qemu/accel/tcg/user-exec.c
Richard Henderson fbea7a4084 accel/tcg: Unify cpu_{ld,st}*_{be,le}_mmu
With the current structure of cputlb.c, there is no difference
between the little-endian and big-endian entry points, aside
from the assert.  Unify the pairs of functions.

The only use of the functions with explicit endianness was in
target/sparc64, and that was only to satisfy the assert: the
correct endianness is already built into memop.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-05-23 18:54:28 -07:00

1382 lines
39 KiB
C

/*
* User emulator execution
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/core/tcg-cpu-ops.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg.h"
#include "qemu/bitops.h"
#include "qemu/rcu.h"
#include "exec/cpu_ldst.h"
#include "exec/translate-all.h"
#include "exec/helper-proto.h"
#include "qemu/atomic128.h"
#include "trace/trace-root.h"
#include "tcg/tcg-ldst.h"
#include "internal.h"
__thread uintptr_t helper_retaddr;
//#define DEBUG_SIGNAL
/*
* Adjust the pc to pass to cpu_restore_state; return the memop type.
*/
MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
{
switch (helper_retaddr) {
default:
/*
* Fault during host memory operation within a helper function.
* The helper's host return address, saved here, gives us a
* pointer into the generated code that will unwind to the
* correct guest pc.
*/
*pc = helper_retaddr;
break;
case 0:
/*
* Fault during host memory operation within generated code.
* (Or, a unrelated bug within qemu, but we can't tell from here).
*
* We take the host pc from the signal frame. However, we cannot
* use that value directly. Within cpu_restore_state_from_tb, we
* assume PC comes from GETPC(), as used by the helper functions,
* so we adjust the address by -GETPC_ADJ to form an address that
* is within the call insn, so that the address does not accidentally
* match the beginning of the next guest insn. However, when the
* pc comes from the signal frame it points to the actual faulting
* host memory insn and not the return from a call insn.
*
* Therefore, adjust to compensate for what will be done later
* by cpu_restore_state_from_tb.
*/
*pc += GETPC_ADJ;
break;
case 1:
/*
* Fault during host read for translation, or loosely, "execution".
*
* The guest pc is already pointing to the start of the TB for which
* code is being generated. If the guest translator manages the
* page crossings correctly, this is exactly the correct address
* (and if the translator doesn't handle page boundaries correctly
* there's little we can do about that here). Therefore, do not
* trigger the unwinder.
*/
*pc = 0;
return MMU_INST_FETCH;
}
return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
}
/**
* handle_sigsegv_accerr_write:
* @cpu: the cpu context
* @old_set: the sigset_t from the signal ucontext_t
* @host_pc: the host pc, adjusted for the signal
* @guest_addr: the guest address of the fault
*
* Return true if the write fault has been handled, and should be re-tried.
*
* Note that it is important that we don't call page_unprotect() unless
* this is really a "write to nonwritable page" fault, because
* page_unprotect() assumes that if it is called for an access to
* a page that's writable this means we had two threads racing and
* another thread got there first and already made the page writable;
* so we will retry the access. If we were to call page_unprotect()
* for some other kind of fault that should really be passed to the
* guest, we'd end up in an infinite loop of retrying the faulting access.
*/
bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
uintptr_t host_pc, abi_ptr guest_addr)
{
switch (page_unprotect(guest_addr, host_pc)) {
case 0:
/*
* Fault not caused by a page marked unwritable to protect
* cached translations, must be the guest binary's problem.
*/
return false;
case 1:
/*
* Fault caused by protection of cached translation; TBs
* invalidated, so resume execution.
*/
return true;
case 2:
/*
* Fault caused by protection of cached translation, and the
* currently executing TB was modified and must be exited immediately.
*/
sigprocmask(SIG_SETMASK, old_set, NULL);
cpu_loop_exit_noexc(cpu);
/* NORETURN */
default:
g_assert_not_reached();
}
}
typedef struct PageFlagsNode {
struct rcu_head rcu;
IntervalTreeNode itree;
int flags;
} PageFlagsNode;
static IntervalTreeRoot pageflags_root;
static PageFlagsNode *pageflags_find(target_ulong start, target_long last)
{
IntervalTreeNode *n;
n = interval_tree_iter_first(&pageflags_root, start, last);
return n ? container_of(n, PageFlagsNode, itree) : NULL;
}
static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
target_long last)
{
IntervalTreeNode *n;
n = interval_tree_iter_next(&p->itree, start, last);
return n ? container_of(n, PageFlagsNode, itree) : NULL;
}
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
IntervalTreeNode *n;
int rc = 0;
mmap_lock();
for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
n != NULL;
n = interval_tree_iter_next(n, 0, -1)) {
PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
rc = fn(priv, n->start, n->last + 1, p->flags);
if (rc != 0) {
break;
}
}
mmap_unlock();
return rc;
}
static int dump_region(void *priv, target_ulong start,
target_ulong end, unsigned long prot)
{
FILE *f = (FILE *)priv;
fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
start, end, end - start,
((prot & PAGE_READ) ? 'r' : '-'),
((prot & PAGE_WRITE) ? 'w' : '-'),
((prot & PAGE_EXEC) ? 'x' : '-'));
return 0;
}
/* dump memory mappings */
void page_dump(FILE *f)
{
const int length = sizeof(target_ulong) * 2;
fprintf(f, "%-*s %-*s %-*s %s\n",
length, "start", length, "end", length, "size", "prot");
walk_memory_regions(f, dump_region);
}
int page_get_flags(target_ulong address)
{
PageFlagsNode *p = pageflags_find(address, address);
/*
* See util/interval-tree.c re lockless lookups: no false positives but
* there are false negatives. If we find nothing, retry with the mmap
* lock acquired.
*/
if (p) {
return p->flags;
}
if (have_mmap_lock()) {
return 0;
}
mmap_lock();
p = pageflags_find(address, address);
mmap_unlock();
return p ? p->flags : 0;
}
/* A subroutine of page_set_flags: insert a new node for [start,last]. */
static void pageflags_create(target_ulong start, target_ulong last, int flags)
{
PageFlagsNode *p = g_new(PageFlagsNode, 1);
p->itree.start = start;
p->itree.last = last;
p->flags = flags;
interval_tree_insert(&p->itree, &pageflags_root);
}
/* A subroutine of page_set_flags: remove everything in [start,last]. */
static bool pageflags_unset(target_ulong start, target_ulong last)
{
bool inval_tb = false;
while (true) {
PageFlagsNode *p = pageflags_find(start, last);
target_ulong p_last;
if (!p) {
break;
}
if (p->flags & PAGE_EXEC) {
inval_tb = true;
}
interval_tree_remove(&p->itree, &pageflags_root);
p_last = p->itree.last;
if (p->itree.start < start) {
/* Truncate the node from the end, or split out the middle. */
p->itree.last = start - 1;
interval_tree_insert(&p->itree, &pageflags_root);
if (last < p_last) {
pageflags_create(last + 1, p_last, p->flags);
break;
}
} else if (p_last <= last) {
/* Range completely covers node -- remove it. */
g_free_rcu(p, rcu);
} else {
/* Truncate the node from the start. */
p->itree.start = last + 1;
interval_tree_insert(&p->itree, &pageflags_root);
break;
}
}
return inval_tb;
}
/*
* A subroutine of page_set_flags: nothing overlaps [start,last],
* but check adjacent mappings and maybe merge into a single range.
*/
static void pageflags_create_merge(target_ulong start, target_ulong last,
int flags)
{
PageFlagsNode *next = NULL, *prev = NULL;
if (start > 0) {
prev = pageflags_find(start - 1, start - 1);
if (prev) {
if (prev->flags == flags) {
interval_tree_remove(&prev->itree, &pageflags_root);
} else {
prev = NULL;
}
}
}
if (last + 1 != 0) {
next = pageflags_find(last + 1, last + 1);
if (next) {
if (next->flags == flags) {
interval_tree_remove(&next->itree, &pageflags_root);
} else {
next = NULL;
}
}
}
if (prev) {
if (next) {
prev->itree.last = next->itree.last;
g_free_rcu(next, rcu);
} else {
prev->itree.last = last;
}
interval_tree_insert(&prev->itree, &pageflags_root);
} else if (next) {
next->itree.start = start;
interval_tree_insert(&next->itree, &pageflags_root);
} else {
pageflags_create(start, last, flags);
}
}
/*
* Allow the target to decide if PAGE_TARGET_[12] may be reset.
* By default, they are not kept.
*/
#ifndef PAGE_TARGET_STICKY
#define PAGE_TARGET_STICKY 0
#endif
#define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
/* A subroutine of page_set_flags: add flags to [start,last]. */
static bool pageflags_set_clear(target_ulong start, target_ulong last,
int set_flags, int clear_flags)
{
PageFlagsNode *p;
target_ulong p_start, p_last;
int p_flags, merge_flags;
bool inval_tb = false;
restart:
p = pageflags_find(start, last);
if (!p) {
if (set_flags) {
pageflags_create_merge(start, last, set_flags);
}
goto done;
}
p_start = p->itree.start;
p_last = p->itree.last;
p_flags = p->flags;
/* Using mprotect on a page does not change sticky bits. */
merge_flags = (p_flags & ~clear_flags) | set_flags;
/*
* Need to flush if an overlapping executable region
* removes exec, or adds write.
*/
if ((p_flags & PAGE_EXEC)
&& (!(merge_flags & PAGE_EXEC)
|| (merge_flags & ~p_flags & PAGE_WRITE))) {
inval_tb = true;
}
/*
* If there is an exact range match, update and return without
* attempting to merge with adjacent regions.
*/
if (start == p_start && last == p_last) {
if (merge_flags) {
p->flags = merge_flags;
} else {
interval_tree_remove(&p->itree, &pageflags_root);
g_free_rcu(p, rcu);
}
goto done;
}
/*
* If sticky bits affect the original mapping, then we must be more
* careful about the existing intervals and the separate flags.
*/
if (set_flags != merge_flags) {
if (p_start < start) {
interval_tree_remove(&p->itree, &pageflags_root);
p->itree.last = start - 1;
interval_tree_insert(&p->itree, &pageflags_root);
if (last < p_last) {
if (merge_flags) {
pageflags_create(start, last, merge_flags);
}
pageflags_create(last + 1, p_last, p_flags);
} else {
if (merge_flags) {
pageflags_create(start, p_last, merge_flags);
}
if (p_last < last) {
start = p_last + 1;
goto restart;
}
}
} else {
if (start < p_start && set_flags) {
pageflags_create(start, p_start - 1, set_flags);
}
if (last < p_last) {
interval_tree_remove(&p->itree, &pageflags_root);
p->itree.start = last + 1;
interval_tree_insert(&p->itree, &pageflags_root);
if (merge_flags) {
pageflags_create(start, last, merge_flags);
}
} else {
if (merge_flags) {
p->flags = merge_flags;
} else {
interval_tree_remove(&p->itree, &pageflags_root);
g_free_rcu(p, rcu);
}
if (p_last < last) {
start = p_last + 1;
goto restart;
}
}
}
goto done;
}
/* If flags are not changing for this range, incorporate it. */
if (set_flags == p_flags) {
if (start < p_start) {
interval_tree_remove(&p->itree, &pageflags_root);
p->itree.start = start;
interval_tree_insert(&p->itree, &pageflags_root);
}
if (p_last < last) {
start = p_last + 1;
goto restart;
}
goto done;
}
/* Maybe split out head and/or tail ranges with the original flags. */
interval_tree_remove(&p->itree, &pageflags_root);
if (p_start < start) {
p->itree.last = start - 1;
interval_tree_insert(&p->itree, &pageflags_root);
if (p_last < last) {
goto restart;
}
if (last < p_last) {
pageflags_create(last + 1, p_last, p_flags);
}
} else if (last < p_last) {
p->itree.start = last + 1;
interval_tree_insert(&p->itree, &pageflags_root);
} else {
g_free_rcu(p, rcu);
goto restart;
}
if (set_flags) {
pageflags_create(start, last, set_flags);
}
done:
return inval_tb;
}
/*
* Modify the flags of a page and invalidate the code if necessary.
* The flag PAGE_WRITE_ORG is positioned automatically depending
* on PAGE_WRITE. The mmap_lock should already be held.
*/
void page_set_flags(target_ulong start, target_ulong last, int flags)
{
bool reset = false;
bool inval_tb = false;
/* This function should never be called with addresses outside the
guest address space. If this assert fires, it probably indicates
a missing call to h2g_valid. */
assert(start <= last);
assert(last <= GUEST_ADDR_MAX);
/* Only set PAGE_ANON with new mappings. */
assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
assert_memory_lock();
start &= TARGET_PAGE_MASK;
last |= ~TARGET_PAGE_MASK;
if (!(flags & PAGE_VALID)) {
flags = 0;
} else {
reset = flags & PAGE_RESET;
flags &= ~PAGE_RESET;
if (flags & PAGE_WRITE) {
flags |= PAGE_WRITE_ORG;
}
}
if (!flags || reset) {
page_reset_target_data(start, last);
inval_tb |= pageflags_unset(start, last);
}
if (flags) {
inval_tb |= pageflags_set_clear(start, last, flags,
~(reset ? 0 : PAGE_STICKY));
}
if (inval_tb) {
tb_invalidate_phys_range(start, last);
}
}
int page_check_range(target_ulong start, target_ulong len, int flags)
{
target_ulong last;
int locked; /* tri-state: =0: unlocked, +1: global, -1: local */
int ret;
if (len == 0) {
return 0; /* trivial length */
}
last = start + len - 1;
if (last < start) {
return -1; /* wrap around */
}
locked = have_mmap_lock();
while (true) {
PageFlagsNode *p = pageflags_find(start, last);
int missing;
if (!p) {
if (!locked) {
/*
* Lockless lookups have false negatives.
* Retry with the lock held.
*/
mmap_lock();
locked = -1;
p = pageflags_find(start, last);
}
if (!p) {
ret = -1; /* entire region invalid */
break;
}
}
if (start < p->itree.start) {
ret = -1; /* initial bytes invalid */
break;
}
missing = flags & ~p->flags;
if (missing & PAGE_READ) {
ret = -1; /* page not readable */
break;
}
if (missing & PAGE_WRITE) {
if (!(p->flags & PAGE_WRITE_ORG)) {
ret = -1; /* page not writable */
break;
}
/* Asking about writable, but has been protected: undo. */
if (!page_unprotect(start, 0)) {
ret = -1;
break;
}
/* TODO: page_unprotect should take a range, not a single page. */
if (last - start < TARGET_PAGE_SIZE) {
ret = 0; /* ok */
break;
}
start += TARGET_PAGE_SIZE;
continue;
}
if (last <= p->itree.last) {
ret = 0; /* ok */
break;
}
start = p->itree.last + 1;
}
/* Release the lock if acquired locally. */
if (locked < 0) {
mmap_unlock();
}
return ret;
}
void page_protect(tb_page_addr_t address)
{
PageFlagsNode *p;
target_ulong start, last;
int prot;
assert_memory_lock();
if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
start = address & TARGET_PAGE_MASK;
last = start + TARGET_PAGE_SIZE - 1;
} else {
start = address & qemu_host_page_mask;
last = start + qemu_host_page_size - 1;
}
p = pageflags_find(start, last);
if (!p) {
return;
}
prot = p->flags;
if (unlikely(p->itree.last < last)) {
/* More than one protection region covers the one host page. */
assert(TARGET_PAGE_SIZE < qemu_host_page_size);
while ((p = pageflags_next(p, start, last)) != NULL) {
prot |= p->flags;
}
}
if (prot & PAGE_WRITE) {
pageflags_set_clear(start, last, 0, PAGE_WRITE);
mprotect(g2h_untagged(start), qemu_host_page_size,
prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
}
}
/*
* Called from signal handler: invalidate the code and unprotect the
* page. Return 0 if the fault was not handled, 1 if it was handled,
* and 2 if it was handled but the caller must cause the TB to be
* immediately exited. (We can only return 2 if the 'pc' argument is
* non-zero.)
*/
int page_unprotect(target_ulong address, uintptr_t pc)
{
PageFlagsNode *p;
bool current_tb_invalidated;
/*
* Technically this isn't safe inside a signal handler. However we
* know this only ever happens in a synchronous SEGV handler, so in
* practice it seems to be ok.
*/
mmap_lock();
p = pageflags_find(address, address);
/* If this address was not really writable, nothing to do. */
if (!p || !(p->flags & PAGE_WRITE_ORG)) {
mmap_unlock();
return 0;
}
current_tb_invalidated = false;
if (p->flags & PAGE_WRITE) {
/*
* If the page is actually marked WRITE then assume this is because
* this thread raced with another one which got here first and
* set the page to PAGE_WRITE and did the TB invalidate for us.
*/
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = tcg_tb_lookup(pc);
if (current_tb) {
current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
}
#endif
} else {
target_ulong start, len, i;
int prot;
if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
start = address & TARGET_PAGE_MASK;
len = TARGET_PAGE_SIZE;
prot = p->flags | PAGE_WRITE;
pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
} else {
start = address & qemu_host_page_mask;
len = qemu_host_page_size;
prot = 0;
for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
target_ulong addr = start + i;
p = pageflags_find(addr, addr);
if (p) {
prot |= p->flags;
if (p->flags & PAGE_WRITE_ORG) {
prot |= PAGE_WRITE;
pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
PAGE_WRITE, 0);
}
}
/*
* Since the content will be modified, we must invalidate
* the corresponding translated code.
*/
current_tb_invalidated |=
tb_invalidate_phys_page_unwind(addr, pc);
}
}
if (prot & PAGE_EXEC) {
prot = (prot & ~PAGE_EXEC) | PAGE_READ;
}
mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
}
mmap_unlock();
/* If current TB was invalidated return to main loop */
return current_tb_invalidated ? 2 : 1;
}
static int probe_access_internal(CPUArchState *env, target_ulong addr,
int fault_size, MMUAccessType access_type,
bool nonfault, uintptr_t ra)
{
int acc_flag;
bool maperr;
switch (access_type) {
case MMU_DATA_STORE:
acc_flag = PAGE_WRITE_ORG;
break;
case MMU_DATA_LOAD:
acc_flag = PAGE_READ;
break;
case MMU_INST_FETCH:
acc_flag = PAGE_EXEC;
break;
default:
g_assert_not_reached();
}
if (guest_addr_valid_untagged(addr)) {
int page_flags = page_get_flags(addr);
if (page_flags & acc_flag) {
return 0; /* success */
}
maperr = !(page_flags & PAGE_VALID);
} else {
maperr = true;
}
if (nonfault) {
return TLB_INVALID_MASK;
}
cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
}
int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx,
bool nonfault, void **phost, uintptr_t ra)
{
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
*phost = flags ? NULL : g2h(env_cpu(env), addr);
return flags;
}
void *probe_access(CPUArchState *env, target_ulong addr, int size,
MMUAccessType access_type, int mmu_idx, uintptr_t ra)
{
int flags;
g_assert(-(addr | TARGET_PAGE_MASK) >= size);
flags = probe_access_internal(env, addr, size, access_type, false, ra);
g_assert(flags == 0);
return size ? g2h(env_cpu(env), addr) : NULL;
}
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
void **hostp)
{
int flags;
flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
g_assert(flags == 0);
if (hostp) {
*hostp = g2h_untagged(addr);
}
return addr;
}
#ifdef TARGET_PAGE_DATA_SIZE
/*
* Allocate chunks of target data together. For the only current user,
* if we allocate one hunk per page, we have overhead of 40/128 or 40%.
* Therefore, allocate memory for 64 pages at a time for overhead < 1%.
*/
#define TPD_PAGES 64
#define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES)
typedef struct TargetPageDataNode {
struct rcu_head rcu;
IntervalTreeNode itree;
char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
} TargetPageDataNode;
static IntervalTreeRoot targetdata_root;
void page_reset_target_data(target_ulong start, target_ulong last)
{
IntervalTreeNode *n, *next;
assert_memory_lock();
start &= TARGET_PAGE_MASK;
last |= ~TARGET_PAGE_MASK;
for (n = interval_tree_iter_first(&targetdata_root, start, last),
next = n ? interval_tree_iter_next(n, start, last) : NULL;
n != NULL;
n = next,
next = next ? interval_tree_iter_next(n, start, last) : NULL) {
target_ulong n_start, n_last, p_ofs, p_len;
TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
if (n->start >= start && n->last <= last) {
interval_tree_remove(n, &targetdata_root);
g_free_rcu(t, rcu);
continue;
}
if (n->start < start) {
n_start = start;
p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
} else {
n_start = n->start;
p_ofs = 0;
}
n_last = MIN(last, n->last);
p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
}
}
void *page_get_target_data(target_ulong address)
{
IntervalTreeNode *n;
TargetPageDataNode *t;
target_ulong page, region;
page = address & TARGET_PAGE_MASK;
region = address & TBD_MASK;
n = interval_tree_iter_first(&targetdata_root, page, page);
if (!n) {
/*
* See util/interval-tree.c re lockless lookups: no false positives
* but there are false negatives. If we find nothing, retry with
* the mmap lock acquired. We also need the lock for the
* allocation + insert.
*/
mmap_lock();
n = interval_tree_iter_first(&targetdata_root, page, page);
if (!n) {
t = g_new0(TargetPageDataNode, 1);
n = &t->itree;
n->start = region;
n->last = region | ~TBD_MASK;
interval_tree_insert(n, &targetdata_root);
}
mmap_unlock();
}
t = container_of(n, TargetPageDataNode, itree);
return t->data[(page - region) >> TARGET_PAGE_BITS];
}
#else
void page_reset_target_data(target_ulong start, target_ulong last) { }
#endif /* TARGET_PAGE_DATA_SIZE */
/* The softmmu versions of these helpers are in cputlb.c. */
static void *cpu_mmu_lookup(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra, MMUAccessType type)
{
int a_bits = get_alignment_bits(mop);
void *ret;
/* Enforce guest required alignment. */
if (unlikely(addr & ((1 << a_bits) - 1))) {
cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
}
ret = g2h(env_cpu(env), addr);
set_helper_retaddr(ra);
return ret;
}
#include "ldst_atomicity.c.inc"
static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra)
{
void *haddr;
uint8_t ret;
tcg_debug_assert((mop & MO_SIZE) == MO_8);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
ret = ldub_p(haddr);
clear_helper_retaddr();
return ret;
}
tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return do_ld1_mmu(env, addr, get_memop(oi), ra);
}
tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
}
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra)
{
void *haddr;
uint16_t ret;
tcg_debug_assert((mop & MO_SIZE) == MO_16);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
ret = load_atom_2(env, ra, haddr, mop);
clear_helper_retaddr();
if (mop & MO_BSWAP) {
ret = bswap16(ret);
}
return ret;
}
tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return do_ld2_mmu(env, addr, get_memop(oi), ra);
}
tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
}
uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra)
{
void *haddr;
uint32_t ret;
tcg_debug_assert((mop & MO_SIZE) == MO_32);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
ret = load_atom_4(env, ra, haddr, mop);
clear_helper_retaddr();
if (mop & MO_BSWAP) {
ret = bswap32(ret);
}
return ret;
}
tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return do_ld4_mmu(env, addr, get_memop(oi), ra);
}
tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
}
uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra)
{
void *haddr;
uint64_t ret;
tcg_debug_assert((mop & MO_SIZE) == MO_64);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
ret = load_atom_8(env, ra, haddr, mop);
clear_helper_retaddr();
if (mop & MO_BSWAP) {
ret = bswap64(ret);
}
return ret;
}
uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return do_ld8_mmu(env, addr, get_memop(oi), ra);
}
uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
MemOp mop, uintptr_t ra)
{
void *haddr;
Int128 ret;
tcg_debug_assert((mop & MO_SIZE) == MO_128);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
ret = load_atom_16(env, ra, haddr, mop);
clear_helper_retaddr();
if (mop & MO_BSWAP) {
ret = bswap128(ret);
}
return ret;
}
Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
MemOpIdx oi, uintptr_t ra)
{
return do_ld16_mmu(env, addr, get_memop(oi), ra);
}
Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
{
return helper_ld16_mmu(env, addr, oi, GETPC());
}
Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
return ret;
}
static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
MemOp mop, uintptr_t ra)
{
void *haddr;
tcg_debug_assert((mop & MO_SIZE) == MO_8);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
stb_p(haddr, val);
clear_helper_retaddr();
}
void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st1_mmu(env, addr, val, get_memop(oi), ra);
}
void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st1_mmu(env, addr, val, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
MemOp mop, uintptr_t ra)
{
void *haddr;
tcg_debug_assert((mop & MO_SIZE) == MO_16);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
if (mop & MO_BSWAP) {
val = bswap16(val);
}
store_atom_2(env, ra, haddr, mop, val);
clear_helper_retaddr();
}
void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st2_mmu(env, addr, val, get_memop(oi), ra);
}
void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st2_mmu(env, addr, val, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
MemOp mop, uintptr_t ra)
{
void *haddr;
tcg_debug_assert((mop & MO_SIZE) == MO_32);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
if (mop & MO_BSWAP) {
val = bswap32(val);
}
store_atom_4(env, ra, haddr, mop, val);
clear_helper_retaddr();
}
void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st4_mmu(env, addr, val, get_memop(oi), ra);
}
void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st4_mmu(env, addr, val, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
MemOp mop, uintptr_t ra)
{
void *haddr;
tcg_debug_assert((mop & MO_SIZE) == MO_64);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
if (mop & MO_BSWAP) {
val = bswap64(val);
}
store_atom_8(env, ra, haddr, mop, val);
clear_helper_retaddr();
}
void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st8_mmu(env, addr, val, get_memop(oi), ra);
}
void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
MemOpIdx oi, uintptr_t ra)
{
do_st8_mmu(env, addr, val, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
MemOp mop, uintptr_t ra)
{
void *haddr;
tcg_debug_assert((mop & MO_SIZE) == MO_128);
haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
if (mop & MO_BSWAP) {
val = bswap128(val);
}
store_atom_16(env, ra, haddr, mop, val);
clear_helper_retaddr();
}
void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
MemOpIdx oi, uintptr_t ra)
{
do_st16_mmu(env, addr, val, get_memop(oi), ra);
}
void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
{
helper_st16_mmu(env, addr, val, oi, GETPC());
}
void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
Int128 val, MemOpIdx oi, uintptr_t ra)
{
do_st16_mmu(env, addr, val, get_memop(oi), ra);
qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
}
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = ldub_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = lduw_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
{
uint32_t ret;
set_helper_retaddr(1);
ret = ldl_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
{
uint64_t ret;
set_helper_retaddr(1);
ret = ldq_p(g2h_untagged(ptr));
clear_helper_retaddr();
return ret;
}
uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint8_t ret;
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
ret = ldub_p(haddr);
clear_helper_retaddr();
return ret;
}
uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint16_t ret;
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
ret = lduw_p(haddr);
clear_helper_retaddr();
if (get_memop(oi) & MO_BSWAP) {
ret = bswap16(ret);
}
return ret;
}
uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint32_t ret;
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
ret = ldl_p(haddr);
clear_helper_retaddr();
if (get_memop(oi) & MO_BSWAP) {
ret = bswap32(ret);
}
return ret;
}
uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
MemOpIdx oi, uintptr_t ra)
{
void *haddr;
uint64_t ret;
haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
ret = ldq_p(haddr);
clear_helper_retaddr();
if (get_memop(oi) & MO_BSWAP) {
ret = bswap64(ret);
}
return ret;
}
#include "ldst_common.c.inc"
/*
* Do not allow unaligned operations to proceed. Return the host address.
*
* @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
*/
static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
MemOpIdx oi, int size, int prot,
uintptr_t retaddr)
{
MemOp mop = get_memop(oi);
int a_bits = get_alignment_bits(mop);
void *ret;
/* Enforce guest required alignment. */
if (unlikely(addr & ((1 << a_bits) - 1))) {
MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE;
cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr);
}
/* Enforce qemu required alignment. */
if (unlikely(addr & (size - 1))) {
cpu_loop_exit_atomic(env_cpu(env), retaddr);
}
ret = g2h(env_cpu(env), addr);
set_helper_retaddr(retaddr);
return ret;
}
#include "atomic_common.c.inc"
/*
* First set of functions passes in OI and RETADDR.
* This makes them callable from other helpers.
*/
#define ATOMIC_NAME(X) \
glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
#define DATA_SIZE 1
#include "atomic_template.h"
#define DATA_SIZE 2
#include "atomic_template.h"
#define DATA_SIZE 4
#include "atomic_template.h"
#ifdef CONFIG_ATOMIC64
#define DATA_SIZE 8
#include "atomic_template.h"
#endif
#if HAVE_ATOMIC128 || HAVE_CMPXCHG128
#define DATA_SIZE 16
#include "atomic_template.h"
#endif