qemu/hw/intc/arm_gicv3_cpuif.c
Aaron Lindsay d5a5e4c93d target/arm: Fetch GICv3 state directly from CPUARMState
This eliminates the need for fetching it from el_change_hook_opaque, and
allows for supporting multiple el_change_hooks without having to hack
something together to find the registered opaque belonging to GICv3.

Signed-off-by: Aaron Lindsay <alindsay@codeaurora.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1523997485-1905-6-git-send-email-alindsay@codeaurora.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-04-26 11:04:39 +01:00

2673 lines
82 KiB
C

/*
* ARM Generic Interrupt Controller v3
*
* Copyright (c) 2016 Linaro Limited
* Written by Peter Maydell
*
* This code is licensed under the GPL, version 2 or (at your option)
* any later version.
*/
/* This file contains the code for the system register interface
* portions of the GICv3.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/main-loop.h"
#include "trace.h"
#include "gicv3_internal.h"
#include "cpu.h"
void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
{
ARMCPU *arm_cpu = ARM_CPU(cpu);
CPUARMState *env = &arm_cpu->env;
env->gicv3state = (void *)s;
};
static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
{
return env->gicv3state;
}
static bool gicv3_use_ns_bank(CPUARMState *env)
{
/* Return true if we should use the NonSecure bank for a banked GIC
* CPU interface register. Note that this differs from the
* access_secure_reg() function because GICv3 banked registers are
* banked even for AArch64, unlike the other CPU system registers.
*/
return !arm_is_secure_below_el3(env);
}
/* The minimum BPR for the virtual interface is a configurable property */
static inline int icv_min_vbpr(GICv3CPUState *cs)
{
return 7 - cs->vprebits;
}
/* Simple accessor functions for LR fields */
static uint32_t ich_lr_vintid(uint64_t lr)
{
return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
}
static uint32_t ich_lr_pintid(uint64_t lr)
{
return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
}
static uint32_t ich_lr_prio(uint64_t lr)
{
return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
}
static int ich_lr_state(uint64_t lr)
{
return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
}
static bool icv_access(CPUARMState *env, int hcr_flags)
{
/* Return true if this ICC_ register access should really be
* directed to an ICV_ access. hcr_flags is a mask of
* HCR_EL2 bits to check: we treat this as an ICV_ access
* if we are in NS EL1 and at least one of the specified
* HCR_EL2 bits is set.
*
* ICV registers fall into four categories:
* * access if NS EL1 and HCR_EL2.FMO == 1:
* all ICV regs with '0' in their name
* * access if NS EL1 and HCR_EL2.IMO == 1:
* all ICV regs with '1' in their name
* * access if NS EL1 and either IMO or FMO == 1:
* CTLR, DIR, PMR, RPR
*/
return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
&& !arm_is_secure_below_el3(env);
}
static int read_vbpr(GICv3CPUState *cs, int grp)
{
/* Read VBPR value out of the VMCR field (caller must handle
* VCBPR effects if required)
*/
if (grp == GICV3_G0) {
return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
ICH_VMCR_EL2_VBPR0_LENGTH);
} else {
return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
ICH_VMCR_EL2_VBPR1_LENGTH);
}
}
static void write_vbpr(GICv3CPUState *cs, int grp, int value)
{
/* Write new VBPR1 value, handling the "writing a value less than
* the minimum sets it to the minimum" semantics.
*/
int min = icv_min_vbpr(cs);
if (grp != GICV3_G0) {
min++;
}
value = MAX(value, min);
if (grp == GICV3_G0) {
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
ICH_VMCR_EL2_VBPR0_LENGTH, value);
} else {
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
ICH_VMCR_EL2_VBPR1_LENGTH, value);
}
}
static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
{
/* Return a mask word which clears the unimplemented priority bits
* from a priority value for a virtual interrupt. (Not to be confused
* with the group priority, whose mask depends on the value of VBPR
* for the interrupt group.)
*/
return ~0U << (8 - cs->vpribits);
}
static int ich_highest_active_virt_prio(GICv3CPUState *cs)
{
/* Calculate the current running priority based on the set bits
* in the ICH Active Priority Registers.
*/
int i;
int aprmax = 1 << (cs->vprebits - 5);
assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
for (i = 0; i < aprmax; i++) {
uint32_t apr = cs->ich_apr[GICV3_G0][i] |
cs->ich_apr[GICV3_G1NS][i];
if (!apr) {
continue;
}
return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
}
/* No current active interrupts: return idle priority */
return 0xff;
}
static int hppvi_index(GICv3CPUState *cs)
{
/* Return the list register index of the highest priority pending
* virtual interrupt, as per the HighestPriorityVirtualInterrupt
* pseudocode. If no pending virtual interrupts, return -1.
*/
int idx = -1;
int i;
/* Note that a list register entry with a priority of 0xff will
* never be reported by this function; this is the architecturally
* correct behaviour.
*/
int prio = 0xff;
if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
/* Both groups disabled, definitely nothing to do */
return idx;
}
for (i = 0; i < cs->num_list_regs; i++) {
uint64_t lr = cs->ich_lr_el2[i];
int thisprio;
if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
/* Not Pending */
continue;
}
/* Ignore interrupts if relevant group enable not set */
if (lr & ICH_LR_EL2_GROUP) {
if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
continue;
}
} else {
if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
continue;
}
}
thisprio = ich_lr_prio(lr);
if (thisprio < prio) {
prio = thisprio;
idx = i;
}
}
return idx;
}
static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
{
/* Return a mask word which clears the subpriority bits from
* a priority value for a virtual interrupt in the specified group.
* This depends on the VBPR value.
* If using VBPR0 then:
* a BPR of 0 means the group priority bits are [7:1];
* a BPR of 1 means they are [7:2], and so on down to
* a BPR of 7 meaning no group priority bits at all.
* If using VBPR1 then:
* a BPR of 0 is impossible (the minimum value is 1)
* a BPR of 1 means the group priority bits are [7:1];
* a BPR of 2 means they are [7:2], and so on down to
* a BPR of 7 meaning the group priority is [7].
*
* Which BPR to use depends on the group of the interrupt and
* the current ICH_VMCR_EL2.VCBPR settings.
*
* This corresponds to the VGroupBits() pseudocode.
*/
int bpr;
if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
group = GICV3_G0;
}
bpr = read_vbpr(cs, group);
if (group == GICV3_G1NS) {
assert(bpr > 0);
bpr--;
}
return ~0U << (bpr + 1);
}
static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
{
/* Return true if we can signal this virtual interrupt defined by
* the given list register value; see the pseudocode functions
* CanSignalVirtualInterrupt and CanSignalVirtualInt.
* Compare also icc_hppi_can_preempt() which is the non-virtual
* equivalent of these checks.
*/
int grp;
uint32_t mask, prio, rprio, vpmr;
if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
/* Virtual interface disabled */
return false;
}
/* We don't need to check that this LR is in Pending state because
* that has already been done in hppvi_index().
*/
prio = ich_lr_prio(lr);
vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
ICH_VMCR_EL2_VPMR_LENGTH);
if (prio >= vpmr) {
/* Priority mask masks this interrupt */
return false;
}
rprio = ich_highest_active_virt_prio(cs);
if (rprio == 0xff) {
/* No running interrupt so we can preempt */
return true;
}
grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
mask = icv_gprio_mask(cs, grp);
/* We only preempt a running interrupt if the pending interrupt's
* group priority is sufficient (the subpriorities are not considered).
*/
if ((prio & mask) < (rprio & mask)) {
return true;
}
return false;
}
static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
uint32_t *misr)
{
/* Return a set of bits indicating the EOI maintenance interrupt status
* for each list register. The EOI maintenance interrupt status is
* 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
* (see the GICv3 spec for the ICH_EISR_EL2 register).
* If misr is not NULL then we should also collect the information
* about the MISR.EOI, MISR.NP and MISR.U bits.
*/
uint32_t value = 0;
int validcount = 0;
bool seenpending = false;
int i;
for (i = 0; i < cs->num_list_regs; i++) {
uint64_t lr = cs->ich_lr_el2[i];
if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
== ICH_LR_EL2_EOI) {
value |= (1 << i);
}
if ((lr & ICH_LR_EL2_STATE_MASK)) {
validcount++;
}
if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
seenpending = true;
}
}
if (misr) {
if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
*misr |= ICH_MISR_EL2_U;
}
if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
*misr |= ICH_MISR_EL2_NP;
}
if (value) {
*misr |= ICH_MISR_EL2_EOI;
}
}
return value;
}
static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
{
/* Return a set of bits indicating the maintenance interrupt status
* (as seen in the ICH_MISR_EL2 register).
*/
uint32_t value = 0;
/* Scan list registers and fill in the U, NP and EOI bits */
eoi_maintenance_interrupt_state(cs, &value);
if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
value |= ICH_MISR_EL2_LRENP;
}
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
value |= ICH_MISR_EL2_VGRP0E;
}
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
value |= ICH_MISR_EL2_VGRP0D;
}
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
value |= ICH_MISR_EL2_VGRP1E;
}
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
value |= ICH_MISR_EL2_VGRP1D;
}
return value;
}
static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
{
/* Tell the CPU about any pending virtual interrupts or
* maintenance interrupts, following a change to the state
* of the CPU interface relevant to virtual interrupts.
*
* CAUTION: this function will call qemu_set_irq() on the
* CPU maintenance IRQ line, which is typically wired up
* to the GIC as a per-CPU interrupt. This means that it
* will recursively call back into the GIC code via
* gicv3_redist_set_irq() and thus into the CPU interface code's
* gicv3_cpuif_update(). It is therefore important that this
* function is only called as the final action of a CPU interface
* register write implementation, after all the GIC state
* fields have been updated. gicv3_cpuif_update() also must
* not cause this function to be called, but that happens
* naturally as a result of there being no architectural
* linkage between the physical and virtual GIC logic.
*/
int idx;
int irqlevel = 0;
int fiqlevel = 0;
int maintlevel = 0;
idx = hppvi_index(cs);
trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
if (idx >= 0) {
uint64_t lr = cs->ich_lr_el2[idx];
if (icv_hppi_can_preempt(cs, lr)) {
/* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
if (lr & ICH_LR_EL2_GROUP) {
irqlevel = 1;
} else {
fiqlevel = 1;
}
}
}
if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
maintlevel = maintenance_interrupt_state(cs);
}
trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
irqlevel, maintlevel);
qemu_set_irq(cs->parent_vfiq, fiqlevel);
qemu_set_irq(cs->parent_virq, irqlevel);
qemu_set_irq(cs->maintenance_irq, maintlevel);
}
static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
uint64_t value = cs->ich_apr[grp][regno];
trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
return value;
}
static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
gicv3_cpuif_virt_update(cs);
return;
}
static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
uint64_t bpr;
bool satinc = false;
if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
/* reads return bpr0 + 1 saturated to 7, writes ignored */
grp = GICV3_G0;
satinc = true;
}
bpr = read_vbpr(cs, grp);
if (satinc) {
bpr++;
bpr = MIN(bpr, 7);
}
trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
return bpr;
}
static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
/* reads return bpr0 + 1 saturated to 7, writes ignored */
return;
}
write_vbpr(cs, grp, value);
gicv3_cpuif_virt_update(cs);
}
static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
ICH_VMCR_EL2_VPMR_LENGTH);
trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
value &= icv_fullprio_mask(cs);
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
ICH_VMCR_EL2_VPMR_LENGTH, value);
gicv3_cpuif_virt_update(cs);
}
static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int enbit;
uint64_t value;
enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
value = extract64(cs->ich_vmcr_el2, enbit, 1);
trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
return value;
}
static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int enbit;
trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
gicv3_cpuif_virt_update(cs);
}
static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
/* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
* should match the ones reported in ich_vtr_read().
*/
value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
value |= ICC_CTLR_EL1_EOIMODE;
}
if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
value |= ICC_CTLR_EL1_CBPR;
}
trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
gicv3_cpuif_virt_update(cs);
}
static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int prio = ich_highest_active_virt_prio(cs);
trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
return prio;
}
static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
int idx = hppvi_index(cs);
uint64_t value = INTID_SPURIOUS;
if (idx >= 0) {
uint64_t lr = cs->ich_lr_el2[idx];
int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
if (grp == thisgrp) {
value = ich_lr_vintid(lr);
}
}
trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
return value;
}
static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
{
/* Activate the interrupt in the specified list register
* by moving it from Pending to Active state, and update the
* Active Priority Registers.
*/
uint32_t mask = icv_gprio_mask(cs, grp);
int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
int aprbit = prio >> (8 - cs->vprebits);
int regno = aprbit / 32;
int regbit = aprbit % 32;
cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
cs->ich_apr[grp][regno] |= (1 << regbit);
}
static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
int idx = hppvi_index(cs);
uint64_t intid = INTID_SPURIOUS;
if (idx >= 0) {
uint64_t lr = cs->ich_lr_el2[idx];
int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
intid = ich_lr_vintid(lr);
if (intid < INTID_SECURE) {
icv_activate_irq(cs, idx, grp);
} else {
/* Interrupt goes from Pending to Invalid */
cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
/* We will now return the (bogus) ID from the list register,
* as per the pseudocode.
*/
}
}
}
trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), intid);
return intid;
}
static int icc_highest_active_prio(GICv3CPUState *cs)
{
/* Calculate the current running priority based on the set bits
* in the Active Priority Registers.
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
uint32_t apr = cs->icc_apr[GICV3_G0][i] |
cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
if (!apr) {
continue;
}
return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
}
/* No current active interrupts: return idle priority */
return 0xff;
}
static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
{
/* Return a mask word which clears the subpriority bits from
* a priority value for an interrupt in the specified group.
* This depends on the BPR value. For CBPR0 (S or NS):
* a BPR of 0 means the group priority bits are [7:1];
* a BPR of 1 means they are [7:2], and so on down to
* a BPR of 7 meaning no group priority bits at all.
* For CBPR1 NS:
* a BPR of 0 is impossible (the minimum value is 1)
* a BPR of 1 means the group priority bits are [7:1];
* a BPR of 2 means they are [7:2], and so on down to
* a BPR of 7 meaning the group priority is [7].
*
* Which BPR to use depends on the group of the interrupt and
* the current ICC_CTLR.CBPR settings.
*
* This corresponds to the GroupBits() pseudocode.
*/
int bpr;
if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
(group == GICV3_G1NS &&
cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
group = GICV3_G0;
}
bpr = cs->icc_bpr[group] & 7;
if (group == GICV3_G1NS) {
assert(bpr > 0);
bpr--;
}
return ~0U << (bpr + 1);
}
static bool icc_no_enabled_hppi(GICv3CPUState *cs)
{
/* Return true if there is no pending interrupt, or the
* highest priority pending interrupt is in a group which has been
* disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
*/
return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
}
static bool icc_hppi_can_preempt(GICv3CPUState *cs)
{
/* Return true if we have a pending interrupt of sufficient
* priority to preempt.
*/
int rprio;
uint32_t mask;
if (icc_no_enabled_hppi(cs)) {
return false;
}
if (cs->hppi.prio >= cs->icc_pmr_el1) {
/* Priority mask masks this interrupt */
return false;
}
rprio = icc_highest_active_prio(cs);
if (rprio == 0xff) {
/* No currently running interrupt so we can preempt */
return true;
}
mask = icc_gprio_mask(cs, cs->hppi.grp);
/* We only preempt a running interrupt if the pending interrupt's
* group priority is sufficient (the subpriorities are not considered).
*/
if ((cs->hppi.prio & mask) < (rprio & mask)) {
return true;
}
return false;
}
void gicv3_cpuif_update(GICv3CPUState *cs)
{
/* Tell the CPU about its highest priority pending interrupt */
int irqlevel = 0;
int fiqlevel = 0;
ARMCPU *cpu = ARM_CPU(cs->cpu);
CPUARMState *env = &cpu->env;
g_assert(qemu_mutex_iothread_locked());
trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
cs->hppi.grp, cs->hppi.prio);
if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
/* If a Security-enabled GIC sends a G1S interrupt to a
* Security-disabled CPU, we must treat it as if it were G0.
*/
cs->hppi.grp = GICV3_G0;
}
if (icc_hppi_can_preempt(cs)) {
/* We have an interrupt: should we signal it as IRQ or FIQ?
* This is described in the GICv3 spec section 4.6.2.
*/
bool isfiq;
switch (cs->hppi.grp) {
case GICV3_G0:
isfiq = true;
break;
case GICV3_G1:
isfiq = (!arm_is_secure(env) ||
(arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
break;
case GICV3_G1NS:
isfiq = arm_is_secure(env);
break;
default:
g_assert_not_reached();
}
if (isfiq) {
fiqlevel = 1;
} else {
irqlevel = 1;
}
}
trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
qemu_set_irq(cs->parent_fiq, fiqlevel);
qemu_set_irq(cs->parent_irq, irqlevel);
}
static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint32_t value = cs->icc_pmr_el1;
if (icv_access(env, HCR_FMO | HCR_IMO)) {
return icv_pmr_read(env, ri);
}
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
(env->cp15.scr_el3 & SCR_FIQ)) {
/* NS access and Group 0 is inaccessible to NS: return the
* NS view of the current priority
*/
if ((value & 0x80) == 0) {
/* Secure priorities not visible to NS */
value = 0;
} else if (value != 0xff) {
value = (value << 1) & 0xff;
}
}
trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
if (icv_access(env, HCR_FMO | HCR_IMO)) {
return icv_pmr_write(env, ri, value);
}
trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
value &= 0xff;
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
(env->cp15.scr_el3 & SCR_FIQ)) {
/* NS access and Group 0 is inaccessible to NS: return the
* NS view of the current priority
*/
if (!(cs->icc_pmr_el1 & 0x80)) {
/* Current PMR in the secure range, don't allow NS to change it */
return;
}
value = (value >> 1) | 0x80;
}
cs->icc_pmr_el1 = value;
gicv3_cpuif_update(cs);
}
static void icc_activate_irq(GICv3CPUState *cs, int irq)
{
/* Move the interrupt from the Pending state to Active, and update
* the Active Priority Registers
*/
uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
int prio = cs->hppi.prio & mask;
int aprbit = prio >> 1;
int regno = aprbit / 32;
int regbit = aprbit % 32;
cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
if (irq < GIC_INTERNAL) {
cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
gicv3_redist_update(cs);
} else {
gicv3_gicd_active_set(cs->gic, irq);
gicv3_gicd_pending_clear(cs->gic, irq);
gicv3_update(cs->gic, irq, 1);
}
}
static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
{
/* Return the highest priority pending interrupt register value
* for group 0.
*/
bool irq_is_secure;
if (cs->hppi.prio == 0xff) {
return INTID_SPURIOUS;
}
/* Check whether we can return the interrupt or if we should return
* a special identifier, as per the CheckGroup0ForSpecialIdentifiers
* pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
* is always zero.)
*/
irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
(cs->hppi.grp != GICV3_G1NS));
if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
return INTID_SPURIOUS;
}
if (irq_is_secure && !arm_is_secure(env)) {
/* Secure interrupts not visible to Nonsecure */
return INTID_SPURIOUS;
}
if (cs->hppi.grp != GICV3_G0) {
/* Indicate to EL3 that there's a Group 1 interrupt for the other
* state pending.
*/
return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
}
return cs->hppi.irq;
}
static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
{
/* Return the highest priority pending interrupt register value
* for group 1.
*/
bool irq_is_secure;
if (cs->hppi.prio == 0xff) {
return INTID_SPURIOUS;
}
/* Check whether we can return the interrupt or if we should return
* a special identifier, as per the CheckGroup1ForSpecialIdentifiers
* pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
* is always zero.)
*/
irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
(cs->hppi.grp != GICV3_G1NS));
if (cs->hppi.grp == GICV3_G0) {
/* Group 0 interrupts not visible via HPPIR1 */
return INTID_SPURIOUS;
}
if (irq_is_secure) {
if (!arm_is_secure(env)) {
/* Secure interrupts not visible in Non-secure */
return INTID_SPURIOUS;
}
} else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
/* Group 1 non-secure interrupts not visible in Secure EL1 */
return INTID_SPURIOUS;
}
return cs->hppi.irq;
}
static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t intid;
if (icv_access(env, HCR_FMO)) {
return icv_iar_read(env, ri);
}
if (!icc_hppi_can_preempt(cs)) {
intid = INTID_SPURIOUS;
} else {
intid = icc_hppir0_value(cs, env);
}
if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
icc_activate_irq(cs, intid);
}
trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
return intid;
}
static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t intid;
if (icv_access(env, HCR_IMO)) {
return icv_iar_read(env, ri);
}
if (!icc_hppi_can_preempt(cs)) {
intid = INTID_SPURIOUS;
} else {
intid = icc_hppir1_value(cs, env);
}
if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
icc_activate_irq(cs, intid);
}
trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
return intid;
}
static void icc_drop_prio(GICv3CPUState *cs, int grp)
{
/* Drop the priority of the currently active interrupt in
* the specified group.
*
* Note that we can guarantee (because of the requirement to nest
* ICC_IAR reads [which activate an interrupt and raise priority]
* with ICC_EOIR writes [which drop the priority for the interrupt])
* that the interrupt we're being called for is the highest priority
* active interrupt, meaning that it has the lowest set bit in the
* APR registers.
*
* If the guest does not honour the ordering constraints then the
* behaviour of the GIC is UNPREDICTABLE, which for us means that
* the values of the APR registers might become incorrect and the
* running priority will be wrong, so interrupts that should preempt
* might not do so, and interrupts that should not preempt might do so.
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
uint64_t *papr = &cs->icc_apr[grp][i];
if (!*papr) {
continue;
}
/* Clear the lowest set bit */
*papr &= *papr - 1;
break;
}
/* running priority change means we need an update for this cpu i/f */
gicv3_cpuif_update(cs);
}
static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
{
/* Return true if we should split priority drop and interrupt
* deactivation, ie whether the relevant EOIMode bit is set.
*/
if (arm_is_el3_or_mon(env)) {
return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
}
if (arm_is_secure_below_el3(env)) {
return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
} else {
return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
}
}
static int icc_highest_active_group(GICv3CPUState *cs)
{
/* Return the group with the highest priority active interrupt.
* We can do this by just comparing the APRs to see which one
* has the lowest set bit.
* (If more than one group is active at the same priority then
* we're in UNPREDICTABLE territory.)
*/
int i;
for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
return GICV3_G1NS;
}
if (g1ctz < g0ctz) {
return GICV3_G1;
}
if (g0ctz < 32) {
return GICV3_G0;
}
}
/* No set active bits? UNPREDICTABLE; return -1 so the caller
* ignores the spurious EOI attempt.
*/
return -1;
}
static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
{
if (irq < GIC_INTERNAL) {
cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
gicv3_redist_update(cs);
} else {
gicv3_gicd_active_clear(cs->gic, irq);
gicv3_update(cs->gic, irq, 1);
}
}
static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
{
/* Return true if we should split priority drop and interrupt
* deactivation, ie whether the virtual EOIMode bit is set.
*/
return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
}
static int icv_find_active(GICv3CPUState *cs, int irq)
{
/* Given an interrupt number for an active interrupt, return the index
* of the corresponding list register, or -1 if there is no match.
* Corresponds to FindActiveVirtualInterrupt pseudocode.
*/
int i;
for (i = 0; i < cs->num_list_regs; i++) {
uint64_t lr = cs->ich_lr_el2[i];
if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
return i;
}
}
return -1;
}
static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
{
/* Deactivate the interrupt in the specified list register index */
uint64_t lr = cs->ich_lr_el2[idx];
if (lr & ICH_LR_EL2_HW) {
/* Deactivate the associated physical interrupt */
int pirq = ich_lr_pintid(lr);
if (pirq < INTID_SECURE) {
icc_deactivate_irq(cs, pirq);
}
}
/* Clear the 'active' part of the state, so ActivePending->Pending
* and Active->Invalid.
*/
lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
cs->ich_lr_el2[idx] = lr;
}
static void icv_increment_eoicount(GICv3CPUState *cs)
{
/* Increment the EOICOUNT field in ICH_HCR_EL2 */
int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
ICH_HCR_EL2_EOICOUNT_LENGTH);
cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
}
static int icv_drop_prio(GICv3CPUState *cs)
{
/* Drop the priority of the currently active virtual interrupt
* (favouring group 0 if there is a set active bit at
* the same priority for both group 0 and group 1).
* Return the priority value for the bit we just cleared,
* or 0xff if no bits were set in the AP registers at all.
* Note that though the ich_apr[] are uint64_t only the low
* 32 bits are actually relevant.
*/
int i;
int aprmax = 1 << (cs->vprebits - 5);
assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
for (i = 0; i < aprmax; i++) {
uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
int apr0count, apr1count;
if (!*papr0 && !*papr1) {
continue;
}
/* We can't just use the bit-twiddling hack icc_drop_prio() does
* because we need to return the bit number we cleared so
* it can be compared against the list register's priority field.
*/
apr0count = ctz32(*papr0);
apr1count = ctz32(*papr1);
if (apr0count <= apr1count) {
*papr0 &= *papr0 - 1;
return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
} else {
*papr1 &= *papr1 - 1;
return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
}
}
return 0xff;
}
static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Deactivate interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int idx;
int irq = value & 0xffffff;
trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
if (irq >= cs->gic->num_irq) {
/* Also catches special interrupt numbers and LPIs */
return;
}
if (!icv_eoi_split(env, cs)) {
return;
}
idx = icv_find_active(cs, irq);
if (idx < 0) {
/* No list register matching this, so increment the EOI count
* (might trigger a maintenance interrupt)
*/
icv_increment_eoicount(cs);
} else {
icv_deactivate_irq(cs, idx);
}
gicv3_cpuif_virt_update(cs);
}
static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* End of Interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int irq = value & 0xffffff;
int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
int idx, dropprio;
trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (irq >= cs->gic->num_irq) {
/* Also catches special interrupt numbers and LPIs */
return;
}
/* We implement the IMPDEF choice of "drop priority before doing
* error checks" (because that lets us avoid scanning the AP
* registers twice).
*/
dropprio = icv_drop_prio(cs);
if (dropprio == 0xff) {
/* No active interrupt. It is CONSTRAINED UNPREDICTABLE
* whether the list registers are checked in this
* situation; we choose not to.
*/
return;
}
idx = icv_find_active(cs, irq);
if (idx < 0) {
/* No valid list register corresponding to EOI ID */
icv_increment_eoicount(cs);
} else {
uint64_t lr = cs->ich_lr_el2[idx];
int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
if (thisgrp == grp && lr_gprio == dropprio) {
if (!icv_eoi_split(env, cs)) {
/* Priority drop and deactivate not split: deactivate irq now */
icv_deactivate_irq(cs, idx);
}
}
}
gicv3_cpuif_virt_update(cs);
}
static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* End of Interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int irq = value & 0xffffff;
int grp;
if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
icv_eoir_write(env, ri, value);
return;
}
trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (ri->crm == 8) {
/* EOIR0 */
grp = GICV3_G0;
} else {
/* EOIR1 */
if (arm_is_secure(env)) {
grp = GICV3_G1;
} else {
grp = GICV3_G1NS;
}
}
if (irq >= cs->gic->num_irq) {
/* This handles two cases:
* 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
* to the GICC_EOIR, the GIC ignores that write.
* 2. If software writes the number of a non-existent interrupt
* this must be a subcase of "value written does not match the last
* valid interrupt value read from the Interrupt Acknowledge
* register" and so this is UNPREDICTABLE. We choose to ignore it.
*/
return;
}
if (icc_highest_active_group(cs) != grp) {
return;
}
icc_drop_prio(cs, grp);
if (!icc_eoi_split(env, cs)) {
/* Priority drop and deactivate not split: deactivate irq now */
icc_deactivate_irq(cs, irq);
}
}
static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
if (icv_access(env, HCR_FMO)) {
return icv_hppir_read(env, ri);
}
value = icc_hppir0_value(cs, env);
trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
if (icv_access(env, HCR_IMO)) {
return icv_hppir_read(env, ri);
}
value = icc_hppir1_value(cs, env);
trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
bool satinc = false;
uint64_t bpr;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
return icv_bpr_read(env, ri);
}
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
(cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
/* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
* modify BPR0
*/
grp = GICV3_G0;
}
if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
(cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
/* reads return bpr0 + 1 sat to 7, writes ignored */
grp = GICV3_G0;
satinc = true;
}
bpr = cs->icc_bpr[grp];
if (satinc) {
bpr++;
bpr = MIN(bpr, 7);
}
trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
return bpr;
}
static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
uint64_t minval;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
icv_bpr_write(env, ri, value);
return;
}
trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
(cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
/* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
* modify BPR0
*/
grp = GICV3_G0;
}
if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
(cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
/* reads return bpr0 + 1 sat to 7, writes ignored */
return;
}
minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
if (value < minval) {
value = minval;
}
cs->icc_bpr[grp] = value & 7;
gicv3_cpuif_update(cs);
}
static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
return icv_ap_read(env, ri);
}
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
value = cs->icc_apr[grp][regno];
trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
return value;
}
static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
icv_ap_write(env, ri, value);
return;
}
trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
/* It's not possible to claim that a Non-secure interrupt is active
* at a priority outside the Non-secure range (128..255), since this
* would otherwise allow malicious NS code to block delivery of S interrupts
* by writing a bad value to these registers.
*/
if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
return;
}
cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
gicv3_cpuif_update(cs);
}
static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Deactivate interrupt */
GICv3CPUState *cs = icc_cs_from_env(env);
int irq = value & 0xffffff;
bool irq_is_secure, single_sec_state, irq_is_grp0;
bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
if (icv_access(env, HCR_FMO | HCR_IMO)) {
icv_dir_write(env, ri, value);
return;
}
trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
if (irq >= cs->gic->num_irq) {
/* Also catches special interrupt numbers and LPIs */
return;
}
if (!icc_eoi_split(env, cs)) {
return;
}
int grp = gicv3_irq_group(cs->gic, cs, irq);
single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
irq_is_grp0 = grp == GICV3_G0;
/* Check whether we're allowed to deactivate this interrupt based
* on its group and the current CPU state.
* These checks are laid out to correspond to the spec's pseudocode.
*/
route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
/* No need to include !IsSecure in route_*_to_el2 as it's only
* tested in cases where we know !IsSecure is true.
*/
route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
switch (arm_current_el(env)) {
case 3:
break;
case 2:
if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
break;
}
if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
break;
}
return;
case 1:
if (!arm_is_secure_below_el3(env)) {
if (single_sec_state && irq_is_grp0 &&
!route_fiq_to_el3 && !route_fiq_to_el2) {
break;
}
if (!irq_is_secure && !irq_is_grp0 &&
!route_irq_to_el3 && !route_irq_to_el2) {
break;
}
} else {
if (irq_is_grp0 && !route_fiq_to_el3) {
break;
}
if (!irq_is_grp0 &&
(!irq_is_secure || !single_sec_state) &&
!route_irq_to_el3) {
break;
}
}
return;
default:
g_assert_not_reached();
}
icc_deactivate_irq(cs, irq);
}
static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int prio;
if (icv_access(env, HCR_FMO | HCR_IMO)) {
return icv_rpr_read(env, ri);
}
prio = icc_highest_active_prio(cs);
if (arm_feature(env, ARM_FEATURE_EL3) &&
!arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
/* NS GIC access and Group 0 is inaccessible to NS */
if ((prio & 0x80) == 0) {
/* NS mustn't see priorities in the Secure half of the range */
prio = 0;
} else if (prio != 0xff) {
/* Non-idle priority: show the Non-secure view of it */
prio = (prio << 1) & 0xff;
}
}
trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
return prio;
}
static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
uint64_t value, int grp, bool ns)
{
GICv3State *s = cs->gic;
/* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
uint64_t aff = extract64(value, 48, 8) << 16 |
extract64(value, 32, 8) << 8 |
extract64(value, 16, 8);
uint32_t targetlist = extract64(value, 0, 16);
uint32_t irq = extract64(value, 24, 4);
bool irm = extract64(value, 40, 1);
int i;
if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
/* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
* interrupts as Group 0 interrupts and must send Secure Group 0
* interrupts to the target CPUs.
*/
grp = GICV3_G0;
}
trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
aff, targetlist);
for (i = 0; i < s->num_cpu; i++) {
GICv3CPUState *ocs = &s->cpu[i];
if (irm) {
/* IRM == 1 : route to all CPUs except self */
if (cs == ocs) {
continue;
}
} else {
/* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
* where the corresponding bit is set in targetlist
*/
int aff0;
if (ocs->gicr_typer >> 40 != aff) {
continue;
}
aff0 = extract64(ocs->gicr_typer, 32, 8);
if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
continue;
}
}
/* The redistributor will check against its own GICR_NSACR as needed */
gicv3_redist_send_sgi(ocs, grp, irq, ns);
}
}
static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Secure Group 0 SGI. */
GICv3CPUState *cs = icc_cs_from_env(env);
bool ns = !arm_is_secure(env);
icc_generate_sgi(env, cs, value, GICV3_G0, ns);
}
static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Group 1 SGI for the current Security state */
GICv3CPUState *cs = icc_cs_from_env(env);
int grp;
bool ns = !arm_is_secure(env);
grp = ns ? GICV3_G1NS : GICV3_G1;
icc_generate_sgi(env, cs, value, grp, ns);
}
static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
/* Generate Group 1 SGI for the Security state that is not
* the current state
*/
GICv3CPUState *cs = icc_cs_from_env(env);
int grp;
bool ns = !arm_is_secure(env);
grp = ns ? GICV3_G1 : GICV3_G1NS;
icc_generate_sgi(env, cs, value, grp, ns);
}
static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
uint64_t value;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
return icv_igrpen_read(env, ri);
}
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
value = cs->icc_igrpen[grp];
trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
return value;
}
static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
icv_igrpen_write(env, ri, value);
return;
}
trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
gicv3_redist_affid(cs), value);
if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
grp = GICV3_G1NS;
}
cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
gicv3_cpuif_update(cs);
}
static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
/* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
/* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
gicv3_cpuif_update(cs);
}
static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
uint64_t value;
if (icv_access(env, HCR_FMO | HCR_IMO)) {
return icv_ctlr_read(env, ri);
}
value = cs->icc_ctlr_el1[bank];
trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
uint64_t mask;
if (icv_access(env, HCR_FMO | HCR_IMO)) {
icv_ctlr_write(env, ri, value);
return;
}
trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
/* Only CBPR and EOIMODE can be RW;
* for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
* the asseciated priority-based routing of them);
* if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
*/
if (arm_feature(env, ARM_FEATURE_EL3) &&
((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
mask = ICC_CTLR_EL1_EOIMODE;
} else {
mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
}
cs->icc_ctlr_el1[bank] &= ~mask;
cs->icc_ctlr_el1[bank] |= (value & mask);
gicv3_cpuif_update(cs);
}
static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
value = cs->icc_ctlr_el3;
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
value |= ICC_CTLR_EL3_CBPR_EL1NS;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
value |= ICC_CTLR_EL3_EOIMODE_EL1S;
}
if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
value |= ICC_CTLR_EL3_CBPR_EL1S;
}
trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
return value;
}
static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t mask;
trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
/* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
}
if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
}
cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
}
if (value & ICC_CTLR_EL3_CBPR_EL1S) {
cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
}
/* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
mask = ICC_CTLR_EL3_EOIMODE_EL3;
cs->icc_ctlr_el3 &= ~mask;
cs->icc_ctlr_el3 |= (value & mask);
gicv3_cpuif_update(cs);
}
static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
GICv3CPUState *cs = icc_cs_from_env(env);
int el = arm_current_el(env);
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
el == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2;
}
if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
switch (el) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static CPAccessResult gicv3_dir_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
GICv3CPUState *cs = icc_cs_from_env(env);
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2;
}
return gicv3_irqfiq_access(env, ri, isread);
}
static CPAccessResult gicv3_sgi_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2;
}
return gicv3_irqfiq_access(env, ri, isread);
}
static CPAccessResult gicv3_fiq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
GICv3CPUState *cs = icc_cs_from_env(env);
int el = arm_current_el(env);
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
el == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2;
}
if (env->cp15.scr_el3 & SCR_FIQ) {
switch (el) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static CPAccessResult gicv3_irq_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread)
{
CPAccessResult r = CP_ACCESS_OK;
GICv3CPUState *cs = icc_cs_from_env(env);
int el = arm_current_el(env);
if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
el == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2;
}
if (env->cp15.scr_el3 & SCR_IRQ) {
switch (el) {
case 1:
if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
case 2:
r = CP_ACCESS_TRAP_EL3;
break;
case 3:
if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
r = CP_ACCESS_TRAP_EL3;
}
break;
default:
g_assert_not_reached();
}
}
if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
r = CP_ACCESS_TRAP;
}
return r;
}
static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
(1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
(1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
cs->icc_pmr_el1 = 0;
cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
(1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
(7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
cs->ich_hcr_el2 = 0;
memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
(icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
}
static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
{ .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irqfiq_access,
.readfn = icc_pmr_read,
.writefn = icc_pmr_write,
/* We hang the whole cpu interface reset routine off here
* rather than parcelling it out into one little function
* per register
*/
.resetfn = icc_reset,
},
{ .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_fiq_access,
.readfn = icc_iar0_read,
},
{ .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_fiq_access,
.writefn = icc_eoir_write,
},
{ .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_fiq_access,
.readfn = icc_hppir0_read,
},
{ .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_bpr_read,
.writefn = icc_bpr_write,
},
{ .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
/* All the ICC_AP1R*_EL1 registers are banked */
{ .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_ap_read,
.writefn = icc_ap_write,
},
{ .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_dir_access,
.writefn = icc_dir_write,
},
{ .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irqfiq_access,
.readfn = icc_rpr_read,
},
{ .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_sgi1r_write,
},
{ .name = "ICC_SGI1R",
.cp = 15, .opc1 = 0, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_sgi1r_write,
},
{ .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_asgi1r_write,
},
{ .name = "ICC_ASGI1R",
.cp = 15, .opc1 = 1, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_asgi1r_write,
},
{ .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_sgi0r_write,
},
{ .name = "ICC_SGI0R",
.cp = 15, .opc1 = 2, .crm = 12,
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_sgi_access,
.writefn = icc_sgi0r_write,
},
{ .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irq_access,
.readfn = icc_iar1_read,
},
{ .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_W, .accessfn = gicv3_irq_access,
.writefn = icc_eoir_write,
},
{ .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_R, .accessfn = gicv3_irq_access,
.readfn = icc_hppir1_read,
},
/* This register is banked */
{ .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_bpr_read,
.writefn = icc_bpr_write,
},
/* This register is banked */
{ .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irqfiq_access,
.readfn = icc_ctlr_el1_read,
.writefn = icc_ctlr_el1_write,
},
{ .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL1_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
* This register is banked but since it's constant we don't
* need to do anything special.
*/
.resetvalue = 0x7,
},
{ .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_fiq_access,
.readfn = icc_igrpen_read,
.writefn = icc_igrpen_write,
},
/* This register is banked */
{ .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL1_RW, .accessfn = gicv3_irq_access,
.readfn = icc_igrpen_read,
.writefn = icc_igrpen_write,
},
{ .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL2_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
*/
.resetvalue = 0xf,
},
{ .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL3_RW,
.readfn = icc_ctlr_el3_read,
.writefn = icc_ctlr_el3_write,
},
{ .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
.type = ARM_CP_NO_RAW | ARM_CP_CONST,
.access = PL3_RW,
/* We don't support IRQ/FIQ bypass and system registers are
* always enabled, so all our bits are RAZ/WI or RAO/WI.
*/
.resetvalue = 0xf,
},
{ .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL3_RW,
.readfn = icc_igrpen1_el3_read,
.writefn = icc_igrpen1_el3_write,
},
REGINFO_SENTINEL
};
static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
uint64_t value;
value = cs->ich_apr[grp][regno];
trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
return value;
}
static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 & 3;
int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
gicv3_cpuif_virt_update(cs);
}
static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = cs->ich_hcr_el2;
trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
return value;
}
static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
cs->ich_hcr_el2 = value;
gicv3_cpuif_virt_update(cs);
}
static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = cs->ich_vmcr_el2;
trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
return value;
}
static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
value |= ICH_VMCR_EL2_VFIQEN;
cs->ich_vmcr_el2 = value;
/* Enforce "writing BPRs to less than minimum sets them to the minimum"
* by reading and writing back the fields.
*/
write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
gicv3_cpuif_virt_update(cs);
}
static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 | ((ri->crm & 1) << 3);
uint64_t value;
/* This read function handles all of:
* 64-bit reads of the whole LR
* 32-bit reads of the low half of the LR
* 32-bit reads of the high half of the LR
*/
if (ri->state == ARM_CP_STATE_AA32) {
if (ri->crm >= 14) {
value = extract64(cs->ich_lr_el2[regno], 32, 32);
trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
} else {
value = extract64(cs->ich_lr_el2[regno], 0, 32);
trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
}
} else {
value = cs->ich_lr_el2[regno];
trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
}
return value;
}
static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
GICv3CPUState *cs = icc_cs_from_env(env);
int regno = ri->opc2 | ((ri->crm & 1) << 3);
/* This write function handles all of:
* 64-bit writes to the whole LR
* 32-bit writes to the low half of the LR
* 32-bit writes to the high half of the LR
*/
if (ri->state == ARM_CP_STATE_AA32) {
if (ri->crm >= 14) {
trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
} else {
trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
}
} else {
trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
}
/* Enforce RES0 bits in priority field */
if (cs->vpribits < 8) {
value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
8 - cs->vpribits, 0);
}
cs->ich_lr_el2[regno] = value;
gicv3_cpuif_virt_update(cs);
}
static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value;
value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
| ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
| (1 << ICH_VTR_EL2_IDBITS_SHIFT)
| ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
| ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = maintenance_interrupt_state(cs);
trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
return value;
}
static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
GICv3CPUState *cs = icc_cs_from_env(env);
uint64_t value = 0;
int i;
for (i = 0; i < cs->num_list_regs; i++) {
uint64_t lr = cs->ich_lr_el2[i];
if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
value |= (1 << i);
}
}
trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
return value;
}
static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
{ .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_hcr_read,
.writefn = ich_hcr_write,
},
{ .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_R,
.readfn = ich_vtr_read,
},
{ .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_R,
.readfn = ich_misr_read,
},
{ .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_R,
.readfn = ich_eisr_read,
},
{ .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_R,
.readfn = ich_elrsr_read,
},
{ .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_vmcr_read,
.writefn = ich_vmcr_write,
},
REGINFO_SENTINEL
};
static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
{ .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
REGINFO_SENTINEL
};
static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
{ .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
{ .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_ap_read,
.writefn = ich_ap_write,
},
REGINFO_SENTINEL
};
static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
{
GICv3CPUState *cs = opaque;
gicv3_cpuif_update(cs);
}
void gicv3_init_cpuif(GICv3State *s)
{
/* Called from the GICv3 realize function; register our system
* registers with the CPU
*/
int i;
for (i = 0; i < s->num_cpu; i++) {
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
GICv3CPUState *cs = &s->cpu[i];
/* Note that we can't just use the GICv3CPUState as an opaque pointer
* in define_arm_cp_regs_with_opaque(), because when we're called back
* it might be with code translated by CPU 0 but run by CPU 1, in
* which case we'd get the wrong value.
* So instead we define the regs with no ri->opaque info, and
* get back to the GICv3CPUState from the CPUARMState.
*/
define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
&& cpu->gic_num_lrs) {
int j;
cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
cs->num_list_regs = cpu->gic_num_lrs;
cs->vpribits = cpu->gic_vpribits;
cs->vprebits = cpu->gic_vprebits;
/* Check against architectural constraints: getting these
* wrong would be a bug in the CPU code defining these,
* and the implementation relies on them holding.
*/
g_assert(cs->vprebits <= cs->vpribits);
g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
for (j = 0; j < cs->num_list_regs; j++) {
/* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
* are split into two cp15 regs, LR (the low part, with the
* same encoding as the AArch64 LR) and LRC (the high part).
*/
ARMCPRegInfo lr_regset[] = {
{ .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 4, .crn = 12,
.crm = 12 + (j >> 3), .opc2 = j & 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_lr_read,
.writefn = ich_lr_write,
},
{ .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
.cp = 15, .opc1 = 4, .crn = 12,
.crm = 14 + (j >> 3), .opc2 = j & 7,
.type = ARM_CP_IO | ARM_CP_NO_RAW,
.access = PL2_RW,
.readfn = ich_lr_read,
.writefn = ich_lr_write,
},
REGINFO_SENTINEL
};
define_arm_cp_regs(cpu, lr_regset);
}
if (cs->vprebits >= 6) {
define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
}
if (cs->vprebits == 7) {
define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
}
}
arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
}
}