qemu/hw/g364fb.c
aurel32 1fc3d39200 g364 framebuffer device
(Hervé Poussineau)


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4127 c046a42c-6fe2-441c-8c8c-71466251a162
2008-03-28 22:32:27 +00:00

397 lines
10 KiB
C

/*
* QEMU G364 framebuffer Emulator.
*
* Copyright (c) 2007-2008 Hervé Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "hw.h"
#include "console.h"
#include "pixel_ops.h"
//#define DEBUG_G364
typedef struct G364State {
target_phys_addr_t vram_base;
unsigned int vram_size;
uint8_t *vram_buffer;
uint32_t ctla;
uint8_t palette[256][3];
/* display refresh support */
DisplayState *ds;
int graphic_mode;
uint32_t scr_width, scr_height; /* in pixels */
uint32_t last_scr_width, last_scr_height; /* in pixels */
} G364State;
/*
* graphic modes
*/
#define BPP 8
#define PIXEL_WIDTH 8
#include "g364fb_template.h"
#undef BPP
#undef PIXEL_WIDTH
#define BPP 15
#define PIXEL_WIDTH 16
#include "g364fb_template.h"
#undef BPP
#undef PIXEL_WIDTH
#define BPP 16
#define PIXEL_WIDTH 16
#include "g364fb_template.h"
#undef BPP
#undef PIXEL_WIDTH
#define BPP 32
#define PIXEL_WIDTH 32
#include "g364fb_template.h"
#undef BPP
#undef PIXEL_WIDTH
#define REG_DISPLAYX 0x0918
#define REG_DISPLAYY 0x0940
#define CTLA_FORCE_BLANK 0x400
static void g364fb_draw_graphic(G364State *s, int full_update)
{
if (s->scr_width == 0 || s->scr_height == 0)
return;
if (s->scr_width != s->last_scr_width
|| s->scr_height != s->last_scr_height) {
s->last_scr_width = s->scr_width;
s->last_scr_height = s->scr_height;
dpy_resize(s->ds, s->last_scr_width, s->last_scr_height);
full_update = 1;
}
switch (s->ds->depth) {
case 8:
g364fb_draw_graphic8(s, full_update);
break;
case 15:
g364fb_draw_graphic15(s, full_update);
break;
case 16:
g364fb_draw_graphic16(s, full_update);
break;
case 32:
g364fb_draw_graphic32(s, full_update);
break;
default:
printf("g364fb: unknown depth %d\n", s->ds->depth);
return;
}
dpy_update(s->ds, 0, 0, s->last_scr_width, s->last_scr_height);
}
static void g364fb_draw_blank(G364State *s, int full_update)
{
int i, w;
uint8_t *d;
if (!full_update)
return;
if (s->last_scr_width <= 0 || s->last_scr_height <= 0)
return;
w = s->last_scr_width * ((s->ds->depth + 7) >> 3);
d = s->ds->data;
for(i = 0; i < s->last_scr_height; i++) {
memset(d, 0, w);
d += s->ds->linesize;
}
dpy_update(s->ds, 0, 0,
s->last_scr_width, s->last_scr_height);
}
#define GMODE_GRAPH 0
#define GMODE_BLANK 1
static void g364fb_update_display(void *opaque)
{
G364State *s = opaque;
int full_update, graphic_mode;
if (s->ctla & CTLA_FORCE_BLANK)
graphic_mode = GMODE_BLANK;
else
graphic_mode = GMODE_GRAPH;
full_update = 0;
if (graphic_mode != s->graphic_mode) {
s->graphic_mode = graphic_mode;
full_update = 1;
}
switch(graphic_mode) {
case GMODE_GRAPH:
g364fb_draw_graphic(s, full_update);
break;
case GMODE_BLANK:
default:
g364fb_draw_blank(s, full_update);
break;
}
}
/* force a full display refresh */
static void g364fb_invalidate_display(void *opaque)
{
G364State *s = opaque;
s->graphic_mode = -1; /* force full update */
}
static void g364fb_reset(void *opaque)
{
G364State *s = opaque;
memset(s->palette, 0, sizeof(s->palette));
s->scr_width = s->scr_height = 0;
s->last_scr_width = s->last_scr_height = 0;
memset(s->vram_buffer, 0, s->vram_size);
s->graphic_mode = -1; /* force full update */
}
static void g364fb_screen_dump(void *opaque, const char *filename)
{
G364State *s = opaque;
int y, x;
uint8_t index;
uint8_t *data_buffer;
FILE *f;
f = fopen(filename, "wb");
if (!f)
return;
data_buffer = s->vram_buffer;
fprintf(f, "P6\n%d %d\n%d\n",
s->scr_width, s->scr_height, 255);
for(y = 0; y < s->scr_height; y++)
for(x = 0; x < s->scr_width; x++, data_buffer++) {
index = *data_buffer;
fputc(s->palette[index][0], f);
fputc(s->palette[index][1], f);
fputc(s->palette[index][2], f);
}
fclose(f);
}
/* called for accesses to io ports */
static uint32_t g364fb_ctrl_readb(void *opaque, target_phys_addr_t addr)
{
//G364State *s = opaque;
uint32_t val;
addr &= 0xffff;
switch (addr) {
default:
#ifdef DEBUG_G364
printf("g364fb/ctrl: invalid read at [" TARGET_FMT_lx "]\n", addr);
#endif
val = 0;
break;
}
#ifdef DEBUG_G364
printf("g364fb/ctrl: read 0x%02x at [" TARGET_FMT_lx "]\n", val, addr);
#endif
return val;
}
static uint32_t g364fb_ctrl_readw(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = g364fb_ctrl_readb(opaque, addr);
v |= g364fb_ctrl_readb(opaque, addr + 1) << 8;
return v;
}
static uint32_t g364fb_ctrl_readl(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = g364fb_ctrl_readb(opaque, addr);
v |= g364fb_ctrl_readb(opaque, addr + 1) << 8;
v |= g364fb_ctrl_readb(opaque, addr + 2) << 16;
v |= g364fb_ctrl_readb(opaque, addr + 3) << 24;
return v;
}
static void g364fb_ctrl_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
G364State *s = opaque;
addr &= 0xffff;
#ifdef DEBUG_G364
printf("g364fb/ctrl: write 0x%02x at [" TARGET_FMT_lx "]\n", val, addr);
#endif
if (addr < 0x0800) {
/* color palette */
int idx = addr >> 3;
int c = addr & 7;
if (c < 3)
s->palette[idx][c] = (uint8_t)val;
} else {
switch (addr) {
case REG_DISPLAYX:
s->scr_width = (s->scr_width & 0xfffffc03) | (val << 2);
break;
case REG_DISPLAYX + 1:
s->scr_width = (s->scr_width & 0xfffc03ff) | (val << 10);
break;
case REG_DISPLAYY:
s->scr_height = (s->scr_height & 0xffffff80) | (val >> 1);
break;
case REG_DISPLAYY + 1:
s->scr_height = (s->scr_height & 0xffff801f) | (val << 7);
break;
default:
#ifdef DEBUG_G364
printf("g364fb/ctrl: invalid write of 0x%02x at [" TARGET_FMT_lx "]\n", val, addr);
#endif
break;
}
}
}
static void g364fb_ctrl_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
g364fb_ctrl_writeb(opaque, addr, val & 0xff);
g364fb_ctrl_writeb(opaque, addr + 1, (val >> 8) & 0xff);
}
static void g364fb_ctrl_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
g364fb_ctrl_writeb(opaque, addr, val & 0xff);
g364fb_ctrl_writeb(opaque, addr + 1, (val >> 8) & 0xff);
g364fb_ctrl_writeb(opaque, addr + 2, (val >> 16) & 0xff);
g364fb_ctrl_writeb(opaque, addr + 3, (val >> 24) & 0xff);
}
static CPUReadMemoryFunc *g364fb_ctrl_read[3] = {
g364fb_ctrl_readb,
g364fb_ctrl_readw,
g364fb_ctrl_readl,
};
static CPUWriteMemoryFunc *g364fb_ctrl_write[3] = {
g364fb_ctrl_writeb,
g364fb_ctrl_writew,
g364fb_ctrl_writel,
};
/* called for accesses to video ram */
static uint32_t g364fb_mem_readb(void *opaque, target_phys_addr_t addr)
{
G364State *s = opaque;
target_phys_addr_t relative_addr = addr - s->vram_base;
return s->vram_buffer[relative_addr];
}
static uint32_t g364fb_mem_readw(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = g364fb_mem_readb(opaque, addr);
v |= g364fb_mem_readb(opaque, addr + 1) << 8;
return v;
}
static uint32_t g364fb_mem_readl(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = g364fb_mem_readb(opaque, addr);
v |= g364fb_mem_readb(opaque, addr + 1) << 8;
v |= g364fb_mem_readb(opaque, addr + 2) << 16;
v |= g364fb_mem_readb(opaque, addr + 3) << 24;
return v;
}
static void g364fb_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
G364State *s = opaque;
target_phys_addr_t relative_addr = addr - s->vram_base;
s->vram_buffer[relative_addr] = val;
}
static void g364fb_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
g364fb_mem_writeb(opaque, addr, val & 0xff);
g364fb_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff);
}
static void g364fb_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
g364fb_mem_writeb(opaque, addr, val & 0xff);
g364fb_mem_writeb(opaque, addr + 1, (val >> 8) & 0xff);
g364fb_mem_writeb(opaque, addr + 2, (val >> 16) & 0xff);
g364fb_mem_writeb(opaque, addr + 3, (val >> 24) & 0xff);
}
static CPUReadMemoryFunc *g364fb_mem_read[3] = {
g364fb_mem_readb,
g364fb_mem_readw,
g364fb_mem_readl,
};
static CPUWriteMemoryFunc *g364fb_mem_write[3] = {
g364fb_mem_writeb,
g364fb_mem_writew,
g364fb_mem_writel,
};
int g364fb_mm_init(DisplayState *ds,
int vram_size, int it_shift,
target_phys_addr_t vram_base, target_phys_addr_t ctrl_base)
{
G364State *s;
int io_vram, io_ctrl;
s = qemu_mallocz(sizeof(G364State));
if (!s)
return -1;
s->vram_size = vram_size;
s->vram_buffer = qemu_mallocz(s->vram_size);
qemu_register_reset(g364fb_reset, s);
g364fb_reset(s);
s->ds = ds;
s->vram_base = vram_base;
graphic_console_init(ds, g364fb_update_display,
g364fb_invalidate_display, g364fb_screen_dump,
NULL, s);
io_vram = cpu_register_io_memory(0, g364fb_mem_read, g364fb_mem_write, s);
cpu_register_physical_memory(s->vram_base, vram_size, io_vram);
io_ctrl = cpu_register_io_memory(0, g364fb_ctrl_read, g364fb_ctrl_write, s);
cpu_register_physical_memory(ctrl_base, 0x10000, io_ctrl);
return 0;
}