qemu/hw/scsi-disk.c
ths e91c8a7783 Spelling fixes, by Stefan Weil.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2927 c046a42c-6fe2-441c-8c8c-71466251a162
2007-06-03 13:35:16 +00:00

603 lines
17 KiB
C

/*
* SCSI Device emulation
*
* Copyright (c) 2006 CodeSourcery.
* Based on code by Fabrice Bellard
*
* Written by Paul Brook
*
* This code is licenced under the LGPL.
*
* Note that this file only handles the SCSI architecture model and device
* commands. Emultion of interface/link layer protocols is handled by
* the host adapter emulation.
*/
//#define DEBUG_SCSI
#ifdef DEBUG_SCSI
#define DPRINTF(fmt, args...) \
do { printf("scsi-disk: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while(0)
#endif
#define BADF(fmt, args...) \
do { fprintf(stderr, "scsi-disk: " fmt , ##args); } while (0)
#include "vl.h"
#define SENSE_NO_SENSE 0
#define SENSE_NOT_READY 2
#define SENSE_HARDWARE_ERROR 4
#define SENSE_ILLEGAL_REQUEST 5
#define SCSI_DMA_BUF_SIZE 65536
typedef struct SCSIRequest {
SCSIDevice *dev;
uint32_t tag;
/* ??? We should probably keep track of whether the data trasfer is
a read or a write. Currently we rely on the host getting it right. */
/* Both sector and sector_count are in terms of qemu 512 byte blocks. */
int sector;
int sector_count;
/* The amounnt of data in the buffer. */
int buf_len;
uint8_t dma_buf[SCSI_DMA_BUF_SIZE];
BlockDriverAIOCB *aiocb;
struct SCSIRequest *next;
} SCSIRequest;
struct SCSIDevice
{
BlockDriverState *bdrv;
SCSIRequest *requests;
/* The qemu block layer uses a fixed 512 byte sector size.
This is the number of 512 byte blocks in a single scsi sector. */
int cluster_size;
int sense;
int tcq;
/* Completion functions may be called from either scsi_{read,write}_data
or from the AIO completion routines. */
scsi_completionfn completion;
void *opaque;
};
/* Global pool of SCSIRequest structures. */
static SCSIRequest *free_requests = NULL;
static SCSIRequest *scsi_new_request(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
if (free_requests) {
r = free_requests;
free_requests = r->next;
} else {
r = qemu_malloc(sizeof(SCSIRequest));
}
r->dev = s;
r->tag = tag;
r->sector_count = 0;
r->buf_len = 0;
r->aiocb = NULL;
r->next = s->requests;
s->requests = r;
return r;
}
static void scsi_remove_request(SCSIRequest *r)
{
SCSIRequest *last;
SCSIDevice *s = r->dev;
if (s->requests == r) {
s->requests = r->next;
} else {
last = s->requests;
while (last && last->next != r)
last = last->next;
if (last) {
last->next = r->next;
} else {
BADF("Orphaned request\n");
}
}
r->next = free_requests;
free_requests = r;
}
static SCSIRequest *scsi_find_request(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
r = s->requests;
while (r && r->tag != tag)
r = r->next;
return r;
}
/* Helper function for command completion. */
static void scsi_command_complete(SCSIRequest *r, int sense)
{
SCSIDevice *s = r->dev;
uint32_t tag;
DPRINTF("Command complete tag=0x%x sense=%d\n", r->tag, sense);
s->sense = sense;
tag = r->tag;
scsi_remove_request(r);
s->completion(s->opaque, SCSI_REASON_DONE, tag, sense);
}
/* Cancel a pending data transfer. */
void scsi_cancel_io(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
DPRINTF("Cancel tag=0x%x\n", tag);
r = scsi_find_request(s, tag);
if (r) {
if (r->aiocb)
bdrv_aio_cancel(r->aiocb);
r->aiocb = NULL;
scsi_remove_request(r);
}
}
static void scsi_read_complete(void * opaque, int ret)
{
SCSIRequest *r = (SCSIRequest *)opaque;
SCSIDevice *s = r->dev;
if (ret) {
DPRINTF("IO error\n");
scsi_command_complete(r, SENSE_HARDWARE_ERROR);
return;
}
DPRINTF("Data ready tag=0x%x len=%d\n", r->tag, r->buf_len);
s->completion(s->opaque, SCSI_REASON_DATA, r->tag, r->buf_len);
}
/* Read more data from scsi device into buffer. */
void scsi_read_data(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
uint32_t n;
r = scsi_find_request(s, tag);
if (!r) {
BADF("Bad read tag 0x%x\n", tag);
/* ??? This is the wrong error. */
scsi_command_complete(r, SENSE_HARDWARE_ERROR);
return;
}
if (r->sector_count == (uint32_t)-1) {
DPRINTF("Read buf_len=%d\n", r->buf_len);
r->sector_count = 0;
s->completion(s->opaque, SCSI_REASON_DATA, r->tag, r->buf_len);
return;
}
DPRINTF("Read sector_count=%d\n", r->sector_count);
if (r->sector_count == 0) {
scsi_command_complete(r, SENSE_NO_SENSE);
return;
}
n = r->sector_count;
if (n > SCSI_DMA_BUF_SIZE / 512)
n = SCSI_DMA_BUF_SIZE / 512;
r->buf_len = n * 512;
r->aiocb = bdrv_aio_read(s->bdrv, r->sector, r->dma_buf, n,
scsi_read_complete, r);
if (r->aiocb == NULL)
scsi_command_complete(r, SENSE_HARDWARE_ERROR);
r->sector += n;
r->sector_count -= n;
}
static void scsi_write_complete(void * opaque, int ret)
{
SCSIRequest *r = (SCSIRequest *)opaque;
SCSIDevice *s = r->dev;
uint32_t len;
if (ret) {
fprintf(stderr, "scsi-disc: IO write error\n");
exit(1);
}
r->aiocb = NULL;
if (r->sector_count == 0) {
scsi_command_complete(r, SENSE_NO_SENSE);
} else {
len = r->sector_count * 512;
if (len > SCSI_DMA_BUF_SIZE) {
len = SCSI_DMA_BUF_SIZE;
}
r->buf_len = len;
DPRINTF("Write complete tag=0x%x more=%d\n", r->tag, len);
s->completion(s->opaque, SCSI_REASON_DATA, r->tag, len);
}
}
/* Write data to a scsi device. Returns nonzero on failure.
The transfer may complete asynchronously. */
int scsi_write_data(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
uint32_t n;
DPRINTF("Write data tag=0x%x\n", tag);
r = scsi_find_request(s, tag);
if (!r) {
BADF("Bad write tag 0x%x\n", tag);
scsi_command_complete(r, SENSE_HARDWARE_ERROR);
return 1;
}
if (r->aiocb)
BADF("Data transfer already in progress\n");
n = r->buf_len / 512;
if (n) {
r->aiocb = bdrv_aio_write(s->bdrv, r->sector, r->dma_buf, n,
scsi_write_complete, r);
if (r->aiocb == NULL)
scsi_command_complete(r, SENSE_HARDWARE_ERROR);
r->sector += n;
r->sector_count -= n;
} else {
/* Invoke completion routine to fetch data from host. */
scsi_write_complete(r, 0);
}
return 0;
}
/* Return a pointer to the data buffer. */
uint8_t *scsi_get_buf(SCSIDevice *s, uint32_t tag)
{
SCSIRequest *r;
r = scsi_find_request(s, tag);
if (!r) {
BADF("Bad buffer tag 0x%x\n", tag);
return NULL;
}
return r->dma_buf;
}
/* Execute a scsi command. Returns the length of the data expected by the
command. This will be Positive for data transfers from the device
(eg. disk reads), negative for transfers to the device (eg. disk writes),
and zero if the command does not transfer any data. */
int32_t scsi_send_command(SCSIDevice *s, uint32_t tag, uint8_t *buf, int lun)
{
int64_t nb_sectors;
uint32_t lba;
uint32_t len;
int cmdlen;
int is_write;
uint8_t command;
uint8_t *outbuf;
SCSIRequest *r;
command = buf[0];
r = scsi_find_request(s, tag);
if (r) {
BADF("Tag 0x%x already in use\n", tag);
scsi_cancel_io(s, tag);
}
/* ??? Tags are not unique for different luns. We only implement a
single lun, so this should not matter. */
r = scsi_new_request(s, tag);
outbuf = r->dma_buf;
is_write = 0;
DPRINTF("Command: lun=%d tag=0x%x data=0x%02x", lun, tag, buf[0]);
switch (command >> 5) {
case 0:
lba = buf[3] | (buf[2] << 8) | ((buf[1] & 0x1f) << 16);
len = buf[4];
cmdlen = 6;
break;
case 1:
case 2:
lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24);
len = buf[8] | (buf[7] << 8);
cmdlen = 10;
break;
case 4:
lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24);
len = buf[13] | (buf[12] << 8) | (buf[11] << 16) | (buf[10] << 24);
cmdlen = 16;
break;
case 5:
lba = buf[5] | (buf[4] << 8) | (buf[3] << 16) | (buf[2] << 24);
len = buf[9] | (buf[8] << 8) | (buf[7] << 16) | (buf[6] << 24);
cmdlen = 12;
break;
default:
BADF("Unsupported command length, command %x\n", command);
goto fail;
}
#ifdef DEBUG_SCSI
{
int i;
for (i = 1; i < cmdlen; i++) {
printf(" 0x%02x", buf[i]);
}
printf("\n");
}
#endif
if (lun || buf[1] >> 5) {
/* Only LUN 0 supported. */
DPRINTF("Unimplemented LUN %d\n", lun ? lun : buf[1] >> 5);
goto fail;
}
switch (command) {
case 0x0:
DPRINTF("Test Unit Ready\n");
break;
case 0x03:
DPRINTF("Request Sense (len %d)\n", len);
if (len < 4)
goto fail;
memset(outbuf, 0, 4);
outbuf[0] = 0xf0;
outbuf[1] = 0;
outbuf[2] = s->sense;
r->buf_len = 4;
break;
case 0x12:
DPRINTF("Inquiry (len %d)\n", len);
if (len < 36) {
BADF("Inquiry buffer too small (%d)\n", len);
}
memset(outbuf, 0, 36);
if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) {
outbuf[0] = 5;
outbuf[1] = 0x80;
memcpy(&outbuf[16], "QEMU CD-ROM ", 16);
} else {
outbuf[0] = 0;
memcpy(&outbuf[16], "QEMU HARDDISK ", 16);
}
memcpy(&outbuf[8], "QEMU ", 8);
memcpy(&outbuf[32], QEMU_VERSION, 4);
/* Identify device as SCSI-3 rev 1.
Some later commands are also implemented. */
outbuf[2] = 3;
outbuf[3] = 2; /* Format 2 */
outbuf[4] = 31;
/* Sync data transfer and TCQ. */
outbuf[7] = 0x10 | (s->tcq ? 0x02 : 0);
r->buf_len = 36;
break;
case 0x16:
DPRINTF("Reserve(6)\n");
if (buf[1] & 1)
goto fail;
break;
case 0x17:
DPRINTF("Release(6)\n");
if (buf[1] & 1)
goto fail;
break;
case 0x1a:
case 0x5a:
{
uint8_t *p;
int page;
page = buf[2] & 0x3f;
DPRINTF("Mode Sense (page %d, len %d)\n", page, len);
p = outbuf;
memset(p, 0, 4);
outbuf[1] = 0; /* Default media type. */
outbuf[3] = 0; /* Block descriptor length. */
if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) {
outbuf[2] = 0x80; /* Readonly. */
}
p += 4;
if ((page == 8 || page == 0x3f)) {
/* Caching page. */
memset(p,0,20);
p[0] = 8;
p[1] = 0x12;
p[2] = 4; /* WCE */
p += 20;
}
if ((page == 0x3f || page == 0x2a)
&& (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM)) {
/* CD Capabilities and Mechanical Status page. */
p[0] = 0x2a;
p[1] = 0x14;
p[2] = 3; // CD-R & CD-RW read
p[3] = 0; // Writing not supported
p[4] = 0x7f; /* Audio, composite, digital out,
mode 2 form 1&2, multi session */
p[5] = 0xff; /* CD DA, DA accurate, RW supported,
RW corrected, C2 errors, ISRC,
UPC, Bar code */
p[6] = 0x2d | (bdrv_is_locked(s->bdrv)? 2 : 0);
/* Locking supported, jumper present, eject, tray */
p[7] = 0; /* no volume & mute control, no
changer */
p[8] = (50 * 176) >> 8; // 50x read speed
p[9] = (50 * 176) & 0xff;
p[10] = 0 >> 8; // No volume
p[11] = 0 & 0xff;
p[12] = 2048 >> 8; // 2M buffer
p[13] = 2048 & 0xff;
p[14] = (16 * 176) >> 8; // 16x read speed current
p[15] = (16 * 176) & 0xff;
p[18] = (16 * 176) >> 8; // 16x write speed
p[19] = (16 * 176) & 0xff;
p[20] = (16 * 176) >> 8; // 16x write speed current
p[21] = (16 * 176) & 0xff;
p += 22;
}
r->buf_len = p - outbuf;
outbuf[0] = r->buf_len - 4;
if (r->buf_len > len)
r->buf_len = len;
}
break;
case 0x1b:
DPRINTF("Start Stop Unit\n");
break;
case 0x1e:
DPRINTF("Prevent Allow Medium Removal (prevent = %d)\n", buf[4] & 3);
bdrv_set_locked(s->bdrv, buf[4] & 1);
break;
case 0x25:
DPRINTF("Read Capacity\n");
/* The normal LEN field for this command is zero. */
memset(outbuf, 0, 8);
bdrv_get_geometry(s->bdrv, &nb_sectors);
/* Returned value is the address of the last sector. */
if (nb_sectors) {
nb_sectors--;
outbuf[0] = (nb_sectors >> 24) & 0xff;
outbuf[1] = (nb_sectors >> 16) & 0xff;
outbuf[2] = (nb_sectors >> 8) & 0xff;
outbuf[3] = nb_sectors & 0xff;
outbuf[4] = 0;
outbuf[5] = 0;
outbuf[6] = s->cluster_size * 2;
outbuf[7] = 0;
r->buf_len = 8;
} else {
scsi_command_complete(r, SENSE_NOT_READY);
return 0;
}
break;
case 0x08:
case 0x28:
DPRINTF("Read (sector %d, count %d)\n", lba, len);
r->sector = lba * s->cluster_size;
r->sector_count = len * s->cluster_size;
break;
case 0x0a:
case 0x2a:
DPRINTF("Write (sector %d, count %d)\n", lba, len);
r->sector = lba * s->cluster_size;
r->sector_count = len * s->cluster_size;
is_write = 1;
break;
case 0x35:
DPRINTF("Synchronise cache (sector %d, count %d)\n", lba, len);
bdrv_flush(s->bdrv);
break;
case 0x43:
{
int start_track, format, msf, toclen;
msf = buf[1] & 2;
format = buf[2] & 0xf;
start_track = buf[6];
bdrv_get_geometry(s->bdrv, &nb_sectors);
DPRINTF("Read TOC (track %d format %d msf %d)\n", start_track, format, msf >> 1);
switch(format) {
case 0:
toclen = cdrom_read_toc(nb_sectors, outbuf, msf, start_track);
break;
case 1:
/* multi session : only a single session defined */
toclen = 12;
memset(outbuf, 0, 12);
outbuf[1] = 0x0a;
outbuf[2] = 0x01;
outbuf[3] = 0x01;
break;
case 2:
toclen = cdrom_read_toc_raw(nb_sectors, outbuf, msf, start_track);
break;
default:
goto error_cmd;
}
if (toclen > 0) {
if (len > toclen)
len = toclen;
r->buf_len = len;
break;
}
error_cmd:
DPRINTF("Read TOC error\n");
goto fail;
}
case 0x46:
DPRINTF("Get Configuration (rt %d, maxlen %d)\n", buf[1] & 3, len);
memset(outbuf, 0, 8);
/* ??? This shoud probably return much more information. For now
just return the basic header indicating the CD-ROM profile. */
outbuf[7] = 8; // CD-ROM
r->buf_len = 8;
break;
case 0x56:
DPRINTF("Reserve(10)\n");
if (buf[1] & 3)
goto fail;
break;
case 0x57:
DPRINTF("Release(10)\n");
if (buf[1] & 3)
goto fail;
break;
case 0xa0:
DPRINTF("Report LUNs (len %d)\n", len);
if (len < 16)
goto fail;
memset(outbuf, 0, 16);
outbuf[3] = 8;
r->buf_len = 16;
break;
default:
DPRINTF("Unknown SCSI command (%2.2x)\n", buf[0]);
fail:
scsi_command_complete(r, SENSE_ILLEGAL_REQUEST);
return 0;
}
if (r->sector_count == 0 && r->buf_len == 0) {
scsi_command_complete(r, SENSE_NO_SENSE);
}
len = r->sector_count * 512 + r->buf_len;
if (is_write) {
return -len;
} else {
if (!r->sector_count)
r->sector_count = -1;
return len;
}
}
void scsi_disk_destroy(SCSIDevice *s)
{
qemu_free(s);
}
SCSIDevice *scsi_disk_init(BlockDriverState *bdrv,
int tcq,
scsi_completionfn completion,
void *opaque)
{
SCSIDevice *s;
s = (SCSIDevice *)qemu_mallocz(sizeof(SCSIDevice));
s->bdrv = bdrv;
s->tcq = tcq;
s->completion = completion;
s->opaque = opaque;
if (bdrv_get_type_hint(s->bdrv) == BDRV_TYPE_CDROM) {
s->cluster_size = 4;
} else {
s->cluster_size = 1;
}
return s;
}