qemu/tests/test-crypto-cipher.c
Daniel P. Berrange ca38a4cc9e crypto: introduce generic cipher API & built-in implementation
Introduce a generic cipher API and an implementation of it that
supports only the built-in AES and DES-RFB algorithms.

The test suite checks the supported algorithms + modes to
validate that every backend implementation is actually correctly
complying with the specs.

Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
Message-Id: <1435770638-25715-5-git-send-email-berrange@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-07-08 13:11:01 +02:00

291 lines
8.7 KiB
C

/*
* QEMU Crypto cipher algorithms
*
* Copyright (c) 2015 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include <glib.h>
#include "crypto/init.h"
#include "crypto/cipher.h"
typedef struct QCryptoCipherTestData QCryptoCipherTestData;
struct QCryptoCipherTestData {
const char *path;
QCryptoCipherAlgorithm alg;
QCryptoCipherMode mode;
const char *key;
const char *plaintext;
const char *ciphertext;
const char *iv;
};
/* AES test data comes from appendix F of:
*
* http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
*/
static QCryptoCipherTestData test_data[] = {
{
/* NIST F.1.1 ECB-AES128.Encrypt */
.path = "/crypto/cipher/aes-ecb-128",
.alg = QCRYPTO_CIPHER_ALG_AES_128,
.mode = QCRYPTO_CIPHER_MODE_ECB,
.key = "2b7e151628aed2a6abf7158809cf4f3c",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"3ad77bb40d7a3660a89ecaf32466ef97"
"f5d3d58503b9699de785895a96fdbaaf"
"43b1cd7f598ece23881b00e3ed030688"
"7b0c785e27e8ad3f8223207104725dd4"
},
{
/* NIST F.1.3 ECB-AES192.Encrypt */
.path = "/crypto/cipher/aes-ecb-192",
.alg = QCRYPTO_CIPHER_ALG_AES_192,
.mode = QCRYPTO_CIPHER_MODE_ECB,
.key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"bd334f1d6e45f25ff712a214571fa5cc"
"974104846d0ad3ad7734ecb3ecee4eef"
"ef7afd2270e2e60adce0ba2face6444e"
"9a4b41ba738d6c72fb16691603c18e0e"
},
{
/* NIST F.1.5 ECB-AES256.Encrypt */
.path = "/crypto/cipher/aes-ecb-256",
.alg = QCRYPTO_CIPHER_ALG_AES_256,
.mode = QCRYPTO_CIPHER_MODE_ECB,
.key =
"603deb1015ca71be2b73aef0857d7781"
"1f352c073b6108d72d9810a30914dff4",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"f3eed1bdb5d2a03c064b5a7e3db181f8"
"591ccb10d410ed26dc5ba74a31362870"
"b6ed21b99ca6f4f9f153e7b1beafed1d"
"23304b7a39f9f3ff067d8d8f9e24ecc7",
},
{
/* NIST F.2.1 CBC-AES128.Encrypt */
.path = "/crypto/cipher/aes-cbc-128",
.alg = QCRYPTO_CIPHER_ALG_AES_128,
.mode = QCRYPTO_CIPHER_MODE_CBC,
.key = "2b7e151628aed2a6abf7158809cf4f3c",
.iv = "000102030405060708090a0b0c0d0e0f",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"7649abac8119b246cee98e9b12e9197d"
"5086cb9b507219ee95db113a917678b2"
"73bed6b8e3c1743b7116e69e22229516"
"3ff1caa1681fac09120eca307586e1a7",
},
{
/* NIST F.2.3 CBC-AES128.Encrypt */
.path = "/crypto/cipher/aes-cbc-192",
.alg = QCRYPTO_CIPHER_ALG_AES_192,
.mode = QCRYPTO_CIPHER_MODE_CBC,
.key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b",
.iv = "000102030405060708090a0b0c0d0e0f",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"4f021db243bc633d7178183a9fa071e8"
"b4d9ada9ad7dedf4e5e738763f69145a"
"571b242012fb7ae07fa9baac3df102e0"
"08b0e27988598881d920a9e64f5615cd",
},
{
/* NIST F.2.5 CBC-AES128.Encrypt */
.path = "/crypto/cipher/aes-cbc-256",
.alg = QCRYPTO_CIPHER_ALG_AES_256,
.mode = QCRYPTO_CIPHER_MODE_CBC,
.key =
"603deb1015ca71be2b73aef0857d7781"
"1f352c073b6108d72d9810a30914dff4",
.iv = "000102030405060708090a0b0c0d0e0f",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"f58c4c04d6e5f1ba779eabfb5f7bfbd6"
"9cfc4e967edb808d679f777bc6702c7d"
"39f23369a9d9bacfa530e26304231461"
"b2eb05e2c39be9fcda6c19078c6a9d1b",
},
{
.path = "/crypto/cipher/des-rfb-ecb-56",
.alg = QCRYPTO_CIPHER_ALG_DES_RFB,
.mode = QCRYPTO_CIPHER_MODE_ECB,
.key = "0123456789abcdef",
.plaintext =
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
.ciphertext =
"8f346aaf64eaf24040720d80648c52e7"
"aefc616be53ab1a3d301e69d91e01838"
"ffd29f1bb5596ad94ea2d8e6196b7f09"
"30d8ed0bf2773af36dd82a6280c20926",
},
};
static inline int unhex(char c)
{
if (c >= 'a' && c <= 'f') {
return 10 + (c - 'a');
}
if (c >= 'A' && c <= 'F') {
return 10 + (c - 'A');
}
return c - '0';
}
static inline char hex(int i)
{
if (i < 10) {
return '0' + i;
}
return 'a' + (i - 10);
}
static size_t unhex_string(const char *hexstr,
uint8_t **data)
{
size_t len;
size_t i;
if (!hexstr) {
*data = NULL;
return 0;
}
len = strlen(hexstr);
*data = g_new0(uint8_t, len / 2);
for (i = 0; i < len; i += 2) {
(*data)[i/2] = (unhex(hexstr[i]) << 4) | unhex(hexstr[i+1]);
}
return len / 2;
}
static char *hex_string(const uint8_t *bytes,
size_t len)
{
char *hexstr = g_new0(char, len * 2 + 1);
size_t i;
for (i = 0; i < len; i++) {
hexstr[i*2] = hex((bytes[i] >> 4) & 0xf);
hexstr[i*2+1] = hex(bytes[i] & 0xf);
}
hexstr[len*2] = '\0';
return hexstr;
}
static void test_cipher(const void *opaque)
{
const QCryptoCipherTestData *data = opaque;
QCryptoCipher *cipher;
Error *err = NULL;
uint8_t *key, *iv, *ciphertext, *plaintext, *outtext;
size_t nkey, niv, nciphertext, nplaintext;
char *outtexthex;
g_test_message("foo");
nkey = unhex_string(data->key, &key);
niv = unhex_string(data->iv, &iv);
nciphertext = unhex_string(data->ciphertext, &ciphertext);
nplaintext = unhex_string(data->plaintext, &plaintext);
g_assert(nciphertext == nplaintext);
outtext = g_new0(uint8_t, nciphertext);
cipher = qcrypto_cipher_new(
data->alg, data->mode,
key, nkey,
&err);
g_assert(cipher != NULL);
g_assert(err == NULL);
if (iv) {
g_assert(qcrypto_cipher_setiv(cipher,
iv, niv,
&err) == 0);
g_assert(err == NULL);
}
g_assert(qcrypto_cipher_encrypt(cipher,
plaintext,
outtext,
nplaintext,
&err) == 0);
g_assert(err == NULL);
outtexthex = hex_string(outtext, nciphertext);
g_assert_cmpstr(outtexthex, ==, data->ciphertext);
g_free(outtext);
g_free(outtexthex);
g_free(key);
g_free(iv);
g_free(ciphertext);
g_free(plaintext);
qcrypto_cipher_free(cipher);
}
int main(int argc, char **argv)
{
size_t i;
g_test_init(&argc, &argv, NULL);
g_assert(qcrypto_init(NULL) == 0);
for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
g_test_add_data_func(test_data[i].path, &test_data[i], test_cipher);
}
return g_test_run();
}