uint32_t ind_op_next_byte(IndOp *op)
{
return op->flash_addr + op->done_bytes;
}
static uint32_t ind_op_end_byte(IndOp *op)
{
return op->flash_addr + op->num_bytes;
}
static void ospi_ind_op_next(IndOp *op)
{
op[0] = op[1];
op[1].completed = true;
}
static void ind_op_setup(IndOp *op, uint32_t flash_addr, uint32_t num_bytes)
{
if (num_bytes & 0x3) {
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI indirect op num bytes not word aligned\n");
}
op->flash_addr = flash_addr;
op->num_bytes = num_bytes;
op->done_bytes = 0;
op->completed = false;
}
static bool ospi_ind_op_completed(IndOp *op)
{
return op->completed;
}
static bool ospi_ind_op_all_completed(XlnxVersalOspi *s)
{
return s->rd_ind_op[0].completed && s->wr_ind_op[0].completed;
}
static void ospi_ind_op_cancel(IndOp *op)
{
op[0].completed = true;
op[1].completed = true;
}
static bool ospi_ind_op_add(IndOp *op, Fifo8 *fifo,
uint32_t flash_addr, uint32_t num_bytes)
{
/* Check if first indirect op has been completed */
if (op->completed) {
fifo8_reset(fifo);
ind_op_setup(op, flash_addr, num_bytes);
return false;
}
/* Check if second indirect op has been completed */
op++;
if (op->completed) {
ind_op_setup(op, flash_addr, num_bytes);
return false;
}
return true;
}
static void ospi_ind_op_queue_up_rd(XlnxVersalOspi *s)
{
uint32_t num_bytes = s->regs[R_INDIRECT_READ_XFER_NUM_BYTES_REG];
uint32_t flash_addr = s->regs[R_INDIRECT_READ_XFER_START_REG];
bool failed;
failed = ospi_ind_op_add(s->rd_ind_op, &s->rx_sram, flash_addr, num_bytes);
/* If two already queued set rd reject interrupt */
if (failed) {
set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
}
}
static void ospi_ind_op_queue_up_wr(XlnxVersalOspi *s)
{
uint32_t num_bytes = s->regs[R_INDIRECT_WRITE_XFER_NUM_BYTES_REG];
uint32_t flash_addr = s->regs[R_INDIRECT_WRITE_XFER_START_REG];
bool failed;
failed = ospi_ind_op_add(s->wr_ind_op, &s->tx_sram, flash_addr, num_bytes);
/* If two already queued set rd reject interrupt */
if (failed) {
set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
}
}
static uint64_t flash_sz(XlnxVersalOspi *s, unsigned int cs)
{
/* Flash sizes in MB */
static const uint64_t sizes[4] = { SZ_512MBIT / 8, SZ_1GBIT / 8,
SZ_2GBIT / 8, SZ_4GBIT / 8 };
uint32_t v = s->regs[R_DEV_SIZE_CONFIG_REG];
v >>= cs * R_DEV_SIZE_CONFIG_REG_MEM_SIZE_ON_CS0_FLD_LENGTH;
return sizes[FIELD_EX32(v, DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD)];
}
static unsigned int ospi_get_block_sz(XlnxVersalOspi *s)
{
unsigned int block_fld = ARRAY_FIELD_EX32(s->regs,
DEV_SIZE_CONFIG_REG,
BYTES_PER_SUBSECTOR_FLD);
return 1 << block_fld;
}
static unsigned int flash_blocks(XlnxVersalOspi *s, unsigned int cs)
{
unsigned int b_sz = ospi_get_block_sz(s);
unsigned int f_sz = flash_sz(s, cs);
return f_sz / b_sz;
}
static int ospi_ahb_decoder_cs(XlnxVersalOspi *s, hwaddr addr)
{
uint64_t end_addr = 0;
int cs;
for (cs = 0; cs < s->num_cs; cs++) {
end_addr += flash_sz(s, cs);
if (addr < end_addr) {
break;
}
}
if (cs == s->num_cs) {
/* Address is out of range */
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI flash address does not fit in configuration\n");
return -1;
}
return cs;
}
static void ospi_ahb_decoder_enable_cs(XlnxVersalOspi *s, hwaddr addr)
{
int cs = ospi_ahb_decoder_cs(s, addr);
if (cs >= 0) {
for (int i = 0; i < s->num_cs; i++) {
qemu_set_irq(s->cs_lines[i], cs != i);
}
}
}
static unsigned int single_cs(XlnxVersalOspi *s)
{
unsigned int field = ARRAY_FIELD_EX32(s->regs,
CONFIG_REG, PERIPH_CS_LINES_FLD);
/*
* Below one liner is a trick that finds the rightmost zero and makes sure
* all other bits are turned to 1. It is a variant of the 'Isolate the
* rightmost 0-bit' trick found below at the time of writing:
*
* https://emre.me/computer-science/bit-manipulation-tricks/
*
* 4'bXXX0 -> 4'b1110
* 4'bXX01 -> 4'b1101
* 4'bX011 -> 4'b1011
* 4'b0111 -> 4'b0111
* 4'b1111 -> 4'b1111
*/
return (field | ~(field + 1)) & 0xf;
}
static void ospi_update_cs_lines(XlnxVersalOspi *s)
{
unsigned int all_cs;
int i;
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_SEL_DEC_FLD)) {
all_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_CS_LINES_FLD);
} else {
all_cs = single_cs(s);
}
for (i = 0; i < s->num_cs; i++) {
bool cs = (all_cs >> i) & 1;
qemu_set_irq(s->cs_lines[i], cs);
}
}
static void ospi_dac_cs(XlnxVersalOspi *s, hwaddr addr)
{
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENABLE_AHB_DECODER_FLD)) {
ospi_ahb_decoder_enable_cs(s, addr);
} else {
ospi_update_cs_lines(s);
}
}
static void ospi_disable_cs(XlnxVersalOspi *s)
{
int i;
for (i = 0; i < s->num_cs; i++) {
qemu_set_irq(s->cs_lines[i], 1);
}
}
static void ospi_flush_txfifo(XlnxVersalOspi *s)
{
while (!fifo8_is_empty(&s->tx_fifo)) {
uint32_t tx_rx = fifo8_pop(&s->tx_fifo);
tx_rx = ssi_transfer(s->spi, tx_rx);
fifo8_push(&s->rx_fifo, tx_rx);
}
}
static void ospi_tx_fifo_push_address_raw(XlnxVersalOspi *s,
uint32_t flash_addr,
unsigned int addr_bytes)
{
/* Push write address */
if (addr_bytes == 4) {
fifo8_push(&s->tx_fifo, flash_addr >> 24);
}
if (addr_bytes >= 3) {
fifo8_push(&s->tx_fifo, flash_addr >> 16);
}
if (addr_bytes >= 2) {
fifo8_push(&s->tx_fifo, flash_addr >> 8);
}
fifo8_push(&s->tx_fifo, flash_addr);
}
static void ospi_tx_fifo_push_address(XlnxVersalOspi *s, uint32_t flash_addr)
{
/* Push write address */
int addr_bytes = ospi_get_num_addr_bytes(s);
ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
}
static void ospi_tx_fifo_push_stig_addr(XlnxVersalOspi *s)
{
uint32_t flash_addr = s->regs[R_FLASH_CMD_ADDR_REG];
unsigned int addr_bytes = ospi_stig_addr_len(s);
ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
}
static void ospi_tx_fifo_push_rd_op_addr(XlnxVersalOspi *s, uint32_t flash_addr)
{
uint8_t inst_code = ospi_get_rd_opcode(s);
fifo8_reset(&s->tx_fifo);
/* Push read opcode */
fifo8_push(&s->tx_fifo, inst_code);
/* Push read address */
ospi_tx_fifo_push_address(s, flash_addr);
}
static void ospi_tx_fifo_push_stig_wr_data(XlnxVersalOspi *s)
{
uint64_t data = s->regs[R_FLASH_WR_DATA_LOWER_REG];
int wr_data_len = ospi_stig_wr_data_len(s);
int i;
data |= (uint64_t) s->regs[R_FLASH_WR_DATA_UPPER_REG] << 32;
for (i = 0; i < wr_data_len; i++) {
int shift = i * 8;
fifo8_push(&s->tx_fifo, data >> shift);
}
}
static void ospi_tx_fifo_push_stig_rd_data(XlnxVersalOspi *s)
{
int rd_data_len;
int i;
if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
rd_data_len = ospi_stig_membank_rd_bytes(s);
} else {
rd_data_len = ospi_stig_rd_data_len(s);
}
/* transmit second part (data) */
for (i = 0; i < rd_data_len; ++i) {
fifo8_push(&s->tx_fifo, 0);
}
}
static void ospi_rx_fifo_pop_stig_rd_data(XlnxVersalOspi *s)
{
int size = ospi_stig_rd_data_len(s);
uint8_t bytes[8] = {};
int i;
size = MIN(fifo8_num_used(&s->rx_fifo), size);
assert(size <= 8);
for (i = 0; i < size; i++) {
bytes[i] = fifo8_pop(&s->rx_fifo);
}
s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(bytes);
s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(bytes + 4);
}
static void ospi_ind_read(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
{
int i;
/* Create first section of read cmd */
ospi_tx_fifo_push_rd_op_addr(s, flash_addr);
/* transmit first part */
ospi_update_cs_lines(s);
ospi_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
/* transmit second part (data) */
for (i = 0; i < len; ++i) {
fifo8_push(&s->tx_fifo, 0);
}
ospi_flush_txfifo(s);
for (i = 0; i < len; ++i) {
fifo8_push(&s->rx_sram, fifo8_pop(&s->rx_fifo));
}
/* done */
ospi_disable_cs(s);
}
static unsigned int ospi_dma_burst_size(XlnxVersalOspi *s)
{
return 1 << ARRAY_FIELD_EX32(s->regs,
DMA_PERIPH_CONFIG_REG,
NUM_BURST_REQ_BYTES_FLD);
}
static unsigned int ospi_dma_single_size(XlnxVersalOspi *s)
{
return 1 << ARRAY_FIELD_EX32(s->regs,
DMA_PERIPH_CONFIG_REG,
NUM_SINGLE_REQ_BYTES_FLD);
}
static void ind_rd_inc_num_done(XlnxVersalOspi *s)
{
unsigned int done = ARRAY_FIELD_EX32(s->regs,
INDIRECT_READ_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD);
if (done < IND_OPS_DONE_MAX) {
done++;
}
done &= 0x3;
ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD, done);
}
static void ospi_ind_rd_completed(XlnxVersalOspi *s)
{
ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
IND_OPS_DONE_STATUS_FLD, 1);
ind_rd_inc_num_done(s);
ospi_ind_op_next(s->rd_ind_op);
if (ospi_ind_op_all_completed(s)) {
set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
}
}
static void ospi_dma_read(XlnxVersalOspi *s)
{
IndOp *op = s->rd_ind_op;
uint32_t dma_len = op->num_bytes;
uint32_t burst_sz = ospi_dma_burst_size(s);
uint32_t single_sz = ospi_dma_single_size(s);
uint32_t ind_trig_range;
uint32_t remainder;
XlnxCSUDMAClass *xcdc = XLNX_CSU_DMA_GET_CLASS(s->dma_src);
ind_trig_range = (1 << ARRAY_FIELD_EX32(s->regs,
INDIRECT_TRIGGER_ADDR_RANGE_REG,
IND_RANGE_WIDTH_FLD));
remainder = dma_len % burst_sz;
remainder = remainder % single_sz;
if (burst_sz > ind_trig_range || single_sz > ind_trig_range ||
remainder != 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI DMA burst size / single size config error\n");
}
s->src_dma_inprog = true;
if (xcdc->read(s->dma_src, 0, dma_len) != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "OSPI DMA configuration error\n");
}
s->src_dma_inprog = false;
}
static void ospi_do_ind_read(XlnxVersalOspi *s)
{
IndOp *op = s->rd_ind_op;
uint32_t next_b;
uint32_t end_b;
uint32_t len;
bool start_dma = IS_IND_DMA_START(op) && !s->src_dma_inprog;
/* Continue to read flash until we run out of space in sram */
while (!ospi_ind_op_completed(op) &&
!fifo8_is_full(&s->rx_sram)) {
/* Read requested number of bytes, max bytes limited to size of sram */
next_b = ind_op_next_byte(op);
end_b = next_b + fifo8_num_free(&s->rx_sram);
end_b = MIN(end_b, ind_op_end_byte(op));
len = end_b - next_b;
ospi_ind_read(s, next_b, len);
ind_op_advance(op, len);
if (ospi_ind_rd_watermark_enabled(s)) {
ARRAY_FIELD_DP32(s->regs, IRQ_STATUS_REG,
INDIRECT_XFER_LEVEL_BREACH_FLD, 1);
set_irq(s,
R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
}
if (!s->src_dma_inprog &&
ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
ospi_dma_read(s);
}
}
/* Set sram full */
if (fifo8_num_used(&s->rx_sram) == RXFF_SZ) {
ARRAY_FIELD_DP32(s->regs,
INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 1);
set_irq(s, R_IRQ_STATUS_REG_INDRD_SRAM_FULL_FLD_MASK);
}
/* Signal completion if done, unless inside recursion via ospi_dma_read */
if (!ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD) || start_dma) {
if (ospi_ind_op_completed(op)) {
ospi_ind_rd_completed(s);
}
}
}
/* Transmit write enable instruction */
static void ospi_transmit_wel(XlnxVersalOspi *s, bool ahb_decoder_cs,
hwaddr addr)
{
fifo8_reset(&s->tx_fifo);
fifo8_push(&s->tx_fifo, WREN);
if (ahb_decoder_cs) {
ospi_ahb_decoder_enable_cs(s, addr);
} else {
ospi_update_cs_lines(s);
}
ospi_flush_txfifo(s);
ospi_disable_cs(s);
fifo8_reset(&s->rx_fifo);
}
static void ospi_ind_write(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
{
bool ahb_decoder_cs = false;
uint8_t inst_code;
int i;
assert(fifo8_num_used(&s->tx_sram) >= len);
if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
ospi_transmit_wel(s, ahb_decoder_cs, 0);
}
/* reset fifos */
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* Push write opcode */
inst_code = ospi_get_wr_opcode(s);
fifo8_push(&s->tx_fifo, inst_code);
/* Push write address */
ospi_tx_fifo_push_address(s, flash_addr);
/* data */
for (i = 0; i < len; i++) {
fifo8_push(&s->tx_fifo, fifo8_pop(&s->tx_sram));
}
/* transmit */
ospi_update_cs_lines(s);
ospi_flush_txfifo(s);
/* done */
ospi_disable_cs(s);
fifo8_reset(&s->rx_fifo);
}
static void ind_wr_inc_num_done(XlnxVersalOspi *s)
{
unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD);
if (done < IND_OPS_DONE_MAX) {
done++;
}
done &= 0x3;
ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD, done);
}
static void ospi_ind_wr_completed(XlnxVersalOspi *s)
{
ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
IND_OPS_DONE_STATUS_FLD, 1);
ind_wr_inc_num_done(s);
ospi_ind_op_next(s->wr_ind_op);
/* Set indirect op done interrupt if enabled */
if (ospi_ind_op_all_completed(s)) {
set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
}
}
static void ospi_do_indirect_write(XlnxVersalOspi *s)
{
uint32_t write_watermark = s->regs[R_INDIRECT_WRITE_XFER_WATERMARK_REG];
uint32_t pagesz = ospi_get_page_sz(s);
uint32_t page_mask = ~(pagesz - 1);
IndOp *op = s->wr_ind_op;
uint32_t next_b;
uint32_t end_b;
uint32_t len;
/* Write out tx_fifo in maximum page sz chunks */
while (!ospi_ind_op_completed(op) && fifo8_num_used(&s->tx_sram) > 0) {
next_b = ind_op_next_byte(op);
end_b = next_b + MIN(fifo8_num_used(&s->tx_sram), pagesz);
/* Dont cross page boundary */
if ((end_b & page_mask) > next_b) {
end_b &= page_mask;
}
len = end_b - next_b;
len = MIN(len, op->num_bytes - op->done_bytes);
ospi_ind_write(s, next_b, len);
ind_op_advance(op, len);
}
/*
* Always set indirect transfer level breached interrupt if enabled
* (write watermark > 0) since the tx_sram always will be emptied
*/
if (write_watermark > 0) {
set_irq(s, R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
}
/* Signal completions if done */
if (ospi_ind_op_completed(op)) {
ospi_ind_wr_completed(s);
}
}
static void ospi_stig_fill_membank(XlnxVersalOspi *s)
{
int num_rd_bytes = ospi_stig_membank_rd_bytes(s);
int idx = num_rd_bytes - 8; /* first of last 8 */
int i;
for (i = 0; i < num_rd_bytes; i++) {
s->stig_membank[i] = fifo8_pop(&s->rx_fifo);
}
g_assert((idx + 4) < ARRAY_SIZE(s->stig_membank));
/* Fill in lower upper regs */
s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(&s->stig_membank[idx]);
s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(&s->stig_membank[idx + 4]);
}
static void ospi_stig_cmd_exec(XlnxVersalOspi *s)
{
uint8_t inst_code;
/* Reset fifos */
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* Push write opcode */
inst_code = ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD);
fifo8_push(&s->tx_fifo, inst_code);
/* Push address if enabled */
if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD)) {
ospi_tx_fifo_push_stig_addr(s);
}
/* Enable cs */
ospi_update_cs_lines(s);
/* Data */
if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD)) {
ospi_tx_fifo_push_stig_wr_data(s);
} else if (ARRAY_FIELD_EX32(s->regs,
FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
/* transmit first part */
ospi_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
ospi_tx_fifo_push_stig_rd_data(s);
}
/* Transmit */
ospi_flush_txfifo(s);
ospi_disable_cs(s);
if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
if (ARRAY_FIELD_EX32(s->regs,
FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
ospi_stig_fill_membank(s);
} else {
ospi_rx_fifo_pop_stig_rd_data(s);
}
}
}
static uint32_t ospi_block_address(XlnxVersalOspi *s, unsigned int block)
{
unsigned int block_sz = ospi_get_block_sz(s);
unsigned int cs = 0;
uint32_t addr = 0;
while (cs < s->num_cs && block >= flash_blocks(s, cs)) {
block -= flash_blocks(s, 0);
addr += flash_sz(s, cs);
}
addr += block * block_sz;
return addr;
}
static uint32_t ospi_get_wr_prot_addr_low(XlnxVersalOspi *s)
{
unsigned int block = s->regs[R_LOWER_WR_PROT_REG];
return ospi_block_address(s, block);
}
static uint32_t ospi_get_wr_prot_addr_upper(XlnxVersalOspi *s)
{
unsigned int block = s->regs[R_UPPER_WR_PROT_REG];
/* Get address of first block out of defined range */
return ospi_block_address(s, block + 1);
}
static bool ospi_is_write_protected(XlnxVersalOspi *s, hwaddr addr)
{
uint32_t wr_prot_addr_upper = ospi_get_wr_prot_addr_upper(s);
uint32_t wr_prot_addr_low = ospi_get_wr_prot_addr_low(s);
bool in_range = false;
if (addr >= wr_prot_addr_low && addr < wr_prot_addr_upper) {
in_range = true;
}
if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, INV_FLD)) {
in_range = !in_range;
}
return in_range;
}
static uint64_t ospi_rx_sram_read(XlnxVersalOspi *s, unsigned int size)
{
uint8_t bytes[8] = {};
int i;
if (size < 4 && fifo8_num_used(&s->rx_sram) >= 4) {
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI only last read of internal "
"sram is allowed to be < 32 bits\n");
}
size = MIN(fifo8_num_used(&s->rx_sram), size);
assert(size <= 8);
for (i = 0; i < size; i++) {
bytes[i] = fifo8_pop(&s->rx_sram);
}
return ldq_le_p(bytes);
}
static void ospi_tx_sram_write(XlnxVersalOspi *s, uint64_t value,
unsigned int size)
{
int i;
for (i = 0; i < size && !fifo8_is_full(&s->tx_sram); i++) {
fifo8_push(&s->tx_sram, value >> 8 * i);
}
}
static uint64_t ospi_do_dac_read(void *opaque, hwaddr addr, unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
uint8_t bytes[8] = {};
int i;
/* Create first section of read cmd */
ospi_tx_fifo_push_rd_op_addr(s, (uint32_t) addr);
/* Enable cs and transmit first part */
ospi_dac_cs(s, addr);
ospi_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
/* transmit second part (data) */
for (i = 0; i < size; ++i) {
fifo8_push(&s->tx_fifo, 0);
}
ospi_flush_txfifo(s);
/* fill in result */
size = MIN(fifo8_num_used(&s->rx_fifo), size);
assert(size <= 8);
for (i = 0; i < size; i++) {
bytes[i] = fifo8_pop(&s->rx_fifo);
}
/* done */
ospi_disable_cs(s);
return ldq_le_p(bytes);
}
static void ospi_do_dac_write(void *opaque,
hwaddr addr,
uint64_t value,
unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
bool ahb_decoder_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG,
ENABLE_AHB_DECODER_FLD);
uint8_t inst_code;
unsigned int i;
if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
ospi_transmit_wel(s, ahb_decoder_cs, addr);
}
/* reset fifos */
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* Push write opcode */
inst_code = ospi_get_wr_opcode(s);
fifo8_push(&s->tx_fifo, inst_code);
/* Push write address */
ospi_tx_fifo_push_address(s, addr);
/* data */
for (i = 0; i < size; i++) {
fifo8_push(&s->tx_fifo, value >> 8 * i);
}
/* Enable cs and transmit */
ospi_dac_cs(s, addr);
ospi_flush_txfifo(s);
ospi_disable_cs(s);
fifo8_reset(&s->rx_fifo);
}
static void flash_cmd_ctrl_mem_reg_post_write(RegisterInfo *reg,
uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
if (ARRAY_FIELD_EX32(s->regs,
FLASH_COMMAND_CTRL_MEM_REG,
TRIGGER_MEM_BANK_REQ_FLD)) {
ospi_stig_membank_req(s);
ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
TRIGGER_MEM_BANK_REQ_FLD, 0);
}
}
}
static void flash_cmd_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD) &&
ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD)) {
ospi_stig_cmd_exec(s);
set_irq(s, R_IRQ_STATUS_REG_STIG_REQ_INT_FLD_MASK);
ARRAY_FIELD_DP32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0);
}
}
static uint64_t ind_wr_dec_num_done(XlnxVersalOspi *s, uint64_t val)
{
unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD);
done--;
done &= 0x3;
val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD, done);
return val;
}
static bool ind_wr_clearing_op_done(XlnxVersalOspi *s, uint64_t new_val)
{
bool set_in_reg = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
IND_OPS_DONE_STATUS_FLD);
bool set_in_new_val = FIELD_EX32(new_val, INDIRECT_WRITE_XFER_CTRL_REG,
IND_OPS_DONE_STATUS_FLD);
/* return true if clearing bit */
return set_in_reg && !set_in_new_val;
}
static uint64_t ind_wr_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (ind_wr_clearing_op_done(s, val)) {
val = ind_wr_dec_num_done(s, val);
}
return val;
}
static void ind_wr_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (s->ind_write_disabled) {
return;
}
if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD)) {
ospi_ind_op_queue_up_wr(s);
ospi_do_indirect_write(s);
ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0);
}
if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD)) {
ospi_ind_op_cancel(s->wr_ind_op);
fifo8_reset(&s->tx_sram);
ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 0);
}
}
static uint64_t ind_wr_xfer_ctrl_reg_post_read(RegisterInfo *reg,
uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
IndOp *op = s->wr_ind_op;
/* Check if ind ops is ongoing */
if (!ospi_ind_op_completed(&op[0])) {
/* Check if two ind ops are queued */
if (!ospi_ind_op_completed(&op[1])) {
val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
WR_QUEUED_FLD, 1);
}
val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 1);
}
return val;
}
static uint64_t ind_rd_dec_num_done(XlnxVersalOspi *s, uint64_t val)
{
unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD);
done--;
done &= 0x3;
val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
NUM_IND_OPS_DONE_FLD, done);
return val;
}
static uint64_t ind_rd_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (FIELD_EX32(val, INDIRECT_READ_XFER_CTRL_REG,
IND_OPS_DONE_STATUS_FLD)) {
val = ind_rd_dec_num_done(s, val);
val &= ~R_INDIRECT_READ_XFER_CTRL_REG_IND_OPS_DONE_STATUS_FLD_MASK;
}
return val;
}
static void ind_rd_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD)) {
ospi_ind_op_queue_up_rd(s);
ospi_do_ind_read(s);
ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0);
}
if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD)) {
ospi_ind_op_cancel(s->rd_ind_op);
fifo8_reset(&s->rx_sram);
ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 0);
}
}
static uint64_t ind_rd_xfer_ctrl_reg_post_read(RegisterInfo *reg,
uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
IndOp *op = s->rd_ind_op;
/* Check if ind ops is ongoing */
if (!ospi_ind_op_completed(&op[0])) {
/* Check if two ind ops are queued */
if (!ospi_ind_op_completed(&op[1])) {
val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
RD_QUEUED_FLD, 1);
}
val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 1);
}
return val;
}
static uint64_t sram_fill_reg_post_read(RegisterInfo *reg, uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
val = ((fifo8_num_used(&s->tx_sram) & 0xFFFF) << 16) |
(fifo8_num_used(&s->rx_sram) & 0xFFFF);
return val;
}
static uint64_t dll_obs_upper_reg_post_read(RegisterInfo *reg, uint64_t val)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
uint32_t rx_dec_out;
rx_dec_out = FIELD_EX32(val, DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD);
if (rx_dec_out < MAX_RX_DEC_OUT) {
ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_UPPER_REG,
DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD,
rx_dec_out + 1);
}
return val;
}
static void xlnx_versal_ospi_reset(DeviceState *dev)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
unsigned int i;
for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
register_reset(&s->regs_info[i]);
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_sram);
fifo8_reset(&s->tx_sram);
s->rd_ind_op[0].completed = true;
s->rd_ind_op[1].completed = true;
s->wr_ind_op[0].completed = true;
s->wr_ind_op[1].completed = true;
ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 1);
ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 1);
}
static RegisterAccessInfo ospi_regs_info[] = {
{ .name = "CONFIG_REG",
.addr = A_CONFIG_REG,
.reset = 0x80780081,
.ro = 0x9c000000,
},{ .name = "DEV_INSTR_RD_CONFIG_REG",
.addr = A_DEV_INSTR_RD_CONFIG_REG,
.reset = 0x3,
.ro = 0xe0ecc800,
},{ .name = "DEV_INSTR_WR_CONFIG_REG",
.addr = A_DEV_INSTR_WR_CONFIG_REG,
.reset = 0x2,
.ro = 0xe0fcce00,
},{ .name = "DEV_DELAY_REG",
.addr = A_DEV_DELAY_REG,
},{ .name = "RD_DATA_CAPTURE_REG",
.addr = A_RD_DATA_CAPTURE_REG,
.reset = 0x1,
.ro = 0xfff0fec0,
},{ .name = "DEV_SIZE_CONFIG_REG",
.addr = A_DEV_SIZE_CONFIG_REG,
.reset = 0x101002,
.ro = 0xe0000000,
},{ .name = "SRAM_PARTITION_CFG_REG",
.addr = A_SRAM_PARTITION_CFG_REG,
.reset = 0x80,
.ro = 0xffffff00,
},{ .name = "IND_AHB_ADDR_TRIGGER_REG",
.addr = A_IND_AHB_ADDR_TRIGGER_REG,
},{ .name = "DMA_PERIPH_CONFIG_REG",
.addr = A_DMA_PERIPH_CONFIG_REG,
.ro = 0xfffff0f0,
},{ .name = "REMAP_ADDR_REG",
.addr = A_REMAP_ADDR_REG,
},{ .name = "MODE_BIT_CONFIG_REG",
.addr = A_MODE_BIT_CONFIG_REG,
.reset = 0x200,
.ro = 0xffff7800,
},{ .name = "SRAM_FILL_REG",
.addr = A_SRAM_FILL_REG,
.ro = 0xffffffff,
.post_read = sram_fill_reg_post_read,
},{ .name = "TX_THRESH_REG",
.addr = A_TX_THRESH_REG,
.reset = 0x1,
.ro = 0xffffffe0,
},{ .name = "RX_THRESH_REG",
.addr = A_RX_THRESH_REG,
.reset = 0x1,
.ro = 0xffffffe0,
},{ .name = "WRITE_COMPLETION_CTRL_REG",
.addr = A_WRITE_COMPLETION_CTRL_REG,
.reset = 0x10005,
.ro = 0x1800,
},{ .name = "NO_OF_POLLS_BEF_EXP_REG",
.addr = A_NO_OF_POLLS_BEF_EXP_REG,
.reset = 0xffffffff,
},{ .name = "IRQ_STATUS_REG",
.addr = A_IRQ_STATUS_REG,
.ro = 0xfff08000,
.w1c = 0xf7fff,
},{ .name = "IRQ_MASK_REG",
.addr = A_IRQ_MASK_REG,
.ro = 0xfff08000,
},{ .name = "LOWER_WR_PROT_REG",
.addr = A_LOWER_WR_PROT_REG,
},{ .name = "UPPER_WR_PROT_REG",
.addr = A_UPPER_WR_PROT_REG,
},{ .name = "WR_PROT_CTRL_REG",
.addr = A_WR_PROT_CTRL_REG,
.ro = 0xfffffffc,
},{ .name = "INDIRECT_READ_XFER_CTRL_REG",
.addr = A_INDIRECT_READ_XFER_CTRL_REG,
.ro = 0xffffffd4,
.w1c = 0x08,
.pre_write = ind_rd_xfer_ctrl_reg_pre_write,
.post_write = ind_rd_xfer_ctrl_reg_post_write,
.post_read = ind_rd_xfer_ctrl_reg_post_read,
},{ .name = "INDIRECT_READ_XFER_WATERMARK_REG",
.addr = A_INDIRECT_READ_XFER_WATERMARK_REG,
},{ .name = "INDIRECT_READ_XFER_START_REG",
.addr = A_INDIRECT_READ_XFER_START_REG,
},{ .name = "INDIRECT_READ_XFER_NUM_BYTES_REG",
.addr = A_INDIRECT_READ_XFER_NUM_BYTES_REG,
},{ .name = "INDIRECT_WRITE_XFER_CTRL_REG",
.addr = A_INDIRECT_WRITE_XFER_CTRL_REG,
.ro = 0xffffffdc,
.w1c = 0x20,
.pre_write = ind_wr_xfer_ctrl_reg_pre_write,
.post_write = ind_wr_xfer_ctrl_reg_post_write,
.post_read = ind_wr_xfer_ctrl_reg_post_read,
},{ .name = "INDIRECT_WRITE_XFER_WATERMARK_REG",
.addr = A_INDIRECT_WRITE_XFER_WATERMARK_REG,
.reset = 0xffffffff,
},{ .name = "INDIRECT_WRITE_XFER_START_REG",
.addr = A_INDIRECT_WRITE_XFER_START_REG,
},{ .name = "INDIRECT_WRITE_XFER_NUM_BYTES_REG",
.addr = A_INDIRECT_WRITE_XFER_NUM_BYTES_REG,
},{ .name = "INDIRECT_TRIGGER_ADDR_RANGE_REG",
.addr = A_INDIRECT_TRIGGER_ADDR_RANGE_REG,
.reset = 0x4,
.ro = 0xfffffff0,
},{ .name = "FLASH_COMMAND_CTRL_MEM_REG",
.addr = A_FLASH_COMMAND_CTRL_MEM_REG,
.ro = 0xe008fffe,
.post_write = flash_cmd_ctrl_mem_reg_post_write,
},{ .name = "FLASH_CMD_CTRL_REG",
.addr = A_FLASH_CMD_CTRL_REG,
.ro = 0x7a,
.post_write = flash_cmd_ctrl_reg_post_write,
},{ .name = "FLASH_CMD_ADDR_REG",
.addr = A_FLASH_CMD_ADDR_REG,
},{ .name = "FLASH_RD_DATA_LOWER_REG",
.addr = A_FLASH_RD_DATA_LOWER_REG,
.ro = 0xffffffff,
},{ .name = "FLASH_RD_DATA_UPPER_REG",
.addr = A_FLASH_RD_DATA_UPPER_REG,
.ro = 0xffffffff,
},{ .name = "FLASH_WR_DATA_LOWER_REG",
.addr = A_FLASH_WR_DATA_LOWER_REG,
},{ .name = "FLASH_WR_DATA_UPPER_REG",
.addr = A_FLASH_WR_DATA_UPPER_REG,
},{ .name = "POLLING_FLASH_STATUS_REG",
.addr = A_POLLING_FLASH_STATUS_REG,
.ro = 0xfff0ffff,
},{ .name = "PHY_CONFIGURATION_REG",
.addr = A_PHY_CONFIGURATION_REG,
.reset = 0x40000000,
.ro = 0x1f80ff80,
},{ .name = "PHY_MASTER_CONTROL_REG",
.addr = A_PHY_MASTER_CONTROL_REG,
.reset = 0x800000,
.ro = 0xfe08ff80,
},{ .name = "DLL_OBSERVABLE_LOWER_REG",
.addr = A_DLL_OBSERVABLE_LOWER_REG,
.ro = 0xffffffff,
},{ .name = "DLL_OBSERVABLE_UPPER_REG",
.addr = A_DLL_OBSERVABLE_UPPER_REG,
.ro = 0xffffffff,
.post_read = dll_obs_upper_reg_post_read,
},{ .name = "OPCODE_EXT_LOWER_REG",
.addr = A_OPCODE_EXT_LOWER_REG,
.reset = 0x13edfa00,
},{ .name = "OPCODE_EXT_UPPER_REG",
.addr = A_OPCODE_EXT_UPPER_REG,
.reset = 0x6f90000,
.ro = 0xffff,
},{ .name = "MODULE_ID_REG",
.addr = A_MODULE_ID_REG,
.reset = 0x300,
.ro = 0xffffffff,
}
};
/* Return dev-obj from reg-region created by register_init_block32 */
static XlnxVersalOspi *xilinx_ospi_of_mr(void *mr_accessor)
{
RegisterInfoArray *reg_array = mr_accessor;
Object *dev;
dev = reg_array->mem.owner;
assert(dev);
return XILINX_VERSAL_OSPI(dev);
}
static void ospi_write(void *opaque, hwaddr addr, uint64_t value,
unsigned int size)
{
XlnxVersalOspi *s = xilinx_ospi_of_mr(opaque);
register_write_memory(opaque, addr, value, size);
ospi_update_irq_line(s);
}
static const MemoryRegionOps ospi_ops = {
.read = register_read_memory,
.write = ospi_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t ospi_indac_read(void *opaque, unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
uint64_t ret = ospi_rx_sram_read(s, size);
if (!ospi_ind_op_completed(s->rd_ind_op)) {
ospi_do_ind_read(s);
}
return ret;
}
static void ospi_indac_write(void *opaque, uint64_t value, unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
g_assert(!s->ind_write_disabled);
if (!ospi_ind_op_completed(s->wr_ind_op)) {
ospi_tx_sram_write(s, value, size);
ospi_do_indirect_write(s);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI wr into indac area while no ongoing indac wr\n");
}
}
static bool is_inside_indac_range(XlnxVersalOspi *s, hwaddr addr)
{
uint32_t range_start;
uint32_t range_end;
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
return true;
}
range_start = s->regs[R_IND_AHB_ADDR_TRIGGER_REG];
range_end = range_start +
(1 << ARRAY_FIELD_EX32(s->regs,
INDIRECT_TRIGGER_ADDR_RANGE_REG,
IND_RANGE_WIDTH_FLD));
addr += s->regs[R_IND_AHB_ADDR_TRIGGER_REG] & 0xF0000000;
return addr >= range_start && addr < range_end;
}
static bool ospi_is_indac_active(XlnxVersalOspi *s)
{
/*
* When dac and indac cannot be active at the same time,
* return true when dac is disabled.
*/
return s->dac_with_indac || !s->dac_enable;
}
static uint64_t ospi_dac_read(void *opaque, hwaddr addr, unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
if (ospi_is_indac_active(s) &&
is_inside_indac_range(s, addr)) {
return ospi_indac_read(s, size);
}
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD)
&& s->dac_enable) {
if (ARRAY_FIELD_EX32(s->regs,
CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
addr += s->regs[R_REMAP_ADDR_REG];
}
return ospi_do_dac_read(opaque, addr, size);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while DAC disabled\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while OSPI disabled\n");
}
return 0;
}
static void ospi_dac_write(void *opaque, hwaddr addr, uint64_t value,
unsigned int size)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
if (ospi_is_indac_active(s) &&
!s->ind_write_disabled &&
is_inside_indac_range(s, addr)) {
return ospi_indac_write(s, value, size);
}
if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD) &&
s->dac_enable) {
if (ARRAY_FIELD_EX32(s->regs,
CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
addr += s->regs[R_REMAP_ADDR_REG];
}
/* Check if addr is write protected */
if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, ENB_FLD) &&
ospi_is_write_protected(s, addr)) {
set_irq(s, R_IRQ_STATUS_REG_PROT_WR_ATTEMPT_FLD_MASK);
ospi_update_irq_line(s);
qemu_log_mask(LOG_GUEST_ERROR,
"OSPI writing into write protected area\n");
return;
}
ospi_do_dac_write(opaque, addr, value, size);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while DAC disabled\n");
}
} else {
qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while OSPI disabled\n");
}
}
static const MemoryRegionOps ospi_dac_ops = {
.read = ospi_dac_read,
.write = ospi_dac_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void ospi_update_dac_status(void *opaque, int n, int level)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
s->dac_enable = level;
}
static void xlnx_versal_ospi_realize(DeviceState *dev, Error **errp)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
s->num_cs = 4;
s->spi = ssi_create_bus(dev, "spi0");
s->cs_lines = g_new0(qemu_irq, s->num_cs);
for (int i = 0; i < s->num_cs; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
fifo8_create(&s->rx_fifo, RXFF_SZ);
fifo8_create(&s->tx_fifo, TXFF_SZ);
fifo8_create(&s->rx_sram, RXFF_SZ);
fifo8_create(&s->tx_sram, TXFF_SZ);
}
static void xlnx_versal_ospi_init(Object *obj)
{
XlnxVersalOspi *s = XILINX_VERSAL_OSPI(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
DeviceState *dev = DEVICE(obj);
RegisterInfoArray *reg_array;
memory_region_init(&s->iomem, obj, TYPE_XILINX_VERSAL_OSPI,
XILINX_VERSAL_OSPI_R_MAX * 4);
reg_array =
register_init_block32(DEVICE(obj), ospi_regs_info,
ARRAY_SIZE(ospi_regs_info),
s->regs_info, s->regs,
&ospi_ops,
XILINX_VERSAL_OSPI_ERR_DEBUG,
XILINX_VERSAL_OSPI_R_MAX * 4);
memory_region_add_subregion(&s->iomem, 0x0, &reg_array->mem);
sysbus_init_mmio(sbd, &s->iomem);
memory_region_init_io(&s->iomem_dac, obj, &ospi_dac_ops, s,
TYPE_XILINX_VERSAL_OSPI "-dac", 0x20000000);
sysbus_init_mmio(sbd, &s->iomem_dac);
/*
* The OSPI DMA reads flash data through the OSPI linear address space (the
* iomem_dac region), because of this the reentrancy guard needs to be
* disabled.
*/
s->iomem_dac.disable_reentrancy_guard = true;
sysbus_init_irq(sbd, &s->irq);
object_property_add_link(obj, "dma-src", TYPE_XLNX_CSU_DMA,
(Object **)&s->dma_src,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
qdev_init_gpio_in_named(dev, ospi_update_dac_status, "ospi-mux-sel", 1);
}
static const VMStateDescription vmstate_ind_op = {
.name = "OSPIIndOp",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(flash_addr, IndOp),
VMSTATE_UINT32(num_bytes, IndOp),
VMSTATE_UINT32(done_bytes, IndOp),
VMSTATE_BOOL(completed, IndOp),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_xlnx_versal_ospi = {
.name = TYPE_XILINX_VERSAL_OSPI,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_FIFO8(rx_fifo, XlnxVersalOspi),
VMSTATE_FIFO8(tx_fifo, XlnxVersalOspi),
VMSTATE_FIFO8(rx_sram, XlnxVersalOspi),
VMSTATE_FIFO8(tx_sram, XlnxVersalOspi),
VMSTATE_BOOL(ind_write_disabled, XlnxVersalOspi),
VMSTATE_BOOL(dac_with_indac, XlnxVersalOspi),
VMSTATE_BOOL(dac_enable, XlnxVersalOspi),
VMSTATE_BOOL(src_dma_inprog, XlnxVersalOspi),
VMSTATE_STRUCT_ARRAY(rd_ind_op, XlnxVersalOspi, 2, 1,
vmstate_ind_op, IndOp),
VMSTATE_STRUCT_ARRAY(wr_ind_op, XlnxVersalOspi, 2, 1,
vmstate_ind_op, IndOp),
VMSTATE_UINT32_ARRAY(regs, XlnxVersalOspi, XILINX_VERSAL_OSPI_R_MAX),
VMSTATE_UINT8_ARRAY(stig_membank, XlnxVersalOspi, 512),
VMSTATE_END_OF_LIST(),
}
};
static Property xlnx_versal_ospi_properties[] = {
DEFINE_PROP_BOOL("dac-with-indac", XlnxVersalOspi, dac_with_indac, false),
DEFINE_PROP_BOOL("indac-write-disabled", XlnxVersalOspi,
ind_write_disabled, false),
DEFINE_PROP_END_OF_LIST(),
};
static void xlnx_versal_ospi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = xlnx_versal_ospi_reset;
dc->realize = xlnx_versal_ospi_realize;
dc->vmsd = &vmstate_xlnx_versal_ospi;
device_class_set_props(dc, xlnx_versal_ospi_properties);
}
static const TypeInfo xlnx_versal_ospi_info = {
.name = TYPE_XILINX_VERSAL_OSPI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XlnxVersalOspi),
.class_init = xlnx_versal_ospi_class_init,
.instance_init = xlnx_versal_ospi_init,
};
static void xlnx_versal_ospi_register_types(void)
{
type_register_static(&xlnx_versal_ospi_info);
}
type_init(xlnx_versal_ospi_register_types)