f1b0aa5de7
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2819 c046a42c-6fe2-441c-8c8c-71466251a162
2918 lines
63 KiB
C
2918 lines
63 KiB
C
/*
|
|
* MIPS emulation micro-operations for qemu.
|
|
*
|
|
* Copyright (c) 2004-2005 Jocelyn Mayer
|
|
* Copyright (c) 2006 Marius Groeger (FPU operations)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "exec.h"
|
|
|
|
#ifndef CALL_FROM_TB0
|
|
#define CALL_FROM_TB0(func) func()
|
|
#endif
|
|
#ifndef CALL_FROM_TB1
|
|
#define CALL_FROM_TB1(func, arg0) func(arg0)
|
|
#endif
|
|
#ifndef CALL_FROM_TB1_CONST16
|
|
#define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0)
|
|
#endif
|
|
#ifndef CALL_FROM_TB2
|
|
#define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1)
|
|
#endif
|
|
#ifndef CALL_FROM_TB2_CONST16
|
|
#define CALL_FROM_TB2_CONST16(func, arg0, arg1) \
|
|
CALL_FROM_TB2(func, arg0, arg1)
|
|
#endif
|
|
#ifndef CALL_FROM_TB3
|
|
#define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2)
|
|
#endif
|
|
#ifndef CALL_FROM_TB4
|
|
#define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \
|
|
func(arg0, arg1, arg2, arg3)
|
|
#endif
|
|
|
|
#define REG 1
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 2
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 3
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 4
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 5
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 6
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 7
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 8
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 9
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 10
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 11
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 12
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 13
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 14
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 15
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 16
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 17
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 18
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 19
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 20
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 21
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 22
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 23
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 24
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 25
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 26
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 27
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 28
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 29
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 30
|
|
#include "op_template.c"
|
|
#undef REG
|
|
#define REG 31
|
|
#include "op_template.c"
|
|
#undef REG
|
|
|
|
#define TN
|
|
#include "op_template.c"
|
|
#undef TN
|
|
|
|
#define FREG 0
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 1
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 2
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 3
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 4
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 5
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 6
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 7
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 8
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 9
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 10
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 11
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 12
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 13
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 14
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 15
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 16
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 17
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 18
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 19
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 20
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 21
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 22
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 23
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 24
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 25
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 26
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 27
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 28
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 29
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 30
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
#define FREG 31
|
|
#include "fop_template.c"
|
|
#undef FREG
|
|
|
|
#define FTN
|
|
#include "fop_template.c"
|
|
#undef FTN
|
|
|
|
void op_dup_T0 (void)
|
|
{
|
|
T2 = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_load_HI (void)
|
|
{
|
|
T0 = env->HI;
|
|
RETURN();
|
|
}
|
|
|
|
void op_store_HI (void)
|
|
{
|
|
env->HI = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_load_LO (void)
|
|
{
|
|
T0 = env->LO;
|
|
RETURN();
|
|
}
|
|
|
|
void op_store_LO (void)
|
|
{
|
|
env->LO = T0;
|
|
RETURN();
|
|
}
|
|
|
|
/* Load and store */
|
|
#define MEMSUFFIX _raw
|
|
#include "op_mem.c"
|
|
#undef MEMSUFFIX
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#define MEMSUFFIX _user
|
|
#include "op_mem.c"
|
|
#undef MEMSUFFIX
|
|
|
|
#define MEMSUFFIX _kernel
|
|
#include "op_mem.c"
|
|
#undef MEMSUFFIX
|
|
#endif
|
|
|
|
/* Addresses computation */
|
|
void op_addr_add (void)
|
|
{
|
|
/* For compatibility with 32-bit code, data reference in user mode
|
|
with Status_UX = 0 should be casted to 32-bit and sign extended.
|
|
See the MIPS64 PRA manual, section 4.10. */
|
|
#ifdef TARGET_MIPS64
|
|
if ((env->CP0_Status & (1 << CP0St_UM)) &&
|
|
!(env->CP0_Status & (1 << CP0St_UX)))
|
|
T0 = (int64_t)(int32_t)(T0 + T1);
|
|
else
|
|
#endif
|
|
T0 += T1;
|
|
RETURN();
|
|
}
|
|
|
|
/* Arithmetic */
|
|
void op_add (void)
|
|
{
|
|
T0 = (int32_t)((int32_t)T0 + (int32_t)T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_addo (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = (int32_t)T0;
|
|
T0 = (int32_t)T0 + (int32_t)T1;
|
|
if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) {
|
|
/* operands of same sign, result different sign */
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
|
|
}
|
|
T0 = (int32_t)T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_sub (void)
|
|
{
|
|
T0 = (int32_t)((int32_t)T0 - (int32_t)T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_subo (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = (int32_t)T0;
|
|
T0 = (int32_t)T0 - (int32_t)T1;
|
|
if (((tmp ^ T1) & (tmp ^ T0)) >> 31) {
|
|
/* operands of different sign, first operand and result different sign */
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
|
|
}
|
|
T0 = (int32_t)T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mul (void)
|
|
{
|
|
T0 = (int32_t)((int32_t)T0 * (int32_t)T1);
|
|
RETURN();
|
|
}
|
|
|
|
#if HOST_LONG_BITS < 64
|
|
void op_div (void)
|
|
{
|
|
CALL_FROM_TB0(do_div);
|
|
RETURN();
|
|
}
|
|
#else
|
|
void op_div (void)
|
|
{
|
|
if (T1 != 0) {
|
|
env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
|
|
env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
|
|
}
|
|
RETURN();
|
|
}
|
|
#endif
|
|
|
|
void op_divu (void)
|
|
{
|
|
if (T1 != 0) {
|
|
env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1);
|
|
env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
#ifdef TARGET_MIPS64
|
|
/* Arithmetic */
|
|
void op_dadd (void)
|
|
{
|
|
T0 += T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_daddo (void)
|
|
{
|
|
target_long tmp;
|
|
|
|
tmp = T0;
|
|
T0 += T1;
|
|
if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) {
|
|
/* operands of same sign, result different sign */
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsub (void)
|
|
{
|
|
T0 -= T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsubo (void)
|
|
{
|
|
target_long tmp;
|
|
|
|
tmp = T0;
|
|
T0 = (int64_t)T0 - (int64_t)T1;
|
|
if (((tmp ^ T1) & (tmp ^ T0)) >> 63) {
|
|
/* operands of different sign, first operand and result different sign */
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmul (void)
|
|
{
|
|
T0 = (int64_t)T0 * (int64_t)T1;
|
|
RETURN();
|
|
}
|
|
|
|
/* Those might call libgcc functions. */
|
|
void op_ddiv (void)
|
|
{
|
|
do_ddiv();
|
|
RETURN();
|
|
}
|
|
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
void op_ddivu (void)
|
|
{
|
|
do_ddivu();
|
|
RETURN();
|
|
}
|
|
#else
|
|
void op_ddivu (void)
|
|
{
|
|
if (T1 != 0) {
|
|
env->LO = T0 / T1;
|
|
env->HI = T0 % T1;
|
|
}
|
|
RETURN();
|
|
}
|
|
#endif
|
|
#endif /* TARGET_MIPS64 */
|
|
|
|
/* Logical */
|
|
void op_and (void)
|
|
{
|
|
T0 &= T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_nor (void)
|
|
{
|
|
T0 = ~(T0 | T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_or (void)
|
|
{
|
|
T0 |= T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_xor (void)
|
|
{
|
|
T0 ^= T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_sll (void)
|
|
{
|
|
T0 = (int32_t)((uint32_t)T0 << T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_sra (void)
|
|
{
|
|
T0 = (int32_t)((int32_t)T0 >> T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_srl (void)
|
|
{
|
|
T0 = (int32_t)((uint32_t)T0 >> T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_rotr (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
if (T1) {
|
|
tmp = (int32_t)((uint32_t)T0 << (0x20 - T1));
|
|
T0 = (int32_t)((uint32_t)T0 >> T1) | tmp;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_sllv (void)
|
|
{
|
|
T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F));
|
|
RETURN();
|
|
}
|
|
|
|
void op_srav (void)
|
|
{
|
|
T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F));
|
|
RETURN();
|
|
}
|
|
|
|
void op_srlv (void)
|
|
{
|
|
T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F));
|
|
RETURN();
|
|
}
|
|
|
|
void op_rotrv (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
T0 &= 0x1F;
|
|
if (T0) {
|
|
tmp = (int32_t)((uint32_t)T1 << (0x20 - T0));
|
|
T0 = (int32_t)((uint32_t)T1 >> T0) | tmp;
|
|
} else
|
|
T0 = T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_clo (void)
|
|
{
|
|
int n;
|
|
|
|
if (T0 == ~((target_ulong)0)) {
|
|
T0 = 32;
|
|
} else {
|
|
for (n = 0; n < 32; n++) {
|
|
if (!(T0 & (1 << 31)))
|
|
break;
|
|
T0 = T0 << 1;
|
|
}
|
|
T0 = n;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_clz (void)
|
|
{
|
|
int n;
|
|
|
|
if (T0 == 0) {
|
|
T0 = 32;
|
|
} else {
|
|
for (n = 0; n < 32; n++) {
|
|
if (T0 & (1 << 31))
|
|
break;
|
|
T0 = T0 << 1;
|
|
}
|
|
T0 = n;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
#ifdef TARGET_MIPS64
|
|
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
/* Those might call libgcc functions. */
|
|
void op_dsll (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsll);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsll32 (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsll32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsra (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsra);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsra32 (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsra32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrl (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsrl);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrl32 (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsrl32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotr (void)
|
|
{
|
|
CALL_FROM_TB0(do_drotr);
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotr32 (void)
|
|
{
|
|
CALL_FROM_TB0(do_drotr32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsllv (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsllv);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrav (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsrav);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrlv (void)
|
|
{
|
|
CALL_FROM_TB0(do_dsrlv);
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotrv (void)
|
|
{
|
|
CALL_FROM_TB0(do_drotrv);
|
|
RETURN();
|
|
}
|
|
|
|
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
|
|
|
|
void op_dsll (void)
|
|
{
|
|
T0 = T0 << T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsll32 (void)
|
|
{
|
|
T0 = T0 << (T1 + 32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsra (void)
|
|
{
|
|
T0 = (int64_t)T0 >> T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsra32 (void)
|
|
{
|
|
T0 = (int64_t)T0 >> (T1 + 32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrl (void)
|
|
{
|
|
T0 = T0 >> T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrl32 (void)
|
|
{
|
|
T0 = T0 >> (T1 + 32);
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotr (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
if (T1) {
|
|
tmp = T0 << (0x40 - T1);
|
|
T0 = (T0 >> T1) | tmp;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotr32 (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
if (T1) {
|
|
tmp = T0 << (0x40 - (32 + T1));
|
|
T0 = (T0 >> (32 + T1)) | tmp;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsllv (void)
|
|
{
|
|
T0 = T1 << (T0 & 0x3F);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrav (void)
|
|
{
|
|
T0 = (int64_t)T1 >> (T0 & 0x3F);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsrlv (void)
|
|
{
|
|
T0 = T1 >> (T0 & 0x3F);
|
|
RETURN();
|
|
}
|
|
|
|
void op_drotrv (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
T0 &= 0x3F;
|
|
if (T0) {
|
|
tmp = T1 << (0x40 - T0);
|
|
T0 = (T1 >> T0) | tmp;
|
|
} else
|
|
T0 = T1;
|
|
RETURN();
|
|
}
|
|
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
|
|
|
|
void op_dclo (void)
|
|
{
|
|
int n;
|
|
|
|
if (T0 == ~((target_ulong)0)) {
|
|
T0 = 64;
|
|
} else {
|
|
for (n = 0; n < 64; n++) {
|
|
if (!(T0 & (1ULL << 63)))
|
|
break;
|
|
T0 = T0 << 1;
|
|
}
|
|
T0 = n;
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_dclz (void)
|
|
{
|
|
int n;
|
|
|
|
if (T0 == 0) {
|
|
T0 = 64;
|
|
} else {
|
|
for (n = 0; n < 64; n++) {
|
|
if (T0 & (1ULL << 63))
|
|
break;
|
|
T0 = T0 << 1;
|
|
}
|
|
T0 = n;
|
|
}
|
|
RETURN();
|
|
}
|
|
#endif
|
|
|
|
/* 64 bits arithmetic */
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
void op_mult (void)
|
|
{
|
|
CALL_FROM_TB0(do_mult);
|
|
RETURN();
|
|
}
|
|
|
|
void op_multu (void)
|
|
{
|
|
CALL_FROM_TB0(do_multu);
|
|
RETURN();
|
|
}
|
|
|
|
void op_madd (void)
|
|
{
|
|
CALL_FROM_TB0(do_madd);
|
|
RETURN();
|
|
}
|
|
|
|
void op_maddu (void)
|
|
{
|
|
CALL_FROM_TB0(do_maddu);
|
|
RETURN();
|
|
}
|
|
|
|
void op_msub (void)
|
|
{
|
|
CALL_FROM_TB0(do_msub);
|
|
RETURN();
|
|
}
|
|
|
|
void op_msubu (void)
|
|
{
|
|
CALL_FROM_TB0(do_msubu);
|
|
RETURN();
|
|
}
|
|
|
|
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
|
|
|
|
static inline uint64_t get_HILO (void)
|
|
{
|
|
return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO);
|
|
}
|
|
|
|
static inline void set_HILO (uint64_t HILO)
|
|
{
|
|
env->LO = (int32_t)(HILO & 0xFFFFFFFF);
|
|
env->HI = (int32_t)(HILO >> 32);
|
|
}
|
|
|
|
void op_mult (void)
|
|
{
|
|
set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_multu (void)
|
|
{
|
|
set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_madd (void)
|
|
{
|
|
int64_t tmp;
|
|
|
|
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
set_HILO((int64_t)get_HILO() + tmp);
|
|
RETURN();
|
|
}
|
|
|
|
void op_maddu (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
set_HILO(get_HILO() + tmp);
|
|
RETURN();
|
|
}
|
|
|
|
void op_msub (void)
|
|
{
|
|
int64_t tmp;
|
|
|
|
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
set_HILO((int64_t)get_HILO() - tmp);
|
|
RETURN();
|
|
}
|
|
|
|
void op_msubu (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
set_HILO(get_HILO() - tmp);
|
|
RETURN();
|
|
}
|
|
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
|
|
|
|
#ifdef TARGET_MIPS64
|
|
void op_dmult (void)
|
|
{
|
|
CALL_FROM_TB0(do_dmult);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmultu (void)
|
|
{
|
|
CALL_FROM_TB0(do_dmultu);
|
|
RETURN();
|
|
}
|
|
#endif
|
|
|
|
/* Conditional moves */
|
|
void op_movn (void)
|
|
{
|
|
if (T1 != 0)
|
|
env->gpr[PARAM1] = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_movz (void)
|
|
{
|
|
if (T1 == 0)
|
|
env->gpr[PARAM1] = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_movf (void)
|
|
{
|
|
if (!(env->fcr31 & PARAM1))
|
|
T0 = T1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_movt (void)
|
|
{
|
|
if (env->fcr31 & PARAM1)
|
|
T0 = T1;
|
|
RETURN();
|
|
}
|
|
|
|
/* Tests */
|
|
#define OP_COND(name, cond) \
|
|
void glue(op_, name) (void) \
|
|
{ \
|
|
if (cond) { \
|
|
T0 = 1; \
|
|
} else { \
|
|
T0 = 0; \
|
|
} \
|
|
RETURN(); \
|
|
}
|
|
|
|
OP_COND(eq, T0 == T1);
|
|
OP_COND(ne, T0 != T1);
|
|
OP_COND(ge, (int32_t)T0 >= (int32_t)T1);
|
|
OP_COND(geu, T0 >= T1);
|
|
OP_COND(lt, (int32_t)T0 < (int32_t)T1);
|
|
OP_COND(ltu, T0 < T1);
|
|
OP_COND(gez, (int32_t)T0 >= 0);
|
|
OP_COND(gtz, (int32_t)T0 > 0);
|
|
OP_COND(lez, (int32_t)T0 <= 0);
|
|
OP_COND(ltz, (int32_t)T0 < 0);
|
|
|
|
/* Branches */
|
|
void OPPROTO op_goto_tb0(void)
|
|
{
|
|
GOTO_TB(op_goto_tb0, PARAM1, 0);
|
|
RETURN();
|
|
}
|
|
|
|
void OPPROTO op_goto_tb1(void)
|
|
{
|
|
GOTO_TB(op_goto_tb1, PARAM1, 1);
|
|
RETURN();
|
|
}
|
|
|
|
/* Branch to register */
|
|
void op_save_breg_target (void)
|
|
{
|
|
env->btarget = T2;
|
|
RETURN();
|
|
}
|
|
|
|
void op_restore_breg_target (void)
|
|
{
|
|
T2 = env->btarget;
|
|
RETURN();
|
|
}
|
|
|
|
void op_breg (void)
|
|
{
|
|
env->PC = T2;
|
|
RETURN();
|
|
}
|
|
|
|
void op_save_btarget (void)
|
|
{
|
|
env->btarget = PARAM1;
|
|
RETURN();
|
|
}
|
|
|
|
/* Conditional branch */
|
|
void op_set_bcond (void)
|
|
{
|
|
T2 = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_save_bcond (void)
|
|
{
|
|
env->bcond = T2;
|
|
RETURN();
|
|
}
|
|
|
|
void op_restore_bcond (void)
|
|
{
|
|
T2 = env->bcond;
|
|
RETURN();
|
|
}
|
|
|
|
void op_jnz_T2 (void)
|
|
{
|
|
if (T2)
|
|
GOTO_LABEL_PARAM(1);
|
|
RETURN();
|
|
}
|
|
|
|
/* CP0 functions */
|
|
void op_mfc0_index (void)
|
|
{
|
|
T0 = env->CP0_Index;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_random (void)
|
|
{
|
|
CALL_FROM_TB0(do_mfc0_random);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_entrylo0 (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_EntryLo0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_entrylo1 (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_EntryLo1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_context (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_Context;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_pagemask (void)
|
|
{
|
|
T0 = env->CP0_PageMask;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_pagegrain (void)
|
|
{
|
|
T0 = env->CP0_PageGrain;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_wired (void)
|
|
{
|
|
T0 = env->CP0_Wired;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_hwrena (void)
|
|
{
|
|
T0 = env->CP0_HWREna;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_badvaddr (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_BadVAddr;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_count (void)
|
|
{
|
|
CALL_FROM_TB0(do_mfc0_count);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_entryhi (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_EntryHi;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_compare (void)
|
|
{
|
|
T0 = env->CP0_Compare;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_status (void)
|
|
{
|
|
T0 = env->CP0_Status;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_intctl (void)
|
|
{
|
|
T0 = env->CP0_IntCtl;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_srsctl (void)
|
|
{
|
|
T0 = env->CP0_SRSCtl;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_srsmap (void)
|
|
{
|
|
T0 = env->CP0_SRSMap;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_cause (void)
|
|
{
|
|
T0 = env->CP0_Cause;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_epc (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_EPC;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_prid (void)
|
|
{
|
|
T0 = env->CP0_PRid;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_ebase (void)
|
|
{
|
|
T0 = env->CP0_EBase;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config0 (void)
|
|
{
|
|
T0 = env->CP0_Config0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config1 (void)
|
|
{
|
|
T0 = env->CP0_Config1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config2 (void)
|
|
{
|
|
T0 = env->CP0_Config2;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config3 (void)
|
|
{
|
|
T0 = env->CP0_Config3;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config6 (void)
|
|
{
|
|
T0 = env->CP0_Config6;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_config7 (void)
|
|
{
|
|
T0 = env->CP0_Config7;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_lladdr (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_LLAddr >> 4;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_watchlo0 (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_WatchLo;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_watchhi0 (void)
|
|
{
|
|
T0 = env->CP0_WatchHi;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_xcontext (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_XContext;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_framemask (void)
|
|
{
|
|
T0 = env->CP0_Framemask;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_debug (void)
|
|
{
|
|
T0 = env->CP0_Debug;
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
T0 |= 1 << CP0DB_DM;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_depc (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_DEPC;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_performance0 (void)
|
|
{
|
|
T0 = env->CP0_Performance0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_taglo (void)
|
|
{
|
|
T0 = env->CP0_TagLo;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_datalo (void)
|
|
{
|
|
T0 = env->CP0_DataLo;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_taghi (void)
|
|
{
|
|
T0 = env->CP0_TagHi;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_datahi (void)
|
|
{
|
|
T0 = env->CP0_DataHi;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_errorepc (void)
|
|
{
|
|
T0 = (int32_t)env->CP0_ErrorEPC;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc0_desave (void)
|
|
{
|
|
T0 = env->CP0_DESAVE;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_index (void)
|
|
{
|
|
env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 % env->nb_tlb);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_entrylo0 (void)
|
|
{
|
|
/* Large physaddr not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_EntryLo0 = T0 & 0x3FFFFFFF;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_entrylo1 (void)
|
|
{
|
|
/* Large physaddr not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_EntryLo1 = T0 & 0x3FFFFFFF;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_context (void)
|
|
{
|
|
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (T0 & ~0x007FFFFF);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_pagemask (void)
|
|
{
|
|
/* 1k pages not implemented */
|
|
env->CP0_PageMask = T0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_pagegrain (void)
|
|
{
|
|
/* SmartMIPS not implemented */
|
|
/* Large physaddr not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_PageGrain = 0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_wired (void)
|
|
{
|
|
env->CP0_Wired = T0 % env->nb_tlb;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_hwrena (void)
|
|
{
|
|
env->CP0_HWREna = T0 & 0x0000000F;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_count (void)
|
|
{
|
|
CALL_FROM_TB2(cpu_mips_store_count, env, T0);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_entryhi (void)
|
|
{
|
|
target_ulong old, val;
|
|
|
|
/* 1k pages not implemented */
|
|
/* Ignore MIPS64 TLB for now */
|
|
val = (target_ulong)(int32_t)T0 & ~(target_ulong)0x1F00;
|
|
old = env->CP0_EntryHi;
|
|
env->CP0_EntryHi = val;
|
|
/* If the ASID changes, flush qemu's TLB. */
|
|
if ((old & 0xFF) != (val & 0xFF))
|
|
CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_compare (void)
|
|
{
|
|
CALL_FROM_TB2(cpu_mips_store_compare, env, T0);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_status (void)
|
|
{
|
|
uint32_t val, old;
|
|
uint32_t mask = env->Status_rw_bitmask;
|
|
|
|
/* No reverse endianness, no MDMX/DSP, no 64bit ops
|
|
implemented. */
|
|
val = T0 & mask;
|
|
old = env->CP0_Status;
|
|
if (!(val & (1 << CP0St_EXL)) &&
|
|
!(val & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM) &&
|
|
(val & (1 << CP0St_UM)))
|
|
env->hflags |= MIPS_HFLAG_UM;
|
|
env->CP0_Status = (env->CP0_Status & ~mask) | val;
|
|
if (loglevel & CPU_LOG_EXEC)
|
|
CALL_FROM_TB2(do_mtc0_status_debug, old, val);
|
|
CALL_FROM_TB1(cpu_mips_update_irq, env);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_intctl (void)
|
|
{
|
|
/* vectored interrupts not implemented, timer on int 7,
|
|
no performance counters. */
|
|
env->CP0_IntCtl |= T0 & 0x000002e0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_srsctl (void)
|
|
{
|
|
/* shadow registers not implemented */
|
|
env->CP0_SRSCtl = 0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_srsmap (void)
|
|
{
|
|
/* shadow registers not implemented */
|
|
env->CP0_SRSMap = 0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_cause (void)
|
|
{
|
|
uint32_t mask = 0x00C00300;
|
|
|
|
if ((env->CP0_Config0 & (0x7 << CP0C0_AR)) == (1 << CP0C0_AR))
|
|
mask |= 1 << CP0Ca_DC;
|
|
|
|
env->CP0_Cause = (env->CP0_Cause & ~mask) | (T0 & mask);
|
|
|
|
/* Handle the software interrupt as an hardware one, as they
|
|
are very similar */
|
|
if (T0 & CP0Ca_IP_mask) {
|
|
CALL_FROM_TB1(cpu_mips_update_irq, env);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_epc (void)
|
|
{
|
|
env->CP0_EPC = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_ebase (void)
|
|
{
|
|
/* vectored interrupts not implemented */
|
|
/* Multi-CPU not implemented */
|
|
env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_config0 (void)
|
|
{
|
|
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (T0 & 0x00000001);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_config2 (void)
|
|
{
|
|
/* tertiary/secondary caches not implemented */
|
|
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_watchlo0 (void)
|
|
{
|
|
/* Watch exceptions for instructions, data loads, data stores
|
|
not implemented. */
|
|
env->CP0_WatchLo = (T0 & ~0x7);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_watchhi0 (void)
|
|
{
|
|
env->CP0_WatchHi = (T0 & 0x40FF0FF8);
|
|
env->CP0_WatchHi &= ~(env->CP0_WatchHi & T0 & 0x7);
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_framemask (void)
|
|
{
|
|
env->CP0_Framemask = T0; /* XXX */
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_debug (void)
|
|
{
|
|
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120);
|
|
if (T0 & (1 << CP0DB_DM))
|
|
env->hflags |= MIPS_HFLAG_DM;
|
|
else
|
|
env->hflags &= ~MIPS_HFLAG_DM;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_depc (void)
|
|
{
|
|
env->CP0_DEPC = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_performance0 (void)
|
|
{
|
|
env->CP0_Performance0 = T0; /* XXX */
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_taglo (void)
|
|
{
|
|
env->CP0_TagLo = T0 & 0xFFFFFCF6;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_datalo (void)
|
|
{
|
|
env->CP0_DataLo = T0; /* XXX */
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_taghi (void)
|
|
{
|
|
env->CP0_TagHi = T0; /* XXX */
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_datahi (void)
|
|
{
|
|
env->CP0_DataHi = T0; /* XXX */
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_errorepc (void)
|
|
{
|
|
env->CP0_ErrorEPC = T0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc0_desave (void)
|
|
{
|
|
env->CP0_DESAVE = T0;
|
|
RETURN();
|
|
}
|
|
|
|
#ifdef TARGET_MIPS64
|
|
void op_mtc0_xcontext (void)
|
|
{
|
|
env->CP0_XContext = (env->CP0_XContext & 0x1ffffffffULL) | (T0 & ~0x1ffffffffULL);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_entrylo0 (void)
|
|
{
|
|
T0 = env->CP0_EntryLo0;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_entrylo1 (void)
|
|
{
|
|
T0 = env->CP0_EntryLo1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_context (void)
|
|
{
|
|
T0 = env->CP0_Context;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_badvaddr (void)
|
|
{
|
|
T0 = env->CP0_BadVAddr;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_entryhi (void)
|
|
{
|
|
T0 = env->CP0_EntryHi;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_epc (void)
|
|
{
|
|
T0 = env->CP0_EPC;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_lladdr (void)
|
|
{
|
|
T0 = env->CP0_LLAddr >> 4;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_watchlo0 (void)
|
|
{
|
|
T0 = env->CP0_WatchLo;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_xcontext (void)
|
|
{
|
|
T0 = env->CP0_XContext;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_depc (void)
|
|
{
|
|
T0 = env->CP0_DEPC;
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc0_errorepc (void)
|
|
{
|
|
T0 = env->CP0_ErrorEPC;
|
|
RETURN();
|
|
}
|
|
#endif /* TARGET_MIPS64 */
|
|
|
|
/* CP1 functions */
|
|
#if 0
|
|
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
|
|
#else
|
|
# define DEBUG_FPU_STATE() do { } while(0)
|
|
#endif
|
|
|
|
void op_cp0_enabled(void)
|
|
{
|
|
if (!(env->CP0_Status & (1 << CP0St_CU0)) &&
|
|
(env->hflags & MIPS_HFLAG_UM)) {
|
|
CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 0);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_cp1_enabled(void)
|
|
{
|
|
if (!(env->CP0_Status & (1 << CP0St_CU1))) {
|
|
CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 1);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
unsigned int ieee_rm[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
|
|
#define RESTORE_ROUNDING_MODE \
|
|
set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
|
|
|
|
inline char ieee_ex_to_mips(char xcpt)
|
|
{
|
|
return (xcpt & float_flag_inexact) >> 5 |
|
|
(xcpt & float_flag_underflow) >> 3 |
|
|
(xcpt & float_flag_overflow) >> 1 |
|
|
(xcpt & float_flag_divbyzero) << 1 |
|
|
(xcpt & float_flag_invalid) << 4;
|
|
}
|
|
|
|
inline char mips_ex_to_ieee(char xcpt)
|
|
{
|
|
return (xcpt & FP_INEXACT) << 5 |
|
|
(xcpt & FP_UNDERFLOW) << 3 |
|
|
(xcpt & FP_OVERFLOW) << 1 |
|
|
(xcpt & FP_DIV0) >> 1 |
|
|
(xcpt & FP_INVALID) >> 4;
|
|
}
|
|
|
|
inline void update_fcr31(void)
|
|
{
|
|
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status));
|
|
|
|
SET_FP_CAUSE(env->fcr31, tmp);
|
|
if (GET_FP_ENABLE(env->fcr31) & tmp)
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_FPE);
|
|
else
|
|
UPDATE_FP_FLAGS(env->fcr31, tmp);
|
|
}
|
|
|
|
|
|
void op_cfc1 (void)
|
|
{
|
|
switch (T1) {
|
|
case 0:
|
|
T0 = (int32_t)env->fcr0;
|
|
break;
|
|
case 25:
|
|
T0 = ((env->fcr31 >> 24) & 0xfe) | ((env->fcr31 >> 23) & 0x1);
|
|
break;
|
|
case 26:
|
|
T0 = env->fcr31 & 0x0003f07c;
|
|
break;
|
|
case 28:
|
|
T0 = (env->fcr31 & 0x00000f83) | ((env->fcr31 >> 22) & 0x4);
|
|
break;
|
|
default:
|
|
T0 = (int32_t)env->fcr31;
|
|
break;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_ctc1 (void)
|
|
{
|
|
switch(T1) {
|
|
case 25:
|
|
if (T0 & 0xffffff00)
|
|
goto leave;
|
|
env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
|
|
((T0 & 0x1) << 23);
|
|
break;
|
|
case 26:
|
|
if (T0 & 0x007c0000)
|
|
goto leave;
|
|
env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
|
|
break;
|
|
case 28:
|
|
if (T0 & 0x007c0000)
|
|
goto leave;
|
|
env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
|
|
((T0 & 0x4) << 22);
|
|
break;
|
|
case 31:
|
|
if (T0 & 0x007c0000)
|
|
goto leave;
|
|
env->fcr31 = T0;
|
|
break;
|
|
default:
|
|
goto leave;
|
|
}
|
|
/* set rounding mode */
|
|
RESTORE_ROUNDING_MODE;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31))
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_FPE);
|
|
leave:
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfc1 (void)
|
|
{
|
|
T0 = WT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_mtc1 (void)
|
|
{
|
|
WT0 = T0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmfc1 (void)
|
|
{
|
|
T0 = DT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_dmtc1 (void)
|
|
{
|
|
DT0 = T0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_mfhc1 (void)
|
|
{
|
|
T0 = WTH0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_mthc1 (void)
|
|
{
|
|
WTH0 = T0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
/* Float support.
|
|
Single precition routines have a "s" suffix, double precision a
|
|
"d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps",
|
|
paired single lowwer "pl", paired single upper "pu". */
|
|
|
|
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
|
|
|
|
FLOAT_OP(cvtd, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FDT2 = float32_to_float64(FST0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtd, w)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FDT2 = int32_to_float64(WT0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtd, l)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FDT2 = int64_to_float64(DT0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtl, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
DT2 = float64_to_int64(FDT0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtl, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
DT2 = float32_to_int64(FST0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtps, s)
|
|
{
|
|
WT2 = WT0;
|
|
WTH2 = WT1;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtps, pw)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FST2 = int32_to_float32(WT0, &env->fp_status);
|
|
FSTH2 = int32_to_float32(WTH0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtpw, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fp_status);
|
|
WTH2 = float32_to_int32(FSTH0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvts, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FST2 = float64_to_float32(FDT0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvts, w)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FST2 = int32_to_float32(WT0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvts, l)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FST2 = int64_to_float32(DT0, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvts, pl)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
WT2 = WT0;
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvts, pu)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
WT2 = WTH0;
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtw, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(cvtw, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
WT2 = float64_to_int32(FDT0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(pll, ps)
|
|
{
|
|
DT2 = ((uint64_t)WT0 << 32) | WT1;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(plu, ps)
|
|
{
|
|
DT2 = ((uint64_t)WT0 << 32) | WTH1;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(pul, ps)
|
|
{
|
|
DT2 = ((uint64_t)WTH0 << 32) | WT1;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(puu, ps)
|
|
{
|
|
DT2 = ((uint64_t)WTH0 << 32) | WTH1;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(roundl, d)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
|
|
DT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(roundl, s)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
|
|
DT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(roundw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
|
|
WT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(roundw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
|
|
WT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(truncl, d)
|
|
{
|
|
DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(truncl, s)
|
|
{
|
|
DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(truncw, d)
|
|
{
|
|
WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(truncw, s)
|
|
{
|
|
WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(ceill, d)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fp_status);
|
|
DT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(ceill, s)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fp_status);
|
|
DT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(ceilw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fp_status);
|
|
WT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(ceilw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fp_status);
|
|
WT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(floorl, d)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fp_status);
|
|
DT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(floorl, s)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fp_status);
|
|
DT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = 0x7fffffffffffffffULL;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(floorw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fp_status);
|
|
WT2 = float64_round_to_int(FDT0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(floorw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fp_status);
|
|
WT2 = float32_round_to_int(FST0, &env->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = 0x7fffffff;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
FLOAT_OP(movf, d)
|
|
{
|
|
if (!(env->fcr31 & PARAM1))
|
|
DT2 = DT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movf, s)
|
|
{
|
|
if (!(env->fcr31 & PARAM1))
|
|
WT2 = WT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movf, ps)
|
|
{
|
|
if (!(env->fcr31 & PARAM1)) {
|
|
WT2 = WT0;
|
|
WTH2 = WTH0;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movt, d)
|
|
{
|
|
if (env->fcr31 & PARAM1)
|
|
DT2 = DT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movt, s)
|
|
{
|
|
if (env->fcr31 & PARAM1)
|
|
WT2 = WT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movt, ps)
|
|
{
|
|
if (env->fcr31 & PARAM1) {
|
|
WT2 = WT0;
|
|
WTH2 = WTH0;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movz, d)
|
|
{
|
|
if (!T0)
|
|
DT2 = DT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movz, s)
|
|
{
|
|
if (!T0)
|
|
WT2 = WT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movz, ps)
|
|
{
|
|
if (!T0) {
|
|
WT2 = WT0;
|
|
WTH2 = WTH0;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movn, d)
|
|
{
|
|
if (T0)
|
|
DT2 = DT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movn, s)
|
|
{
|
|
if (T0)
|
|
WT2 = WT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(movn, ps)
|
|
{
|
|
if (T0) {
|
|
WT2 = WT0;
|
|
WTH2 = WTH0;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
/* binary operations */
|
|
#define FLOAT_BINOP(name) \
|
|
FLOAT_OP(name, d) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fp_status); \
|
|
FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status); \
|
|
update_fcr31(); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, s) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fp_status); \
|
|
FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \
|
|
update_fcr31(); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, ps) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fp_status); \
|
|
FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \
|
|
FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \
|
|
update_fcr31(); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
FLOAT_BINOP(add)
|
|
FLOAT_BINOP(sub)
|
|
FLOAT_BINOP(mul)
|
|
FLOAT_BINOP(div)
|
|
#undef FLOAT_BINOP
|
|
|
|
FLOAT_OP(addr, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
FST2 = float32_add (FST0, FSTH0, &env->fp_status);
|
|
FSTH2 = float32_add (FST1, FSTH1, &env->fp_status);
|
|
update_fcr31();
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
/* ternary operations */
|
|
#define FLOAT_TERNOP(name1, name2) \
|
|
FLOAT_OP(name1 ## name2, d) \
|
|
{ \
|
|
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \
|
|
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name1 ## name2, s) \
|
|
{ \
|
|
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
|
|
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name1 ## name2, ps) \
|
|
{ \
|
|
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
|
|
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \
|
|
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
|
|
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
FLOAT_TERNOP(mul, add)
|
|
FLOAT_TERNOP(mul, sub)
|
|
#undef FLOAT_TERNOP
|
|
|
|
/* negated ternary operations */
|
|
#define FLOAT_NTERNOP(name1, name2) \
|
|
FLOAT_OP(n ## name1 ## name2, d) \
|
|
{ \
|
|
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \
|
|
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \
|
|
FDT2 ^= 1ULL << 63; \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(n ## name1 ## name2, s) \
|
|
{ \
|
|
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
|
|
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
|
|
FST2 ^= 1 << 31; \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(n ## name1 ## name2, ps) \
|
|
{ \
|
|
FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \
|
|
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \
|
|
FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \
|
|
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \
|
|
FST2 ^= 1 << 31; \
|
|
FSTH2 ^= 1 << 31; \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
FLOAT_NTERNOP(mul, add)
|
|
FLOAT_NTERNOP(mul, sub)
|
|
#undef FLOAT_NTERNOP
|
|
|
|
/* unary operations, modifying fp status */
|
|
#define FLOAT_UNOP(name) \
|
|
FLOAT_OP(name, d) \
|
|
{ \
|
|
FDT2 = float64_ ## name(FDT0, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, s) \
|
|
{ \
|
|
FST2 = float32_ ## name(FST0, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, ps) \
|
|
{ \
|
|
FST2 = float32_ ## name(FST0, &env->fp_status); \
|
|
FSTH2 = float32_ ## name(FSTH0, &env->fp_status); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
FLOAT_UNOP(sqrt)
|
|
#undef FLOAT_UNOP
|
|
|
|
/* unary operations, not modifying fp status */
|
|
#define FLOAT_UNOP(name) \
|
|
FLOAT_OP(name, d) \
|
|
{ \
|
|
FDT2 = float64_ ## name(FDT0); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, s) \
|
|
{ \
|
|
FST2 = float32_ ## name(FST0); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
FLOAT_OP(name, ps) \
|
|
{ \
|
|
FST2 = float32_ ## name(FST0); \
|
|
FSTH2 = float32_ ## name(FSTH0); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
FLOAT_UNOP(abs)
|
|
FLOAT_UNOP(chs)
|
|
#undef FLOAT_UNOP
|
|
|
|
FLOAT_OP(mov, d)
|
|
{
|
|
FDT2 = FDT0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(mov, s)
|
|
{
|
|
FST2 = FST0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(mov, ps)
|
|
{
|
|
FST2 = FST0;
|
|
FSTH2 = FSTH0;
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
FLOAT_OP(alnv, ps)
|
|
{
|
|
switch (T0 & 0x7) {
|
|
case 0:
|
|
FST2 = FST0;
|
|
FSTH2 = FSTH0;
|
|
break;
|
|
case 4:
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
FSTH2 = FST0;
|
|
FST2 = FSTH1;
|
|
#else
|
|
FSTH2 = FST1;
|
|
FST2 = FSTH0;
|
|
#endif
|
|
break;
|
|
default: /* unpredictable */
|
|
break;
|
|
}
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
#define clear_invalid() do { \
|
|
int flags = get_float_exception_flags(&env->fp_status); \
|
|
flags &= ~float_flag_invalid; \
|
|
set_float_exception_flags(flags, &env->fp_status); \
|
|
} while(0)
|
|
#else
|
|
#define clear_invalid() do { } while(0)
|
|
#endif
|
|
|
|
extern void dump_fpu_s(CPUState *env);
|
|
|
|
#define FOP_COND_D(op, cond) \
|
|
void op_cmp_d_ ## op (void) \
|
|
{ \
|
|
int c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
void op_cmpabs_d_ ## op (void) \
|
|
{ \
|
|
int c; \
|
|
FDT0 &= ~(1ULL << 63); \
|
|
FDT1 &= ~(1ULL << 63); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
|
|
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
if (float64_is_signaling_nan(a) ||
|
|
float64_is_signaling_nan(b) ||
|
|
(sig && (float64_is_nan(a) || float64_is_nan(b)))) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
} else if (float64_is_nan(a) || float64_is_nan(b)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0))
|
|
FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fp_status))
|
|
FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0))
|
|
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status))
|
|
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
|
|
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
|
|
|
|
#define FOP_COND_S(op, cond) \
|
|
void op_cmp_s_ ## op (void) \
|
|
{ \
|
|
int c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
void op_cmpabs_s_ ## op (void) \
|
|
{ \
|
|
int c; \
|
|
FST0 &= ~(1 << 31); \
|
|
FST1 &= ~(1 << 31); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
|
|
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
extern flag float32_is_nan(float32 a);
|
|
if (float32_is_signaling_nan(a) ||
|
|
float32_is_signaling_nan(b) ||
|
|
(sig && (float32_is_nan(a) || float32_is_nan(b)))) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
} else if (float32_is_nan(a) || float32_is_nan(b)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0))
|
|
FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fp_status))
|
|
FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0))
|
|
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status))
|
|
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
|
|
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
|
|
|
|
#define FOP_COND_PS(op, condl, condh) \
|
|
void op_cmp_ps_ ## op (void) \
|
|
{ \
|
|
int cl = condl; \
|
|
int ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
if (ch) \
|
|
SET_FP_COND(PARAM1 + 1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1 + 1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
} \
|
|
void op_cmpabs_ps_ ## op (void) \
|
|
{ \
|
|
int cl, ch; \
|
|
FST0 &= ~(1 << 31); \
|
|
FSTH0 &= ~(1 << 31); \
|
|
FST1 &= ~(1 << 31); \
|
|
FSTH1 &= ~(1 << 31); \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(PARAM1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1, env); \
|
|
if (ch) \
|
|
SET_FP_COND(PARAM1 + 1, env); \
|
|
else \
|
|
CLEAR_FP_COND(PARAM1 + 1, env); \
|
|
DEBUG_FPU_STATE(); \
|
|
RETURN(); \
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0),
|
|
(float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0))
|
|
FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status))
|
|
FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0),
|
|
(float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0))
|
|
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status))
|
|
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
|
|
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status))
|
|
|
|
void op_bc1f (void)
|
|
{
|
|
T0 = !IS_FP_COND_SET(PARAM1, env);
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
void op_bc1fany2 (void)
|
|
{
|
|
T0 = (!IS_FP_COND_SET(PARAM1, env) ||
|
|
!IS_FP_COND_SET(PARAM1 + 1, env));
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
void op_bc1fany4 (void)
|
|
{
|
|
T0 = (!IS_FP_COND_SET(PARAM1, env) ||
|
|
!IS_FP_COND_SET(PARAM1 + 1, env) ||
|
|
!IS_FP_COND_SET(PARAM1 + 2, env) ||
|
|
!IS_FP_COND_SET(PARAM1 + 3, env));
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_bc1t (void)
|
|
{
|
|
T0 = IS_FP_COND_SET(PARAM1, env);
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
void op_bc1tany2 (void)
|
|
{
|
|
T0 = (IS_FP_COND_SET(PARAM1, env) ||
|
|
IS_FP_COND_SET(PARAM1 + 1, env));
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
void op_bc1tany4 (void)
|
|
{
|
|
T0 = (IS_FP_COND_SET(PARAM1, env) ||
|
|
IS_FP_COND_SET(PARAM1 + 1, env) ||
|
|
IS_FP_COND_SET(PARAM1 + 2, env) ||
|
|
IS_FP_COND_SET(PARAM1 + 3, env));
|
|
DEBUG_FPU_STATE();
|
|
RETURN();
|
|
}
|
|
|
|
void op_tlbwi (void)
|
|
{
|
|
CALL_FROM_TB0(env->do_tlbwi);
|
|
RETURN();
|
|
}
|
|
|
|
void op_tlbwr (void)
|
|
{
|
|
CALL_FROM_TB0(env->do_tlbwr);
|
|
RETURN();
|
|
}
|
|
|
|
void op_tlbp (void)
|
|
{
|
|
CALL_FROM_TB0(env->do_tlbp);
|
|
RETURN();
|
|
}
|
|
|
|
void op_tlbr (void)
|
|
{
|
|
CALL_FROM_TB0(env->do_tlbr);
|
|
RETURN();
|
|
}
|
|
|
|
/* Specials */
|
|
#if defined (CONFIG_USER_ONLY)
|
|
void op_tls_value (void)
|
|
{
|
|
T0 = env->tls_value;
|
|
}
|
|
#endif
|
|
|
|
void op_pmon (void)
|
|
{
|
|
CALL_FROM_TB1(do_pmon, PARAM1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_di (void)
|
|
{
|
|
T0 = env->CP0_Status;
|
|
env->CP0_Status = T0 & ~(1 << CP0St_IE);
|
|
CALL_FROM_TB1(cpu_mips_update_irq, env);
|
|
RETURN();
|
|
}
|
|
|
|
void op_ei (void)
|
|
{
|
|
T0 = env->CP0_Status;
|
|
env->CP0_Status = T0 | (1 << CP0St_IE);
|
|
CALL_FROM_TB1(cpu_mips_update_irq, env);
|
|
RETURN();
|
|
}
|
|
|
|
void op_trap (void)
|
|
{
|
|
if (T0) {
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_TRAP);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_debug (void)
|
|
{
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG);
|
|
RETURN();
|
|
}
|
|
|
|
void op_set_lladdr (void)
|
|
{
|
|
env->CP0_LLAddr = T2;
|
|
RETURN();
|
|
}
|
|
|
|
void debug_pre_eret (void);
|
|
void debug_post_eret (void);
|
|
void op_eret (void)
|
|
{
|
|
if (loglevel & CPU_LOG_EXEC)
|
|
CALL_FROM_TB0(debug_pre_eret);
|
|
if (env->CP0_Status & (1 << CP0St_ERL)) {
|
|
env->PC = env->CP0_ErrorEPC;
|
|
env->CP0_Status &= ~(1 << CP0St_ERL);
|
|
} else {
|
|
env->PC = env->CP0_EPC;
|
|
env->CP0_Status &= ~(1 << CP0St_EXL);
|
|
}
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM) &&
|
|
(env->CP0_Status & (1 << CP0St_UM)))
|
|
env->hflags |= MIPS_HFLAG_UM;
|
|
if (loglevel & CPU_LOG_EXEC)
|
|
CALL_FROM_TB0(debug_post_eret);
|
|
env->CP0_LLAddr = 1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_deret (void)
|
|
{
|
|
if (loglevel & CPU_LOG_EXEC)
|
|
CALL_FROM_TB0(debug_pre_eret);
|
|
env->PC = env->CP0_DEPC;
|
|
env->hflags |= MIPS_HFLAG_DM;
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM) &&
|
|
(env->CP0_Status & (1 << CP0St_UM)))
|
|
env->hflags |= MIPS_HFLAG_UM;
|
|
if (loglevel & CPU_LOG_EXEC)
|
|
CALL_FROM_TB0(debug_post_eret);
|
|
env->CP0_LLAddr = 1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_rdhwr_cpunum(void)
|
|
{
|
|
if (!(env->hflags & MIPS_HFLAG_UM) ||
|
|
(env->CP0_HWREna & (1 << 0)) ||
|
|
(env->CP0_Status & (1 << CP0St_CU0)))
|
|
T0 = env->CP0_EBase & 0x3ff;
|
|
else
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
|
|
RETURN();
|
|
}
|
|
|
|
void op_rdhwr_synci_step(void)
|
|
{
|
|
if (!(env->hflags & MIPS_HFLAG_UM) ||
|
|
(env->CP0_HWREna & (1 << 1)) ||
|
|
(env->CP0_Status & (1 << CP0St_CU0)))
|
|
T0 = env->SYNCI_Step;
|
|
else
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
|
|
RETURN();
|
|
}
|
|
|
|
void op_rdhwr_cc(void)
|
|
{
|
|
if (!(env->hflags & MIPS_HFLAG_UM) ||
|
|
(env->CP0_HWREna & (1 << 2)) ||
|
|
(env->CP0_Status & (1 << CP0St_CU0)))
|
|
T0 = env->CP0_Count;
|
|
else
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
|
|
RETURN();
|
|
}
|
|
|
|
void op_rdhwr_ccres(void)
|
|
{
|
|
if (!(env->hflags & MIPS_HFLAG_UM) ||
|
|
(env->CP0_HWREna & (1 << 3)) ||
|
|
(env->CP0_Status & (1 << CP0St_CU0)))
|
|
T0 = env->CCRes;
|
|
else
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_RI);
|
|
RETURN();
|
|
}
|
|
|
|
void op_save_state (void)
|
|
{
|
|
env->hflags = PARAM1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_save_pc (void)
|
|
{
|
|
env->PC = PARAM1;
|
|
RETURN();
|
|
}
|
|
|
|
void op_save_fp_status (void)
|
|
{
|
|
union fps {
|
|
uint32_t i;
|
|
float_status f;
|
|
} fps;
|
|
fps.i = PARAM1;
|
|
env->fp_status = fps.f;
|
|
RETURN();
|
|
}
|
|
|
|
void op_interrupt_restart (void)
|
|
{
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM) &&
|
|
(env->CP0_Status & (1 << CP0St_IE)) &&
|
|
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
|
|
env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_EXT_INTERRUPT);
|
|
}
|
|
RETURN();
|
|
}
|
|
|
|
void op_raise_exception (void)
|
|
{
|
|
CALL_FROM_TB1(do_raise_exception, PARAM1);
|
|
RETURN();
|
|
}
|
|
|
|
void op_raise_exception_err (void)
|
|
{
|
|
CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2);
|
|
RETURN();
|
|
}
|
|
|
|
void op_exit_tb (void)
|
|
{
|
|
EXIT_TB();
|
|
RETURN();
|
|
}
|
|
|
|
void op_wait (void)
|
|
{
|
|
env->halted = 1;
|
|
CALL_FROM_TB1(do_raise_exception, EXCP_HLT);
|
|
RETURN();
|
|
}
|
|
|
|
/* Bitfield operations. */
|
|
void op_ext(void)
|
|
{
|
|
unsigned int pos = PARAM1;
|
|
unsigned int size = PARAM2;
|
|
|
|
T0 = ((uint32_t)T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0);
|
|
RETURN();
|
|
}
|
|
|
|
void op_ins(void)
|
|
{
|
|
unsigned int pos = PARAM1;
|
|
unsigned int size = PARAM2;
|
|
target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
|
|
|
|
T0 = (T0 & ~mask) | (((uint32_t)T1 << pos) & mask);
|
|
RETURN();
|
|
}
|
|
|
|
void op_wsbh(void)
|
|
{
|
|
T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF);
|
|
RETURN();
|
|
}
|
|
|
|
#ifdef TARGET_MIPS64
|
|
void op_dext(void)
|
|
{
|
|
unsigned int pos = PARAM1;
|
|
unsigned int size = PARAM2;
|
|
|
|
T0 = (T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dins(void)
|
|
{
|
|
unsigned int pos = PARAM1;
|
|
unsigned int size = PARAM2;
|
|
target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
|
|
|
|
T0 = (T0 & ~mask) | ((T1 << pos) & mask);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dsbh(void)
|
|
{
|
|
T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL);
|
|
RETURN();
|
|
}
|
|
|
|
void op_dshd(void)
|
|
{
|
|
T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL);
|
|
RETURN();
|
|
}
|
|
#endif
|
|
|
|
void op_seb(void)
|
|
{
|
|
T0 = ((T1 & 0xFF) ^ 0x80) - 0x80;
|
|
RETURN();
|
|
}
|
|
|
|
void op_seh(void)
|
|
{
|
|
T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000;
|
|
RETURN();
|
|
}
|