qemu/tests/tcg/multiarch/libs/float_helpers.c
Alex Bennée 542b10bd14 tests/tcg: update licenses to GPLv2 as intended
My default header template is GPLv3 but for QEMU code we really should
stick to GPLv2-or-later (allowing others to up-license it if they
wish). While this is test code we should still be consistent on the
source distribution.

I wrote all of this code so its not a problem. However there remains
one GPLv3 file left which is the crt0-tc2x.S for TriCore.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20240227144335.1196131-2-alex.bennee@linaro.org>
2024-02-28 09:09:04 +00:00

229 lines
4.6 KiB
C

/*
* Common Float Helpers
*
* This contains a series of useful utility routines and a set of
* floating point constants useful for exercising the edge cases in
* floating point tests.
*
* Copyright (c) 2019, 2024 Linaro
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/* we want additional float type definitions */
#define __STDC_WANT_IEC_60559_BFP_EXT__
#define __STDC_WANT_IEC_60559_TYPES_EXT__
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
#include <math.h>
#include <float.h>
#include <fenv.h>
#include "../float_helpers.h"
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
/*
* Half Precision Numbers
*
* Not yet well standardised so we return a plain uint16_t for now.
*/
/* no handy defines for these numbers */
static uint16_t f16_numbers[] = {
0xffff, /* -NaN / AHP -Max */
0xfcff, /* -NaN / AHP */
0xfc01, /* -NaN / AHP */
0xfc00, /* -Inf */
0xfbff, /* -Max */
0xc000, /* -2 */
0xbc00, /* -1 */
0x8001, /* -MIN subnormal */
0x8000, /* -0 */
0x0000, /* +0 */
0x0001, /* MIN subnormal */
0x3c00, /* 1 */
0x7bff, /* Max */
0x7c00, /* Inf */
0x7c01, /* NaN / AHP */
0x7cff, /* NaN / AHP */
0x7fff, /* NaN / AHP +Max*/
};
static const int num_f16 = ARRAY_SIZE(f16_numbers);
int get_num_f16(void)
{
return num_f16;
}
uint16_t get_f16(int i)
{
return f16_numbers[i % num_f16];
}
/* only display as hex */
char *fmt_16(uint16_t num)
{
char *fmt;
asprintf(&fmt, "f16(%#04x)", num);
return fmt;
}
/*
* Single Precision Numbers
*/
#ifndef SNANF
/* Signaling NaN macros, if supported. */
# define SNANF (__builtin_nansf (""))
# define SNAN (__builtin_nans (""))
# define SNANL (__builtin_nansl (""))
#endif
static float f32_numbers[] = {
-SNANF,
-NAN,
-INFINITY,
-FLT_MAX,
-0x1.1874b2p+103,
-0x1.c0bab6p+99,
-0x1.31f75p-40,
-0x1.505444p-66,
-FLT_MIN,
0.0,
FLT_MIN,
0x1p-25,
0x1.ffffe6p-25, /* min positive FP16 subnormal */
0x1.ff801ap-15, /* max subnormal FP16 */
0x1.00000cp-14, /* min positive normal FP16 */
1.0,
0x1.004p+0, /* smallest float after 1.0 FP16 */
2.0,
M_E, M_PI,
0x1.ffbep+15,
0x1.ffcp+15, /* max FP16 */
0x1.ffc2p+15,
0x1.ffbfp+16,
0x1.ffcp+16, /* max AFP */
0x1.ffc1p+16,
0x1.c0bab6p+99,
FLT_MAX,
INFINITY,
NAN,
SNANF
};
static const int num_f32 = ARRAY_SIZE(f32_numbers);
int get_num_f32(void)
{
return num_f32;
}
float get_f32(int i)
{
return f32_numbers[i % num_f32];
}
char *fmt_f32(float num)
{
uint32_t single_as_hex = *(uint32_t *) &num;
char *fmt;
asprintf(&fmt, "f32(%02.20a:%#010x)", num, single_as_hex);
return fmt;
}
/* This allows us to initialise some doubles as pure hex */
typedef union {
double d;
uint64_t h;
} test_doubles;
static test_doubles f64_numbers[] = {
{SNAN},
{-NAN},
{-INFINITY},
{-DBL_MAX},
{-FLT_MAX-1.0},
{-FLT_MAX},
{-1.111E+31},
{-1.111E+30}, /* half prec */
{-2.0}, {-1.0},
{-DBL_MIN},
{-FLT_MIN},
{0.0},
{FLT_MIN},
{2.98023224e-08},
{5.96046E-8}, /* min positive FP16 subnormal */
{6.09756E-5}, /* max subnormal FP16 */
{6.10352E-5}, /* min positive normal FP16 */
{1.0},
{1.0009765625}, /* smallest float after 1.0 FP16 */
{DBL_MIN},
{1.3789972848607228e-308},
{1.4914738736681624e-308},
{1.0}, {2.0},
{M_E}, {M_PI},
{65503.0},
{65504.0}, /* max FP16 */
{65505.0},
{131007.0},
{131008.0}, /* max AFP */
{131009.0},
{.h = 0x41dfffffffc00000 }, /* to int = 0x7fffffff */
{FLT_MAX},
{FLT_MAX + 1.0},
{DBL_MAX},
{INFINITY},
{NAN},
{.h = 0x7ff0000000000001}, /* SNAN */
{SNAN},
};
static const int num_f64 = ARRAY_SIZE(f64_numbers);
int get_num_f64(void)
{
return num_f64;
}
double get_f64(int i)
{
return f64_numbers[i % num_f64].d;
}
char *fmt_f64(double num)
{
uint64_t double_as_hex = *(uint64_t *) &num;
char *fmt;
asprintf(&fmt, "f64(%02.20a:%#020" PRIx64 ")", num, double_as_hex);
return fmt;
}
/*
* Float flags
*/
char *fmt_flags(void)
{
int flags = fetestexcept(FE_ALL_EXCEPT);
char *fmt;
if (flags) {
asprintf(&fmt, "%s%s%s%s%s",
flags & FE_OVERFLOW ? "OVERFLOW " : "",
flags & FE_UNDERFLOW ? "UNDERFLOW " : "",
flags & FE_DIVBYZERO ? "DIV0 " : "",
flags & FE_INEXACT ? "INEXACT " : "",
flags & FE_INVALID ? "INVALID" : "");
} else {
asprintf(&fmt, "OK");
}
return fmt;
}