qemu/hw/arm/smmu-common.c
Peter Maydell ad80e36744 hw, target: Add ResetType argument to hold and exit phase methods
We pass a ResetType argument to the Resettable class enter
phase method, but we don't pass it to hold and exit, even though
the callsites have it readily available. This means that if
a device cared about the ResetType it would need to record it
in the enter phase method to use later on. Pass the type to
all three of the phase methods to avoid having to do that.

Commit created with

  for dir in hw target include; do \
      spatch --macro-file scripts/cocci-macro-file.h \
             --sp-file scripts/coccinelle/reset-type.cocci \
             --keep-comments --smpl-spacing --in-place \
             --include-headers --dir $dir; done

and no manual edits.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@amd.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Luc Michel <luc.michel@amd.com>
Message-id: 20240412160809.1260625-5-peter.maydell@linaro.org
2024-04-25 10:21:06 +01:00

731 lines
23 KiB
C

/*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Prem Mallappa <pmallapp@broadcom.com>
*
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "exec/target_page.h"
#include "hw/core/cpu.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/jhash.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "hw/arm/smmu-common.h"
#include "smmu-internal.h"
/* IOTLB Management */
static guint smmu_iotlb_key_hash(gconstpointer v)
{
SMMUIOTLBKey *key = (SMMUIOTLBKey *)v;
uint32_t a, b, c;
/* Jenkins hash */
a = b = c = JHASH_INITVAL + sizeof(*key);
a += key->asid + key->vmid + key->level + key->tg;
b += extract64(key->iova, 0, 32);
c += extract64(key->iova, 32, 32);
__jhash_mix(a, b, c);
__jhash_final(a, b, c);
return c;
}
static gboolean smmu_iotlb_key_equal(gconstpointer v1, gconstpointer v2)
{
SMMUIOTLBKey *k1 = (SMMUIOTLBKey *)v1, *k2 = (SMMUIOTLBKey *)v2;
return (k1->asid == k2->asid) && (k1->iova == k2->iova) &&
(k1->level == k2->level) && (k1->tg == k2->tg) &&
(k1->vmid == k2->vmid);
}
SMMUIOTLBKey smmu_get_iotlb_key(uint16_t asid, uint16_t vmid, uint64_t iova,
uint8_t tg, uint8_t level)
{
SMMUIOTLBKey key = {.asid = asid, .vmid = vmid, .iova = iova,
.tg = tg, .level = level};
return key;
}
SMMUTLBEntry *smmu_iotlb_lookup(SMMUState *bs, SMMUTransCfg *cfg,
SMMUTransTableInfo *tt, hwaddr iova)
{
uint8_t tg = (tt->granule_sz - 10) / 2;
uint8_t inputsize = 64 - tt->tsz;
uint8_t stride = tt->granule_sz - 3;
uint8_t level = 4 - (inputsize - 4) / stride;
SMMUTLBEntry *entry = NULL;
while (level <= 3) {
uint64_t subpage_size = 1ULL << level_shift(level, tt->granule_sz);
uint64_t mask = subpage_size - 1;
SMMUIOTLBKey key;
key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid,
iova & ~mask, tg, level);
entry = g_hash_table_lookup(bs->iotlb, &key);
if (entry) {
break;
}
level++;
}
if (entry) {
cfg->iotlb_hits++;
trace_smmu_iotlb_lookup_hit(cfg->asid, cfg->s2cfg.vmid, iova,
cfg->iotlb_hits, cfg->iotlb_misses,
100 * cfg->iotlb_hits /
(cfg->iotlb_hits + cfg->iotlb_misses));
} else {
cfg->iotlb_misses++;
trace_smmu_iotlb_lookup_miss(cfg->asid, cfg->s2cfg.vmid, iova,
cfg->iotlb_hits, cfg->iotlb_misses,
100 * cfg->iotlb_hits /
(cfg->iotlb_hits + cfg->iotlb_misses));
}
return entry;
}
void smmu_iotlb_insert(SMMUState *bs, SMMUTransCfg *cfg, SMMUTLBEntry *new)
{
SMMUIOTLBKey *key = g_new0(SMMUIOTLBKey, 1);
uint8_t tg = (new->granule - 10) / 2;
if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
smmu_iotlb_inv_all(bs);
}
*key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
tg, new->level);
trace_smmu_iotlb_insert(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
tg, new->level);
g_hash_table_insert(bs->iotlb, key, new);
}
void smmu_iotlb_inv_all(SMMUState *s)
{
trace_smmu_iotlb_inv_all();
g_hash_table_remove_all(s->iotlb);
}
static gboolean smmu_hash_remove_by_asid(gpointer key, gpointer value,
gpointer user_data)
{
uint16_t asid = *(uint16_t *)user_data;
SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
return SMMU_IOTLB_ASID(*iotlb_key) == asid;
}
static gboolean smmu_hash_remove_by_vmid(gpointer key, gpointer value,
gpointer user_data)
{
uint16_t vmid = *(uint16_t *)user_data;
SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
return SMMU_IOTLB_VMID(*iotlb_key) == vmid;
}
static gboolean smmu_hash_remove_by_asid_vmid_iova(gpointer key, gpointer value,
gpointer user_data)
{
SMMUTLBEntry *iter = (SMMUTLBEntry *)value;
IOMMUTLBEntry *entry = &iter->entry;
SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key;
if (info->asid >= 0 && info->asid != SMMU_IOTLB_ASID(iotlb_key)) {
return false;
}
if (info->vmid >= 0 && info->vmid != SMMU_IOTLB_VMID(iotlb_key)) {
return false;
}
return ((info->iova & ~entry->addr_mask) == entry->iova) ||
((entry->iova & ~info->mask) == info->iova);
}
void smmu_iotlb_inv_iova(SMMUState *s, int asid, int vmid, dma_addr_t iova,
uint8_t tg, uint64_t num_pages, uint8_t ttl)
{
/* if tg is not set we use 4KB range invalidation */
uint8_t granule = tg ? tg * 2 + 10 : 12;
if (ttl && (num_pages == 1) && (asid >= 0)) {
SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, iova, tg, ttl);
if (g_hash_table_remove(s->iotlb, &key)) {
return;
}
/*
* if the entry is not found, let's see if it does not
* belong to a larger IOTLB entry
*/
}
SMMUIOTLBPageInvInfo info = {
.asid = asid, .iova = iova,
.vmid = vmid,
.mask = (num_pages * 1 << granule) - 1};
g_hash_table_foreach_remove(s->iotlb,
smmu_hash_remove_by_asid_vmid_iova,
&info);
}
void smmu_iotlb_inv_asid(SMMUState *s, uint16_t asid)
{
trace_smmu_iotlb_inv_asid(asid);
g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_asid, &asid);
}
void smmu_iotlb_inv_vmid(SMMUState *s, uint16_t vmid)
{
trace_smmu_iotlb_inv_vmid(vmid);
g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid, &vmid);
}
/* VMSAv8-64 Translation */
/**
* get_pte - Get the content of a page table entry located at
* @base_addr[@index]
*/
static int get_pte(dma_addr_t baseaddr, uint32_t index, uint64_t *pte,
SMMUPTWEventInfo *info)
{
int ret;
dma_addr_t addr = baseaddr + index * sizeof(*pte);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = ldq_le_dma(&address_space_memory, addr, pte, MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
info->type = SMMU_PTW_ERR_WALK_EABT;
info->addr = addr;
return -EINVAL;
}
trace_smmu_get_pte(baseaddr, index, addr, *pte);
return 0;
}
/* VMSAv8-64 Translation Table Format Descriptor Decoding */
/**
* get_page_pte_address - returns the L3 descriptor output address,
* ie. the page frame
* ARM ARM spec: Figure D4-17 VMSAv8-64 level 3 descriptor format
*/
static inline hwaddr get_page_pte_address(uint64_t pte, int granule_sz)
{
return PTE_ADDRESS(pte, granule_sz);
}
/**
* get_table_pte_address - return table descriptor output address,
* ie. address of next level table
* ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
*/
static inline hwaddr get_table_pte_address(uint64_t pte, int granule_sz)
{
return PTE_ADDRESS(pte, granule_sz);
}
/**
* get_block_pte_address - return block descriptor output address and block size
* ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
*/
static inline hwaddr get_block_pte_address(uint64_t pte, int level,
int granule_sz, uint64_t *bsz)
{
int n = level_shift(level, granule_sz);
*bsz = 1ULL << n;
return PTE_ADDRESS(pte, n);
}
SMMUTransTableInfo *select_tt(SMMUTransCfg *cfg, dma_addr_t iova)
{
bool tbi = extract64(iova, 55, 1) ? TBI1(cfg->tbi) : TBI0(cfg->tbi);
uint8_t tbi_byte = tbi * 8;
if (cfg->tt[0].tsz &&
!extract64(iova, 64 - cfg->tt[0].tsz, cfg->tt[0].tsz - tbi_byte)) {
/* there is a ttbr0 region and we are in it (high bits all zero) */
return &cfg->tt[0];
} else if (cfg->tt[1].tsz &&
sextract64(iova, 64 - cfg->tt[1].tsz, cfg->tt[1].tsz - tbi_byte) == -1) {
/* there is a ttbr1 region and we are in it (high bits all one) */
return &cfg->tt[1];
} else if (!cfg->tt[0].tsz) {
/* ttbr0 region is "everything not in the ttbr1 region" */
return &cfg->tt[0];
} else if (!cfg->tt[1].tsz) {
/* ttbr1 region is "everything not in the ttbr0 region" */
return &cfg->tt[1];
}
/* in the gap between the two regions, this is a Translation fault */
return NULL;
}
/**
* smmu_ptw_64_s1 - VMSAv8-64 Walk of the page tables for a given IOVA
* @cfg: translation config
* @iova: iova to translate
* @perm: access type
* @tlbe: SMMUTLBEntry (out)
* @info: handle to an error info
*
* Return 0 on success, < 0 on error. In case of error, @info is filled
* and tlbe->perm is set to IOMMU_NONE.
* Upon success, @tlbe is filled with translated_addr and entry
* permission rights.
*/
static int smmu_ptw_64_s1(SMMUTransCfg *cfg,
dma_addr_t iova, IOMMUAccessFlags perm,
SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
dma_addr_t baseaddr, indexmask;
int stage = cfg->stage;
SMMUTransTableInfo *tt = select_tt(cfg, iova);
uint8_t level, granule_sz, inputsize, stride;
if (!tt || tt->disabled) {
info->type = SMMU_PTW_ERR_TRANSLATION;
goto error;
}
granule_sz = tt->granule_sz;
stride = VMSA_STRIDE(granule_sz);
inputsize = 64 - tt->tsz;
level = 4 - (inputsize - 4) / stride;
indexmask = VMSA_IDXMSK(inputsize, stride, level);
baseaddr = extract64(tt->ttb, 0, 48);
baseaddr &= ~indexmask;
while (level < VMSA_LEVELS) {
uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
uint64_t mask = subpage_size - 1;
uint32_t offset = iova_level_offset(iova, inputsize, level, granule_sz);
uint64_t pte, gpa;
dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
uint8_t ap;
if (get_pte(baseaddr, offset, &pte, info)) {
goto error;
}
trace_smmu_ptw_level(stage, level, iova, subpage_size,
baseaddr, offset, pte);
if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
pte_addr, offset, pte);
break;
}
if (is_table_pte(pte, level)) {
ap = PTE_APTABLE(pte);
if (is_permission_fault(ap, perm) && !tt->had) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error;
}
baseaddr = get_table_pte_address(pte, granule_sz);
level++;
continue;
} else if (is_page_pte(pte, level)) {
gpa = get_page_pte_address(pte, granule_sz);
trace_smmu_ptw_page_pte(stage, level, iova,
baseaddr, pte_addr, pte, gpa);
} else {
uint64_t block_size;
gpa = get_block_pte_address(pte, level, granule_sz,
&block_size);
trace_smmu_ptw_block_pte(stage, level, baseaddr,
pte_addr, pte, iova, gpa,
block_size >> 20);
}
/*
* QEMU does not currently implement HTTU, so if AFFD and PTE.AF
* are 0 we take an Access flag fault. (5.4. Context Descriptor)
* An Access flag fault takes priority over a Permission fault.
*/
if (!PTE_AF(pte) && !cfg->affd) {
info->type = SMMU_PTW_ERR_ACCESS;
goto error;
}
ap = PTE_AP(pte);
if (is_permission_fault(ap, perm)) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error;
}
tlbe->entry.translated_addr = gpa;
tlbe->entry.iova = iova & ~mask;
tlbe->entry.addr_mask = mask;
tlbe->entry.perm = PTE_AP_TO_PERM(ap);
tlbe->level = level;
tlbe->granule = granule_sz;
return 0;
}
info->type = SMMU_PTW_ERR_TRANSLATION;
error:
info->stage = 1;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
/**
* smmu_ptw_64_s2 - VMSAv8-64 Walk of the page tables for a given ipa
* for stage-2.
* @cfg: translation config
* @ipa: ipa to translate
* @perm: access type
* @tlbe: SMMUTLBEntry (out)
* @info: handle to an error info
*
* Return 0 on success, < 0 on error. In case of error, @info is filled
* and tlbe->perm is set to IOMMU_NONE.
* Upon success, @tlbe is filled with translated_addr and entry
* permission rights.
*/
static int smmu_ptw_64_s2(SMMUTransCfg *cfg,
dma_addr_t ipa, IOMMUAccessFlags perm,
SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
const int stage = 2;
int granule_sz = cfg->s2cfg.granule_sz;
/* ARM DDI0487I.a: Table D8-7. */
int inputsize = 64 - cfg->s2cfg.tsz;
int level = get_start_level(cfg->s2cfg.sl0, granule_sz);
int stride = VMSA_STRIDE(granule_sz);
int idx = pgd_concat_idx(level, granule_sz, ipa);
/*
* Get the ttb from concatenated structure.
* The offset is the idx * size of each ttb(number of ptes * (sizeof(pte))
*/
uint64_t baseaddr = extract64(cfg->s2cfg.vttb, 0, 48) + (1 << stride) *
idx * sizeof(uint64_t);
dma_addr_t indexmask = VMSA_IDXMSK(inputsize, stride, level);
baseaddr &= ~indexmask;
/*
* On input, a stage 2 Translation fault occurs if the IPA is outside the
* range configured by the relevant S2T0SZ field of the STE.
*/
if (ipa >= (1ULL << inputsize)) {
info->type = SMMU_PTW_ERR_TRANSLATION;
goto error;
}
while (level < VMSA_LEVELS) {
uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
uint64_t mask = subpage_size - 1;
uint32_t offset = iova_level_offset(ipa, inputsize, level, granule_sz);
uint64_t pte, gpa;
dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
uint8_t s2ap;
if (get_pte(baseaddr, offset, &pte, info)) {
goto error;
}
trace_smmu_ptw_level(stage, level, ipa, subpage_size,
baseaddr, offset, pte);
if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
pte_addr, offset, pte);
break;
}
if (is_table_pte(pte, level)) {
baseaddr = get_table_pte_address(pte, granule_sz);
level++;
continue;
} else if (is_page_pte(pte, level)) {
gpa = get_page_pte_address(pte, granule_sz);
trace_smmu_ptw_page_pte(stage, level, ipa,
baseaddr, pte_addr, pte, gpa);
} else {
uint64_t block_size;
gpa = get_block_pte_address(pte, level, granule_sz,
&block_size);
trace_smmu_ptw_block_pte(stage, level, baseaddr,
pte_addr, pte, ipa, gpa,
block_size >> 20);
}
/*
* If S2AFFD and PTE.AF are 0 => fault. (5.2. Stream Table Entry)
* An Access fault takes priority over a Permission fault.
*/
if (!PTE_AF(pte) && !cfg->s2cfg.affd) {
info->type = SMMU_PTW_ERR_ACCESS;
goto error;
}
s2ap = PTE_AP(pte);
if (is_permission_fault_s2(s2ap, perm)) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error;
}
/*
* The address output from the translation causes a stage 2 Address
* Size fault if it exceeds the effective PA output range.
*/
if (gpa >= (1ULL << cfg->s2cfg.eff_ps)) {
info->type = SMMU_PTW_ERR_ADDR_SIZE;
goto error;
}
tlbe->entry.translated_addr = gpa;
tlbe->entry.iova = ipa & ~mask;
tlbe->entry.addr_mask = mask;
tlbe->entry.perm = s2ap;
tlbe->level = level;
tlbe->granule = granule_sz;
return 0;
}
info->type = SMMU_PTW_ERR_TRANSLATION;
error:
info->stage = 2;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
/**
* smmu_ptw - Walk the page tables for an IOVA, according to @cfg
*
* @cfg: translation configuration
* @iova: iova to translate
* @perm: tentative access type
* @tlbe: returned entry
* @info: ptw event handle
*
* return 0 on success
*/
int smmu_ptw(SMMUTransCfg *cfg, dma_addr_t iova, IOMMUAccessFlags perm,
SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
if (cfg->stage == 1) {
return smmu_ptw_64_s1(cfg, iova, perm, tlbe, info);
} else if (cfg->stage == 2) {
/*
* If bypassing stage 1(or unimplemented), the input address is passed
* directly to stage 2 as IPA. If the input address of a transaction
* exceeds the size of the IAS, a stage 1 Address Size fault occurs.
* For AA64, IAS = OAS according to (IHI 0070.E.a) "3.4 Address sizes"
*/
if (iova >= (1ULL << cfg->oas)) {
info->type = SMMU_PTW_ERR_ADDR_SIZE;
info->stage = 1;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
return smmu_ptw_64_s2(cfg, iova, perm, tlbe, info);
}
g_assert_not_reached();
}
/**
* The bus number is used for lookup when SID based invalidation occurs.
* In that case we lazily populate the SMMUPciBus array from the bus hash
* table. At the time the SMMUPciBus is created (smmu_find_add_as), the bus
* numbers may not be always initialized yet.
*/
SMMUPciBus *smmu_find_smmu_pcibus(SMMUState *s, uint8_t bus_num)
{
SMMUPciBus *smmu_pci_bus = s->smmu_pcibus_by_bus_num[bus_num];
GHashTableIter iter;
if (smmu_pci_bus) {
return smmu_pci_bus;
}
g_hash_table_iter_init(&iter, s->smmu_pcibus_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&smmu_pci_bus)) {
if (pci_bus_num(smmu_pci_bus->bus) == bus_num) {
s->smmu_pcibus_by_bus_num[bus_num] = smmu_pci_bus;
return smmu_pci_bus;
}
}
return NULL;
}
static AddressSpace *smmu_find_add_as(PCIBus *bus, void *opaque, int devfn)
{
SMMUState *s = opaque;
SMMUPciBus *sbus = g_hash_table_lookup(s->smmu_pcibus_by_busptr, bus);
SMMUDevice *sdev;
static unsigned int index;
if (!sbus) {
sbus = g_malloc0(sizeof(SMMUPciBus) +
sizeof(SMMUDevice *) * SMMU_PCI_DEVFN_MAX);
sbus->bus = bus;
g_hash_table_insert(s->smmu_pcibus_by_busptr, bus, sbus);
}
sdev = sbus->pbdev[devfn];
if (!sdev) {
char *name = g_strdup_printf("%s-%d-%d", s->mrtypename, devfn, index++);
sdev = sbus->pbdev[devfn] = g_new0(SMMUDevice, 1);
sdev->smmu = s;
sdev->bus = bus;
sdev->devfn = devfn;
memory_region_init_iommu(&sdev->iommu, sizeof(sdev->iommu),
s->mrtypename,
OBJECT(s), name, UINT64_MAX);
address_space_init(&sdev->as,
MEMORY_REGION(&sdev->iommu), name);
trace_smmu_add_mr(name);
g_free(name);
}
return &sdev->as;
}
static const PCIIOMMUOps smmu_ops = {
.get_address_space = smmu_find_add_as,
};
IOMMUMemoryRegion *smmu_iommu_mr(SMMUState *s, uint32_t sid)
{
uint8_t bus_n, devfn;
SMMUPciBus *smmu_bus;
SMMUDevice *smmu;
bus_n = PCI_BUS_NUM(sid);
smmu_bus = smmu_find_smmu_pcibus(s, bus_n);
if (smmu_bus) {
devfn = SMMU_PCI_DEVFN(sid);
smmu = smmu_bus->pbdev[devfn];
if (smmu) {
return &smmu->iommu;
}
}
return NULL;
}
/* Unmap all notifiers attached to @mr */
static void smmu_inv_notifiers_mr(IOMMUMemoryRegion *mr)
{
IOMMUNotifier *n;
trace_smmu_inv_notifiers_mr(mr->parent_obj.name);
IOMMU_NOTIFIER_FOREACH(n, mr) {
memory_region_unmap_iommu_notifier_range(n);
}
}
/* Unmap all notifiers of all mr's */
void smmu_inv_notifiers_all(SMMUState *s)
{
SMMUDevice *sdev;
QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
smmu_inv_notifiers_mr(&sdev->iommu);
}
}
static void smmu_base_realize(DeviceState *dev, Error **errp)
{
SMMUState *s = ARM_SMMU(dev);
SMMUBaseClass *sbc = ARM_SMMU_GET_CLASS(dev);
Error *local_err = NULL;
sbc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
s->configs = g_hash_table_new_full(NULL, NULL, NULL, g_free);
s->iotlb = g_hash_table_new_full(smmu_iotlb_key_hash, smmu_iotlb_key_equal,
g_free, g_free);
s->smmu_pcibus_by_busptr = g_hash_table_new(NULL, NULL);
if (s->primary_bus) {
pci_setup_iommu(s->primary_bus, &smmu_ops, s);
} else {
error_setg(errp, "SMMU is not attached to any PCI bus!");
}
}
static void smmu_base_reset_hold(Object *obj, ResetType type)
{
SMMUState *s = ARM_SMMU(obj);
memset(s->smmu_pcibus_by_bus_num, 0, sizeof(s->smmu_pcibus_by_bus_num));
g_hash_table_remove_all(s->configs);
g_hash_table_remove_all(s->iotlb);
}
static Property smmu_dev_properties[] = {
DEFINE_PROP_UINT8("bus_num", SMMUState, bus_num, 0),
DEFINE_PROP_LINK("primary-bus", SMMUState, primary_bus,
TYPE_PCI_BUS, PCIBus *),
DEFINE_PROP_END_OF_LIST(),
};
static void smmu_base_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
SMMUBaseClass *sbc = ARM_SMMU_CLASS(klass);
device_class_set_props(dc, smmu_dev_properties);
device_class_set_parent_realize(dc, smmu_base_realize,
&sbc->parent_realize);
rc->phases.hold = smmu_base_reset_hold;
}
static const TypeInfo smmu_base_info = {
.name = TYPE_ARM_SMMU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SMMUState),
.class_data = NULL,
.class_size = sizeof(SMMUBaseClass),
.class_init = smmu_base_class_init,
.abstract = true,
};
static void smmu_base_register_types(void)
{
type_register_static(&smmu_base_info);
}
type_init(smmu_base_register_types)