qemu/hw/timer/m48t59.c
David Gibson c124c4d13b Split ISA and sysbus versions of m48t59 device
The m48t59 device supports both ISA and direct sysbus attached versions of
the device in the one .c file.  This can be awkward for some embedded
machine types which need the sysbus M48T59, but don't want to pull in the
ISA bus code and its other dependencies.

Therefore, this patch splits out the code for the ISA attached M48T59 into
its own C file.  It will be built when both CONFIG_M48T59 and
CONFIG_ISA_BUS are enabled.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
2017-02-06 12:33:21 +11:00

756 lines
20 KiB
C

/*
* QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
*
* Copyright (c) 2003-2005, 2007 Jocelyn Mayer
* Copyright (c) 2013 Hervé Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/timer/m48t59.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "qemu/bcd.h"
#include "m48t59-internal.h"
#define TYPE_M48TXX_SYS_BUS "sysbus-m48txx"
#define M48TXX_SYS_BUS_GET_CLASS(obj) \
OBJECT_GET_CLASS(M48txxSysBusDeviceClass, (obj), TYPE_M48TXX_SYS_BUS)
#define M48TXX_SYS_BUS_CLASS(klass) \
OBJECT_CLASS_CHECK(M48txxSysBusDeviceClass, (klass), TYPE_M48TXX_SYS_BUS)
#define M48TXX_SYS_BUS(obj) \
OBJECT_CHECK(M48txxSysBusState, (obj), TYPE_M48TXX_SYS_BUS)
/*
* Chipset docs:
* http://www.st.com/stonline/products/literature/ds/2410/m48t02.pdf
* http://www.st.com/stonline/products/literature/ds/2411/m48t08.pdf
* http://www.st.com/stonline/products/literature/od/7001/m48t59y.pdf
*/
typedef struct M48txxSysBusState {
SysBusDevice parent_obj;
M48t59State state;
MemoryRegion io;
} M48txxSysBusState;
typedef struct M48txxSysBusDeviceClass {
SysBusDeviceClass parent_class;
M48txxInfo info;
} M48txxSysBusDeviceClass;
static M48txxInfo m48txx_sysbus_info[] = {
{
.bus_name = "sysbus-m48t02",
.model = 2,
.size = 0x800,
},{
.bus_name = "sysbus-m48t08",
.model = 8,
.size = 0x2000,
},{
.bus_name = "sysbus-m48t59",
.model = 59,
.size = 0x2000,
}
};
/* Fake timer functions */
/* Alarm management */
static void alarm_cb (void *opaque)
{
struct tm tm;
uint64_t next_time;
M48t59State *NVRAM = opaque;
qemu_set_irq(NVRAM->IRQ, 1);
if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a month */
qemu_get_timedate(&tm, NVRAM->time_offset);
tm.tm_mon++;
if (tm.tm_mon == 13) {
tm.tm_mon = 1;
tm.tm_year++;
}
next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a day */
next_time = 24 * 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once an hour */
next_time = 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a minute */
next_time = 60;
} else {
/* Repeat once a second */
next_time = 1;
}
timer_mod(NVRAM->alrm_timer, qemu_clock_get_ns(rtc_clock) +
next_time * 1000);
qemu_set_irq(NVRAM->IRQ, 0);
}
static void set_alarm(M48t59State *NVRAM)
{
int diff;
if (NVRAM->alrm_timer != NULL) {
timer_del(NVRAM->alrm_timer);
diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
if (diff > 0)
timer_mod(NVRAM->alrm_timer, diff * 1000);
}
}
/* RTC management helpers */
static inline void get_time(M48t59State *NVRAM, struct tm *tm)
{
qemu_get_timedate(tm, NVRAM->time_offset);
}
static void set_time(M48t59State *NVRAM, struct tm *tm)
{
NVRAM->time_offset = qemu_timedate_diff(tm);
set_alarm(NVRAM);
}
/* Watchdog management */
static void watchdog_cb (void *opaque)
{
M48t59State *NVRAM = opaque;
NVRAM->buffer[0x1FF0] |= 0x80;
if (NVRAM->buffer[0x1FF7] & 0x80) {
NVRAM->buffer[0x1FF7] = 0x00;
NVRAM->buffer[0x1FFC] &= ~0x40;
/* May it be a hw CPU Reset instead ? */
qemu_system_reset_request();
} else {
qemu_set_irq(NVRAM->IRQ, 1);
qemu_set_irq(NVRAM->IRQ, 0);
}
}
static void set_up_watchdog(M48t59State *NVRAM, uint8_t value)
{
uint64_t interval; /* in 1/16 seconds */
NVRAM->buffer[0x1FF0] &= ~0x80;
if (NVRAM->wd_timer != NULL) {
timer_del(NVRAM->wd_timer);
if (value != 0) {
interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
timer_mod(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
((interval * 1000) >> 4));
}
}
}
/* Direct access to NVRAM */
void m48t59_write(M48t59State *NVRAM, uint32_t addr, uint32_t val)
{
struct tm tm;
int tmp;
if (addr > 0x1FF8 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
/* check for NVRAM access */
if ((NVRAM->model == 2 && addr < 0x7f8) ||
(NVRAM->model == 8 && addr < 0x1ff8) ||
(NVRAM->model == 59 && addr < 0x1ff0)) {
goto do_write;
}
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register : read-only */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_sec = tmp;
NVRAM->buffer[0x1FF2] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF3:
/* alarm minutes */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_min = tmp;
NVRAM->buffer[0x1FF3] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF4:
/* alarm hours */
tmp = from_bcd(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
NVRAM->alarm.tm_hour = tmp;
NVRAM->buffer[0x1FF4] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF5:
/* alarm date */
tmp = from_bcd(val & 0x3F);
if (tmp != 0) {
NVRAM->alarm.tm_mday = tmp;
NVRAM->buffer[0x1FF5] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF6:
/* interrupts */
NVRAM->buffer[0x1FF6] = val;
break;
case 0x1FF7:
/* watchdog */
NVRAM->buffer[0x1FF7] = val;
set_up_watchdog(NVRAM, val);
break;
case 0x1FF8:
case 0x07F8:
/* control */
NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
break;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_sec = tmp;
set_time(NVRAM, &tm);
}
if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
if (val & 0x80) {
NVRAM->stop_time = time(NULL);
} else {
NVRAM->time_offset += NVRAM->stop_time - time(NULL);
NVRAM->stop_time = 0;
}
}
NVRAM->buffer[addr] = val & 0x80;
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
tmp = from_bcd(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_min = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
tmp = from_bcd(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
get_time(NVRAM, &tm);
tm.tm_hour = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
tmp = from_bcd(val & 0x07);
get_time(NVRAM, &tm);
tm.tm_wday = tmp;
set_time(NVRAM, &tm);
NVRAM->buffer[addr] = val & 0x40;
break;
case 0x1FFD:
case 0x07FD:
/* date (BCD) */
tmp = from_bcd(val & 0x3F);
if (tmp != 0) {
get_time(NVRAM, &tm);
tm.tm_mday = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFE:
case 0x07FE:
/* month */
tmp = from_bcd(val & 0x1F);
if (tmp >= 1 && tmp <= 12) {
get_time(NVRAM, &tm);
tm.tm_mon = tmp - 1;
set_time(NVRAM, &tm);
}
break;
case 0x1FFF:
case 0x07FF:
/* year */
tmp = from_bcd(val);
if (tmp >= 0 && tmp <= 99) {
get_time(NVRAM, &tm);
tm.tm_year = from_bcd(val) + NVRAM->base_year - 1900;
set_time(NVRAM, &tm);
}
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_write:
if (addr < NVRAM->size) {
NVRAM->buffer[addr] = val & 0xFF;
}
break;
}
}
uint32_t m48t59_read(M48t59State *NVRAM, uint32_t addr)
{
struct tm tm;
uint32_t retval = 0xFF;
/* check for NVRAM access */
if ((NVRAM->model == 2 && addr < 0x078f) ||
(NVRAM->model == 8 && addr < 0x1ff8) ||
(NVRAM->model == 59 && addr < 0x1ff0)) {
goto do_read;
}
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register */
goto do_read;
case 0x1FF1:
/* unused */
retval = 0;
break;
case 0x1FF2:
/* alarm seconds */
goto do_read;
case 0x1FF3:
/* alarm minutes */
goto do_read;
case 0x1FF4:
/* alarm hours */
goto do_read;
case 0x1FF5:
/* alarm date */
goto do_read;
case 0x1FF6:
/* interrupts */
goto do_read;
case 0x1FF7:
/* A read resets the watchdog */
set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
goto do_read;
case 0x1FF8:
case 0x07F8:
/* control */
goto do_read;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
get_time(NVRAM, &tm);
retval = (NVRAM->buffer[addr] & 0x80) | to_bcd(tm.tm_sec);
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_min);
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_hour);
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
get_time(NVRAM, &tm);
retval = NVRAM->buffer[addr] | tm.tm_wday;
break;
case 0x1FFD:
case 0x07FD:
/* date */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_mday);
break;
case 0x1FFE:
case 0x07FE:
/* month */
get_time(NVRAM, &tm);
retval = to_bcd(tm.tm_mon + 1);
break;
case 0x1FFF:
case 0x07FF:
/* year */
get_time(NVRAM, &tm);
retval = to_bcd((tm.tm_year + 1900 - NVRAM->base_year) % 100);
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_read:
if (addr < NVRAM->size) {
retval = NVRAM->buffer[addr];
}
break;
}
if (addr > 0x1FF9 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
/* IO access to NVRAM */
static void NVRAM_writeb(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
M48t59State *NVRAM = opaque;
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
switch (addr) {
case 0:
NVRAM->addr &= ~0x00FF;
NVRAM->addr |= val;
break;
case 1:
NVRAM->addr &= ~0xFF00;
NVRAM->addr |= val << 8;
break;
case 3:
m48t59_write(NVRAM, NVRAM->addr, val);
NVRAM->addr = 0x0000;
break;
default:
break;
}
}
static uint64_t NVRAM_readb(void *opaque, hwaddr addr, unsigned size)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
switch (addr) {
case 3:
retval = m48t59_read(NVRAM, NVRAM->addr);
break;
default:
retval = -1;
break;
}
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
static void nvram_writeb (void *opaque, hwaddr addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, value & 0xff);
}
static void nvram_writew (void *opaque, hwaddr addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 1, value & 0xff);
}
static void nvram_writel (void *opaque, hwaddr addr, uint32_t value)
{
M48t59State *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 3, value & 0xff);
}
static uint32_t nvram_readb (void *opaque, hwaddr addr)
{
M48t59State *NVRAM = opaque;
return m48t59_read(NVRAM, addr);
}
static uint32_t nvram_readw (void *opaque, hwaddr addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 8;
retval |= m48t59_read(NVRAM, addr + 1);
return retval;
}
static uint32_t nvram_readl (void *opaque, hwaddr addr)
{
M48t59State *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 24;
retval |= m48t59_read(NVRAM, addr + 1) << 16;
retval |= m48t59_read(NVRAM, addr + 2) << 8;
retval |= m48t59_read(NVRAM, addr + 3);
return retval;
}
static const MemoryRegionOps nvram_ops = {
.old_mmio = {
.read = { nvram_readb, nvram_readw, nvram_readl, },
.write = { nvram_writeb, nvram_writew, nvram_writel, },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_m48t59 = {
.name = "m48t59",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(lock, M48t59State),
VMSTATE_UINT16(addr, M48t59State),
VMSTATE_VBUFFER_UINT32(buffer, M48t59State, 0, NULL, 0, size),
VMSTATE_END_OF_LIST()
}
};
void m48t59_reset_common(M48t59State *NVRAM)
{
NVRAM->addr = 0;
NVRAM->lock = 0;
if (NVRAM->alrm_timer != NULL)
timer_del(NVRAM->alrm_timer);
if (NVRAM->wd_timer != NULL)
timer_del(NVRAM->wd_timer);
}
static void m48t59_reset_sysbus(DeviceState *d)
{
M48txxSysBusState *sys = M48TXX_SYS_BUS(d);
M48t59State *NVRAM = &sys->state;
m48t59_reset_common(NVRAM);
}
const MemoryRegionOps m48t59_io_ops = {
.read = NVRAM_readb,
.write = NVRAM_writeb,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
/* Initialisation routine */
Nvram *m48t59_init(qemu_irq IRQ, hwaddr mem_base,
uint32_t io_base, uint16_t size, int base_year,
int model)
{
DeviceState *dev;
SysBusDevice *s;
int i;
for (i = 0; i < ARRAY_SIZE(m48txx_sysbus_info); i++) {
if (m48txx_sysbus_info[i].size != size ||
m48txx_sysbus_info[i].model != model) {
continue;
}
dev = qdev_create(NULL, m48txx_sysbus_info[i].bus_name);
qdev_prop_set_int32(dev, "base-year", base_year);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, IRQ);
if (io_base != 0) {
memory_region_add_subregion(get_system_io(), io_base,
sysbus_mmio_get_region(s, 1));
}
if (mem_base != 0) {
sysbus_mmio_map(s, 0, mem_base);
}
return NVRAM(s);
}
assert(false);
return NULL;
}
void m48t59_realize_common(M48t59State *s, Error **errp)
{
s->buffer = g_malloc0(s->size);
if (s->model == 59) {
s->alrm_timer = timer_new_ns(rtc_clock, &alarm_cb, s);
s->wd_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &watchdog_cb, s);
}
qemu_get_timedate(&s->alarm, 0);
vmstate_register(NULL, -1, &vmstate_m48t59, s);
}
static int m48t59_init1(SysBusDevice *dev)
{
M48txxSysBusDeviceClass *u = M48TXX_SYS_BUS_GET_CLASS(dev);
M48txxSysBusState *d = M48TXX_SYS_BUS(dev);
Object *o = OBJECT(dev);
M48t59State *s = &d->state;
Error *err = NULL;
s->model = u->info.model;
s->size = u->info.size;
sysbus_init_irq(dev, &s->IRQ);
memory_region_init_io(&s->iomem, o, &nvram_ops, s, "m48t59.nvram",
s->size);
memory_region_init_io(&d->io, o, &m48t59_io_ops, s, "m48t59", 4);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_mmio(dev, &d->io);
m48t59_realize_common(s, &err);
if (err != NULL) {
error_free(err);
return -1;
}
return 0;
}
static uint32_t m48txx_sysbus_read(Nvram *obj, uint32_t addr)
{
M48txxSysBusState *d = M48TXX_SYS_BUS(obj);
return m48t59_read(&d->state, addr);
}
static void m48txx_sysbus_write(Nvram *obj, uint32_t addr, uint32_t val)
{
M48txxSysBusState *d = M48TXX_SYS_BUS(obj);
m48t59_write(&d->state, addr, val);
}
static void m48txx_sysbus_toggle_lock(Nvram *obj, int lock)
{
M48txxSysBusState *d = M48TXX_SYS_BUS(obj);
m48t59_toggle_lock(&d->state, lock);
}
static Property m48t59_sysbus_properties[] = {
DEFINE_PROP_INT32("base-year", M48txxSysBusState, state.base_year, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void m48txx_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
NvramClass *nc = NVRAM_CLASS(klass);
k->init = m48t59_init1;
dc->reset = m48t59_reset_sysbus;
dc->props = m48t59_sysbus_properties;
nc->read = m48txx_sysbus_read;
nc->write = m48txx_sysbus_write;
nc->toggle_lock = m48txx_sysbus_toggle_lock;
}
static void m48txx_sysbus_concrete_class_init(ObjectClass *klass, void *data)
{
M48txxSysBusDeviceClass *u = M48TXX_SYS_BUS_CLASS(klass);
M48txxInfo *info = data;
u->info = *info;
}
static const TypeInfo nvram_info = {
.name = TYPE_NVRAM,
.parent = TYPE_INTERFACE,
.class_size = sizeof(NvramClass),
};
static const TypeInfo m48txx_sysbus_type_info = {
.name = TYPE_M48TXX_SYS_BUS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(M48txxSysBusState),
.abstract = true,
.class_init = m48txx_sysbus_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_NVRAM },
{ }
}
};
static void m48t59_register_types(void)
{
TypeInfo sysbus_type_info = {
.parent = TYPE_M48TXX_SYS_BUS,
.class_size = sizeof(M48txxSysBusDeviceClass),
.class_init = m48txx_sysbus_concrete_class_init,
};
int i;
type_register_static(&nvram_info);
type_register_static(&m48txx_sysbus_type_info);
for (i = 0; i < ARRAY_SIZE(m48txx_sysbus_info); i++) {
sysbus_type_info.name = m48txx_sysbus_info[i].bus_name;
sysbus_type_info.class_data = &m48txx_sysbus_info[i];
type_register(&sysbus_type_info);
}
}
type_init(m48t59_register_types)