qemu/hw/ssi/sifive_spi.c
Thomas Huth 4c386f8064 Do not include sysemu/sysemu.h if it's not really necessary
Stop including sysemu/sysemu.h in files that don't need it.

Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210416171314.2074665-2-thuth@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2021-05-02 17:24:50 +02:00

358 lines
8.6 KiB
C

/*
* QEMU model of the SiFive SPI Controller
*
* Copyright (c) 2021 Wind River Systems, Inc.
*
* Author:
* Bin Meng <bin.meng@windriver.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "hw/ssi/ssi.h"
#include "qemu/fifo8.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/ssi/sifive_spi.h"
#define R_SCKDIV (0x00 / 4)
#define R_SCKMODE (0x04 / 4)
#define R_CSID (0x10 / 4)
#define R_CSDEF (0x14 / 4)
#define R_CSMODE (0x18 / 4)
#define R_DELAY0 (0x28 / 4)
#define R_DELAY1 (0x2C / 4)
#define R_FMT (0x40 / 4)
#define R_TXDATA (0x48 / 4)
#define R_RXDATA (0x4C / 4)
#define R_TXMARK (0x50 / 4)
#define R_RXMARK (0x54 / 4)
#define R_FCTRL (0x60 / 4)
#define R_FFMT (0x64 / 4)
#define R_IE (0x70 / 4)
#define R_IP (0x74 / 4)
#define FMT_DIR (1 << 3)
#define TXDATA_FULL (1 << 31)
#define RXDATA_EMPTY (1 << 31)
#define IE_TXWM (1 << 0)
#define IE_RXWM (1 << 1)
#define IP_TXWM (1 << 0)
#define IP_RXWM (1 << 1)
#define FIFO_CAPACITY 8
static void sifive_spi_txfifo_reset(SiFiveSPIState *s)
{
fifo8_reset(&s->tx_fifo);
s->regs[R_TXDATA] &= ~TXDATA_FULL;
s->regs[R_IP] &= ~IP_TXWM;
}
static void sifive_spi_rxfifo_reset(SiFiveSPIState *s)
{
fifo8_reset(&s->rx_fifo);
s->regs[R_RXDATA] |= RXDATA_EMPTY;
s->regs[R_IP] &= ~IP_RXWM;
}
static void sifive_spi_update_cs(SiFiveSPIState *s)
{
int i;
for (i = 0; i < s->num_cs; i++) {
if (s->regs[R_CSDEF] & (1 << i)) {
qemu_set_irq(s->cs_lines[i], !(s->regs[R_CSMODE]));
}
}
}
static void sifive_spi_update_irq(SiFiveSPIState *s)
{
int level;
if (fifo8_num_used(&s->tx_fifo) < s->regs[R_TXMARK]) {
s->regs[R_IP] |= IP_TXWM;
} else {
s->regs[R_IP] &= ~IP_TXWM;
}
if (fifo8_num_used(&s->rx_fifo) > s->regs[R_RXMARK]) {
s->regs[R_IP] |= IP_RXWM;
} else {
s->regs[R_IP] &= ~IP_RXWM;
}
level = s->regs[R_IP] & s->regs[R_IE] ? 1 : 0;
qemu_set_irq(s->irq, level);
}
static void sifive_spi_reset(DeviceState *d)
{
SiFiveSPIState *s = SIFIVE_SPI(d);
memset(s->regs, 0, sizeof(s->regs));
/* The reset value is high for all implemented CS pins */
s->regs[R_CSDEF] = (1 << s->num_cs) - 1;
/* Populate register with their default value */
s->regs[R_SCKDIV] = 0x03;
s->regs[R_DELAY0] = 0x1001;
s->regs[R_DELAY1] = 0x01;
sifive_spi_txfifo_reset(s);
sifive_spi_rxfifo_reset(s);
sifive_spi_update_cs(s);
sifive_spi_update_irq(s);
}
static void sifive_spi_flush_txfifo(SiFiveSPIState *s)
{
uint8_t tx;
uint8_t rx;
while (!fifo8_is_empty(&s->tx_fifo)) {
tx = fifo8_pop(&s->tx_fifo);
rx = ssi_transfer(s->spi, tx);
if (!fifo8_is_full(&s->rx_fifo)) {
if (!(s->regs[R_FMT] & FMT_DIR)) {
fifo8_push(&s->rx_fifo, rx);
}
}
}
}
static bool sifive_spi_is_bad_reg(hwaddr addr, bool allow_reserved)
{
bool bad;
switch (addr) {
/* reserved offsets */
case 0x08:
case 0x0C:
case 0x1C:
case 0x20:
case 0x24:
case 0x30:
case 0x34:
case 0x38:
case 0x3C:
case 0x44:
case 0x58:
case 0x5C:
case 0x68:
case 0x6C:
bad = allow_reserved ? false : true;
break;
default:
bad = false;
}
if (addr >= (SIFIVE_SPI_REG_NUM << 2)) {
bad = true;
}
return bad;
}
static uint64_t sifive_spi_read(void *opaque, hwaddr addr, unsigned int size)
{
SiFiveSPIState *s = opaque;
uint32_t r;
if (sifive_spi_is_bad_reg(addr, true)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: bad read at address 0x%"
HWADDR_PRIx "\n", __func__, addr);
return 0;
}
addr >>= 2;
switch (addr) {
case R_TXDATA:
if (fifo8_is_full(&s->tx_fifo)) {
return TXDATA_FULL;
}
r = 0;
break;
case R_RXDATA:
if (fifo8_is_empty(&s->rx_fifo)) {
return RXDATA_EMPTY;
}
r = fifo8_pop(&s->rx_fifo);
break;
default:
r = s->regs[addr];
break;
}
sifive_spi_update_irq(s);
return r;
}
static void sifive_spi_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
SiFiveSPIState *s = opaque;
uint32_t value = val64;
if (sifive_spi_is_bad_reg(addr, false)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: bad write at addr=0x%"
HWADDR_PRIx " value=0x%x\n", __func__, addr, value);
return;
}
addr >>= 2;
switch (addr) {
case R_CSID:
if (value >= s->num_cs) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid csid %d\n",
__func__, value);
} else {
s->regs[R_CSID] = value;
sifive_spi_update_cs(s);
}
break;
case R_CSDEF:
if (value >= (1 << s->num_cs)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid csdef %x\n",
__func__, value);
} else {
s->regs[R_CSDEF] = value;
}
break;
case R_CSMODE:
if (value > 3) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid csmode %x\n",
__func__, value);
} else {
s->regs[R_CSMODE] = value;
sifive_spi_update_cs(s);
}
break;
case R_TXDATA:
if (!fifo8_is_full(&s->tx_fifo)) {
fifo8_push(&s->tx_fifo, (uint8_t)value);
sifive_spi_flush_txfifo(s);
}
break;
case R_RXDATA:
case R_IP:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid write to read-only reigster 0x%"
HWADDR_PRIx " with 0x%x\n", __func__, addr << 2, value);
break;
case R_TXMARK:
case R_RXMARK:
if (value >= FIFO_CAPACITY) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid watermark %d\n",
__func__, value);
} else {
s->regs[addr] = value;
}
break;
case R_FCTRL:
case R_FFMT:
qemu_log_mask(LOG_UNIMP,
"%s: direct-map flash interface unimplemented\n",
__func__);
break;
default:
s->regs[addr] = value;
break;
}
sifive_spi_update_irq(s);
}
static const MemoryRegionOps sifive_spi_ops = {
.read = sifive_spi_read,
.write = sifive_spi_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static void sifive_spi_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
SiFiveSPIState *s = SIFIVE_SPI(dev);
int i;
s->spi = ssi_create_bus(dev, "spi");
sysbus_init_irq(sbd, &s->irq);
s->cs_lines = g_new0(qemu_irq, s->num_cs);
for (i = 0; i < s->num_cs; i++) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
memory_region_init_io(&s->mmio, OBJECT(s), &sifive_spi_ops, s,
TYPE_SIFIVE_SPI, 0x1000);
sysbus_init_mmio(sbd, &s->mmio);
fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
}
static Property sifive_spi_properties[] = {
DEFINE_PROP_UINT32("num-cs", SiFiveSPIState, num_cs, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void sifive_spi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, sifive_spi_properties);
dc->reset = sifive_spi_reset;
dc->realize = sifive_spi_realize;
}
static const TypeInfo sifive_spi_info = {
.name = TYPE_SIFIVE_SPI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SiFiveSPIState),
.class_init = sifive_spi_class_init,
};
static void sifive_spi_register_types(void)
{
type_register_static(&sifive_spi_info);
}
type_init(sifive_spi_register_types)