qemu/hw/ppc/ppc.c
Harsh Prateek Bora 4977110709 spapr: nested: Introduce H_GUEST_RUN_VCPU hcall.
The H_GUEST_RUN_VCPU hcall is used to start execution of a Guest VCPU.
The Hypervisor will update the state of the Guest VCPU based on the
input buffer, restore the saved Guest VCPU state, and start its
execution.

The Guest VCPU can stop running for numerous reasons including HCALLs,
hypervisor exceptions, or an outstanding Host Partition Interrupt.
The reason that the Guest VCPU stopped running is communicated through
R4 and the output buffer will be filled in with any relevant state.

Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2024-03-13 02:47:04 +10:00

1551 lines
44 KiB
C

/*
* QEMU generic PowerPC hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/ppc_e500.h"
#include "qemu/timer.h"
#include "sysemu/cpus.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "sysemu/replay.h"
#include "sysemu/runstate.h"
#include "kvm_ppc.h"
#include "migration/vmstate.h"
#include "trace.h"
static void cpu_ppc_tb_stop (CPUPPCState *env);
static void cpu_ppc_tb_start (CPUPPCState *env);
void ppc_set_irq(PowerPCCPU *cpu, int irq, int level)
{
CPUPPCState *env = &cpu->env;
unsigned int old_pending;
/* We may already have the BQL if coming from the reset path */
BQL_LOCK_GUARD();
old_pending = env->pending_interrupts;
if (level) {
env->pending_interrupts |= irq;
} else {
env->pending_interrupts &= ~irq;
}
if (old_pending != env->pending_interrupts) {
ppc_maybe_interrupt(env);
if (kvm_enabled()) {
kvmppc_set_interrupt(cpu, irq, level);
}
}
trace_ppc_irq_set_exit(env, irq, level, env->pending_interrupts,
CPU(cpu)->interrupt_request);
}
/* PowerPC 6xx / 7xx internal IRQ controller */
static void ppc6xx_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC6xx_INPUT_TBEN:
/* Level sensitive - active high */
trace_ppc_irq_set_state("time base", level);
if (level) {
cpu_ppc_tb_start(env);
} else {
cpu_ppc_tb_stop(env);
}
break;
case PPC6xx_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC6xx_INPUT_SMI:
/* Level sensitive - active high */
trace_ppc_irq_set_state("SMI IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
break;
case PPC6xx_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
trace_ppc_irq_set_state("machine check", 1);
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC6xx_INPUT_CKSTP_IN:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
/* XXX: Note that the only way to restart the CPU is to reset it */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
}
break;
case PPC6xx_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
trace_ppc_irq_reset("CPU");
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
}
break;
case PPC6xx_INPUT_SRESET:
trace_ppc_irq_set_state("RESET IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc6xx_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), ppc6xx_set_irq, PPC6xx_INPUT_NB);
}
#if defined(TARGET_PPC64)
/* PowerPC 970 internal IRQ controller */
static void ppc970_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC970_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC970_INPUT_THINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("SMI IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
break;
case PPC970_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
trace_ppc_irq_set_state("machine check", 1);
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC970_INPUT_CKSTP:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
} else {
trace_ppc_irq_cpu("restart");
cs->halted = 0;
qemu_cpu_kick(cs);
}
break;
case PPC970_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
}
break;
case PPC970_INPUT_SRESET:
trace_ppc_irq_set_state("RESET IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
break;
case PPC970_INPUT_TBEN:
trace_ppc_irq_set_state("TBEN IRQ", level);
/* XXX: TODO */
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc970_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), ppc970_set_irq, PPC970_INPUT_NB);
}
/* POWER7 internal IRQ controller */
static void power7_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
trace_ppc_irq_set(&cpu->env, pin, level);
switch (pin) {
case POWER7_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
default:
g_assert_not_reached();
}
}
void ppcPOWER7_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), power7_set_irq, POWER7_INPUT_NB);
}
/* POWER9 internal IRQ controller */
static void power9_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
trace_ppc_irq_set(&cpu->env, pin, level);
switch (pin) {
case POWER9_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case POWER9_INPUT_HINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("HV external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
break;
default:
g_assert_not_reached();
return;
}
}
void ppcPOWER9_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), power9_set_irq, POWER9_INPUT_NB);
}
#endif /* defined(TARGET_PPC64) */
void ppc40x_core_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
target_ulong dbsr;
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
dbsr = env->spr[SPR_40x_DBSR];
dbsr &= ~0x00000300;
dbsr |= 0x00000100;
env->spr[SPR_40x_DBSR] = dbsr;
}
void ppc40x_chip_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
target_ulong dbsr;
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
/* XXX: TODO reset all internal peripherals */
dbsr = env->spr[SPR_40x_DBSR];
dbsr &= ~0x00000300;
dbsr |= 0x00000200;
env->spr[SPR_40x_DBSR] = dbsr;
}
void ppc40x_system_reset(PowerPCCPU *cpu)
{
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
{
PowerPCCPU *cpu = env_archcpu(env);
bql_lock();
switch ((val >> 28) & 0x3) {
case 0x0:
/* No action */
break;
case 0x1:
/* Core reset */
ppc40x_core_reset(cpu);
break;
case 0x2:
/* Chip reset */
ppc40x_chip_reset(cpu);
break;
case 0x3:
/* System reset */
ppc40x_system_reset(cpu);
break;
}
bql_unlock();
}
/* PowerPC 40x internal IRQ controller */
static void ppc40x_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC40x_INPUT_RESET_SYS:
if (level) {
trace_ppc_irq_reset("system");
ppc40x_system_reset(cpu);
}
break;
case PPC40x_INPUT_RESET_CHIP:
if (level) {
trace_ppc_irq_reset("chip");
ppc40x_chip_reset(cpu);
}
break;
case PPC40x_INPUT_RESET_CORE:
/* XXX: TODO: update DBSR[MRR] */
if (level) {
trace_ppc_irq_reset("core");
ppc40x_core_reset(cpu);
}
break;
case PPC40x_INPUT_CINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("critical IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
break;
case PPC40x_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC40x_INPUT_HALT:
/* Level sensitive - active low */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
} else {
trace_ppc_irq_cpu("restart");
cs->halted = 0;
qemu_cpu_kick(cs);
}
break;
case PPC40x_INPUT_DEBUG:
/* Level sensitive - active high */
trace_ppc_irq_set_state("debug pin", level);
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc40x_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), ppc40x_set_irq, PPC40x_INPUT_NB);
}
/* PowerPC E500 internal IRQ controller */
static void ppce500_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPCE500_INPUT_MCK:
if (level) {
trace_ppc_irq_reset("system");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case PPCE500_INPUT_RESET_CORE:
if (level) {
trace_ppc_irq_reset("core");
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
}
break;
case PPCE500_INPUT_CINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("critical IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
break;
case PPCE500_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("core IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPCE500_INPUT_DEBUG:
/* Level sensitive - active high */
trace_ppc_irq_set_state("debug pin", level);
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppce500_irq_init(PowerPCCPU *cpu)
{
qdev_init_gpio_in(DEVICE(cpu), ppce500_set_irq, PPCE500_INPUT_NB);
}
/* Enable or Disable the E500 EPR capability */
void ppce500_set_mpic_proxy(bool enabled)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
cpu->env.mpic_proxy = enabled;
if (kvm_enabled()) {
kvmppc_set_mpic_proxy(cpu, enabled);
}
}
}
/*****************************************************************************/
/* PowerPC time base and decrementer emulation */
/*
* Conversion between QEMU_CLOCK_VIRTUAL ns and timebase (TB) ticks:
* TB ticks are arrived at by multiplying tb_freq then dividing by
* ns per second, and rounding down. TB ticks drive all clocks and
* timers in the target machine.
*
* Converting TB intervals to ns for the purpose of setting a
* QEMU_CLOCK_VIRTUAL timer should go the other way, but rounding
* up. Rounding down could cause the timer to fire before the TB
* value has been reached.
*/
static uint64_t ns_to_tb(uint32_t freq, int64_t clock)
{
return muldiv64(clock, freq, NANOSECONDS_PER_SECOND);
}
/* virtual clock in TB ticks, not adjusted by TB offset */
static int64_t tb_to_ns_round_up(uint32_t freq, uint64_t tb)
{
return muldiv64_round_up(tb, NANOSECONDS_PER_SECOND, freq);
}
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
{
/* TB time in tb periods */
return ns_to_tb(tb_env->tb_freq, vmclk) + tb_offset;
}
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
if (kvm_enabled()) {
return env->spr[SPR_TBL];
}
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->tb_offset);
trace_ppc_tb_load(tb);
return tb;
}
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->tb_offset);
trace_ppc_tb_load(tb);
return tb >> 32;
}
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
{
if (kvm_enabled()) {
return env->spr[SPR_TBU];
}
return _cpu_ppc_load_tbu(env);
}
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t *tb_offsetp, uint64_t value)
{
*tb_offsetp = value - ns_to_tb(tb_env->tb_freq, vmclk);
trace_ppc_tb_store(value, *tb_offsetp);
}
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb | (uint64_t)value);
}
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset,
((uint64_t)value << 32) | tb);
}
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->atb_offset);
trace_ppc_tb_load(tb);
return tb;
}
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->atb_offset);
trace_ppc_tb_load(tb);
return tb >> 32;
}
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset, tb | (uint64_t)value);
}
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, clock, tb_env->atb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, clock, &tb_env->atb_offset,
((uint64_t)value << 32) | tb);
}
void cpu_ppc_increase_tb_by_offset(CPUPPCState *env, int64_t offset)
{
env->tb_env->tb_offset += offset;
}
void cpu_ppc_decrease_tb_by_offset(CPUPPCState *env, int64_t offset)
{
env->tb_env->tb_offset -= offset;
}
uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->vtb_offset);
}
void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->vtb_offset, value);
}
void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, clock, tb_env->tb_offset);
tb &= 0xFFFFFFUL;
tb |= (value & ~0xFFFFFFUL);
cpu_ppc_store_tb(tb_env, clock, &tb_env->tb_offset, tb);
}
static void cpu_ppc_tb_stop (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is already frozen, do nothing */
if (tb_env->tb_freq != 0) {
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Get the time base */
tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
/* Get the alternate time base */
atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
/* Store the time base value (ie compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value (compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
/* Set the time base frequency to zero */
tb_env->tb_freq = 0;
/* Now, the time bases are frozen to tb_offset / atb_offset value */
}
}
static void cpu_ppc_tb_start (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is not frozen, do nothing */
if (tb_env->tb_freq == 0) {
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Get the time base from tb_offset */
tb = tb_env->tb_offset;
/* Get the alternate time base from atb_offset */
atb = tb_env->atb_offset;
/* Restore the tb frequency from the decrementer frequency */
tb_env->tb_freq = tb_env->decr_freq;
/* Store the time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
}
}
bool ppc_decr_clear_on_delivery(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
}
static inline int64_t __cpu_ppc_load_decr(CPUPPCState *env, int64_t now,
uint64_t next)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t n;
int64_t decr;
n = ns_to_tb(tb_env->decr_freq, now);
if (next > n && tb_env->flags & PPC_TIMER_BOOKE) {
decr = 0;
} else {
decr = next - n;
}
trace_ppc_decr_load(decr);
return decr;
}
static target_ulong _cpu_ppc_load_decr(CPUPPCState *env, int64_t now)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t decr;
decr = __cpu_ppc_load_decr(env, now, tb_env->decr_next);
/*
* If large decrementer is enabled then the decrementer is signed extended
* to 64 bits, otherwise it is a 32 bit value.
*/
if (env->spr[SPR_LPCR] & LPCR_LD) {
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
return sextract64(decr, 0, pcc->lrg_decr_bits);
}
return (uint32_t) decr;
}
target_ulong cpu_ppc_load_decr(CPUPPCState *env)
{
if (kvm_enabled()) {
return env->spr[SPR_DECR];
} else {
return _cpu_ppc_load_decr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
}
static target_ulong _cpu_ppc_load_hdecr(CPUPPCState *env, int64_t now)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
ppc_tb_t *tb_env = env->tb_env;
uint64_t hdecr;
hdecr = __cpu_ppc_load_decr(env, now, tb_env->hdecr_next);
/*
* If we have a large decrementer (POWER9 or later) then hdecr is sign
* extended to 64 bits, otherwise it is 32 bits.
*/
if (pcc->lrg_decr_bits > 32) {
return sextract64(hdecr, 0, pcc->lrg_decr_bits);
}
return (uint32_t) hdecr;
}
target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
{
return _cpu_ppc_load_hdecr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->purr_offset);
}
/* When decrementer expires,
* all we need to do is generate or queue a CPU exception
*/
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
{
/* Raise it */
trace_ppc_decr_excp("raise");
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
}
static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
{
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
}
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
/* Raise it */
trace_ppc_decr_excp("raise HV");
/* The architecture specifies that we don't deliver HDEC
* interrupts in a PM state. Not only they don't cause a
* wakeup but they also get effectively discarded.
*/
if (!env->resume_as_sreset) {
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
}
}
static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
{
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
}
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now, uint64_t *nextp,
QEMUTimer *timer,
void (*raise_excp)(void *),
void (*lower_excp)(PowerPCCPU *),
uint32_t flags, target_ulong decr,
target_ulong value, int nr_bits)
{
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env = env->tb_env;
uint64_t next;
int64_t signed_value;
int64_t signed_decr;
/* Truncate value to decr_width and sign extend for simplicity */
value = extract64(value, 0, nr_bits);
decr = extract64(decr, 0, nr_bits);
signed_value = sextract64(value, 0, nr_bits);
signed_decr = sextract64(decr, 0, nr_bits);
trace_ppc_decr_store(nr_bits, decr, value);
/*
* Calculate the next decrementer event and set a timer.
* decr_next is in timebase units to keep rounding simple. Note it is
* not adjusted by tb_offset because if TB changes via tb_offset changing,
* decrementer does not change, so not directly comparable with TB.
*/
next = ns_to_tb(tb_env->decr_freq, now) + value;
*nextp = next; /* nextp is in timebase units */
/*
* Going from 1 -> 0 or 0 -> -1 is the event to generate a DEC interrupt.
*
* On MSB level based DEC implementations the MSB always means the interrupt
* is pending, so raise it on those.
*
* On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
* an edge interrupt, so raise it here too.
*/
if (((flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
((flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
&& signed_decr >= 0)) {
(*raise_excp)(cpu);
return;
}
/* On MSB level based systems a 0 for the MSB stops interrupt delivery */
if (signed_value >= 0 && (flags & PPC_DECR_UNDERFLOW_LEVEL)) {
(*lower_excp)(cpu);
}
/* Adjust timer */
timer_mod(timer, tb_to_ns_round_up(tb_env->decr_freq, next));
}
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, int64_t now,
target_ulong decr, target_ulong value,
int nr_bits)
{
ppc_tb_t *tb_env = cpu->env.tb_env;
__cpu_ppc_store_decr(cpu, now, &tb_env->decr_next, tb_env->decr_timer,
tb_env->decr_timer->cb, &cpu_ppc_decr_lower,
tb_env->flags, decr, value, nr_bits);
}
void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
int64_t now;
target_ulong decr;
int nr_bits = 32;
if (kvm_enabled()) {
/* KVM handles decrementer exceptions, we don't need our own timer */
return;
}
if (env->spr[SPR_LPCR] & LPCR_LD) {
nr_bits = pcc->lrg_decr_bits;
}
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
decr = _cpu_ppc_load_decr(env, now);
_cpu_ppc_store_decr(cpu, now, decr, value, nr_bits);
}
static void cpu_ppc_decr_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
cpu_ppc_decr_excp(cpu);
}
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, int64_t now,
target_ulong hdecr, target_ulong value,
int nr_bits)
{
ppc_tb_t *tb_env = cpu->env.tb_env;
if (tb_env->hdecr_timer != NULL) {
/* HDECR (Book3S 64bit) is edge-based, not level like DECR */
__cpu_ppc_store_decr(cpu, now, &tb_env->hdecr_next, tb_env->hdecr_timer,
tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
PPC_DECR_UNDERFLOW_TRIGGERED,
hdecr, value, nr_bits);
}
}
void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
int64_t now;
target_ulong hdecr;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
hdecr = _cpu_ppc_load_hdecr(env, now);
_cpu_ppc_store_hdecr(cpu, now, hdecr, value, pcc->lrg_decr_bits);
}
static void cpu_ppc_hdecr_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
cpu_ppc_hdecr_excp(cpu);
}
static void _cpu_ppc_store_purr(CPUPPCState *env, int64_t now, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
cpu_ppc_store_tb(tb_env, now, &tb_env->purr_offset, value);
}
void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
{
_cpu_ppc_store_purr(env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), value);
}
static void timebase_save(PPCTimebase *tb)
{
uint64_t ticks = cpu_get_host_ticks();
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
if (!first_ppc_cpu->env.tb_env) {
error_report("No timebase object");
return;
}
if (replay_mode == REPLAY_MODE_NONE) {
/* not used anymore, we keep it for compatibility */
tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
} else {
/* simpler for record-replay to avoid this event, compat not needed */
tb->time_of_the_day_ns = 0;
}
/*
* tb_offset is only expected to be changed by QEMU so
* there is no need to update it from KVM here
*/
tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
tb->runstate_paused =
runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
}
static void timebase_load(PPCTimebase *tb)
{
CPUState *cpu;
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
int64_t tb_off_adj, tb_off;
unsigned long freq;
if (!first_ppc_cpu->env.tb_env) {
error_report("No timebase object");
return;
}
freq = first_ppc_cpu->env.tb_env->tb_freq;
tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
tb_off = first_ppc_cpu->env.tb_env->tb_offset;
trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
(tb_off_adj - tb_off) / freq);
/* Set new offset to all CPUs */
CPU_FOREACH(cpu) {
PowerPCCPU *pcpu = POWERPC_CPU(cpu);
pcpu->env.tb_env->tb_offset = tb_off_adj;
kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
}
}
void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
RunState state)
{
PPCTimebase *tb = opaque;
if (running) {
timebase_load(tb);
} else {
timebase_save(tb);
}
}
/*
* When migrating a running guest, read the clock just
* before migration, so that the guest clock counts
* during the events between:
*
* * vm_stop()
* *
* * pre_save()
*
* This reduces clock difference on migration from 5s
* to 0.1s (when max_downtime == 5s), because sending the
* final pages of memory (which happens between vm_stop()
* and pre_save()) takes max_downtime.
*/
static int timebase_pre_save(void *opaque)
{
PPCTimebase *tb = opaque;
/* guest_timebase won't be overridden in case of paused guest or savevm */
if (!tb->runstate_paused) {
timebase_save(tb);
}
return 0;
}
const VMStateDescription vmstate_ppc_timebase = {
.name = "timebase",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = timebase_pre_save,
.fields = (const VMStateField []) {
VMSTATE_UINT64(guest_timebase, PPCTimebase),
VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
VMSTATE_END_OF_LIST()
},
};
/* Set up (once) timebase frequency (in Hz) */
void cpu_ppc_tb_init(CPUPPCState *env, uint32_t freq)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env;
tb_env = g_new0(ppc_tb_t, 1);
env->tb_env = tb_env;
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
if (is_book3s_arch2x(env)) {
/* All Book3S 64bit CPUs implement level based DEC logic */
tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
}
/* Create new timer */
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_decr_cb, cpu);
if (env->has_hv_mode && !cpu->vhyp) {
tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_hdecr_cb, cpu);
} else {
tb_env->hdecr_timer = NULL;
}
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
}
void cpu_ppc_tb_reset(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env = env->tb_env;
timer_del(tb_env->decr_timer);
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
tb_env->decr_next = 0;
if (tb_env->hdecr_timer != NULL) {
timer_del(tb_env->hdecr_timer);
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
tb_env->hdecr_next = 0;
}
/*
* There is a bug in Linux 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee at startup,
* it's not ready to handle it...
*/
cpu_ppc_store_decr(env, -1);
cpu_ppc_store_hdecr(env, -1);
cpu_ppc_store_purr(env, 0x0000000000000000ULL);
}
void cpu_ppc_tb_free(CPUPPCState *env)
{
timer_free(env->tb_env->decr_timer);
timer_free(env->tb_env->hdecr_timer);
g_free(env->tb_env);
}
/* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
void cpu_ppc_hdecr_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
assert(env->tb_env->hdecr_timer == NULL);
env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_hdecr_cb, cpu);
}
void cpu_ppc_hdecr_exit(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
timer_free(env->tb_env->hdecr_timer);
env->tb_env->hdecr_timer = NULL;
cpu_ppc_hdecr_lower(cpu);
}
/*****************************************************************************/
/* PowerPC 40x timers */
/* PIT, FIT & WDT */
typedef struct ppc40x_timer_t ppc40x_timer_t;
struct ppc40x_timer_t {
uint64_t pit_reload; /* PIT auto-reload value */
uint64_t fit_next; /* Tick for next FIT interrupt */
QEMUTimer *fit_timer;
uint64_t wdt_next; /* Tick for next WDT interrupt */
QEMUTimer *wdt_timer;
/* 405 have the PIT, 440 have a DECR. */
unsigned int decr_excp;
};
/* Fixed interval timer */
static void cpu_4xx_fit_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
case 0:
next = 1 << 9;
break;
case 1:
next = 1 << 13;
break;
case 2:
next = 1 << 17;
break;
case 3:
next = 1 << 21;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + tb_to_ns_round_up(tb_env->tb_freq, next);
timer_mod(ppc40x_timer->fit_timer, next);
env->spr[SPR_40x_TSR] |= 1 << 26;
if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
}
trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
}
/* Programmable interval timer */
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
{
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
ppc40x_timer = tb_env->opaque;
if (ppc40x_timer->pit_reload <= 1 ||
!((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
(is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
/* Stop PIT */
trace_ppc4xx_pit_stop();
timer_del(tb_env->decr_timer);
} else {
trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (is_excp) {
tb_env->decr_next += ppc40x_timer->pit_reload;
} else {
tb_env->decr_next = ns_to_tb(tb_env->decr_freq, now)
+ ppc40x_timer->pit_reload;
}
next = tb_to_ns_round_up(tb_env->decr_freq, tb_env->decr_next);
timer_mod(tb_env->decr_timer, next);
}
}
static void cpu_4xx_pit_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
env->spr[SPR_40x_TSR] |= 1 << 27;
if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
}
start_stop_pit(env, tb_env, 1);
trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
(int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
ppc40x_timer->pit_reload);
}
/* Watchdog timer */
static void cpu_4xx_wdt_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
case 0:
next = 1 << 17;
break;
case 1:
next = 1 << 21;
break;
case 2:
next = 1 << 25;
break;
case 3:
next = 1 << 29;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + tb_to_ns_round_up(tb_env->decr_freq, next);
trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
case 0x0:
case 0x1:
timer_mod(ppc40x_timer->wdt_timer, next);
ppc40x_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1U << 31;
break;
case 0x2:
timer_mod(ppc40x_timer->wdt_timer, next);
ppc40x_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 30;
if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
}
break;
case 0x3:
env->spr[SPR_40x_TSR] &= ~0x30000000;
env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
case 0x0:
/* No reset */
break;
case 0x1: /* Core reset */
ppc40x_core_reset(cpu);
break;
case 0x2: /* Chip reset */
ppc40x_chip_reset(cpu);
break;
case 0x3: /* System reset */
ppc40x_system_reset(cpu);
break;
}
}
}
void store_40x_pit (CPUPPCState *env, target_ulong val)
{
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
trace_ppc40x_store_pit(val);
ppc40x_timer->pit_reload = val;
start_stop_pit(env, tb_env, 0);
}
target_ulong load_40x_pit (CPUPPCState *env)
{
return cpu_ppc_load_decr(env);
}
void store_40x_tsr(CPUPPCState *env, target_ulong val)
{
PowerPCCPU *cpu = env_archcpu(env);
trace_ppc40x_store_tcr(val);
env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
if (val & 0x80000000) {
ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
}
}
void store_40x_tcr(CPUPPCState *env, target_ulong val)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env;
trace_ppc40x_store_tsr(val);
tb_env = env->tb_env;
env->spr[SPR_40x_TCR] = val & 0xFFC00000;
start_stop_pit(env, tb_env, 1);
cpu_4xx_wdt_cb(cpu);
}
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
{
CPUPPCState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
trace_ppc40x_set_tb_clk(freq);
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* XXX: we should also update all timers */
}
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
unsigned int decr_excp)
{
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
PowerPCCPU *cpu = env_archcpu(env);
trace_ppc40x_timers_init(freq);
tb_env = g_new0(ppc_tb_t, 1);
ppc40x_timer = g_new0(ppc40x_timer_t, 1);
env->tb_env = tb_env;
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
tb_env->opaque = ppc40x_timer;
/* We use decr timer for PIT */
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
ppc40x_timer->fit_timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
ppc40x_timer->wdt_timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
ppc40x_timer->decr_excp = decr_excp;
return &ppc_40x_set_tb_clk;
}
/*****************************************************************************/
/* Embedded PowerPC Device Control Registers */
typedef struct ppc_dcrn_t ppc_dcrn_t;
struct ppc_dcrn_t {
dcr_read_cb dcr_read;
dcr_write_cb dcr_write;
void *opaque;
};
/* XXX: on 460, DCR addresses are 32 bits wide,
* using DCRIPR to get the 22 upper bits of the DCR address
*/
#define DCRN_NB 1024
struct ppc_dcr_t {
ppc_dcrn_t dcrn[DCRN_NB];
int (*read_error)(int dcrn);
int (*write_error)(int dcrn);
};
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_read == NULL)
goto error;
*valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
trace_ppc_dcr_read(dcrn, *valp);
return 0;
error:
if (dcr_env->read_error != NULL)
return (*dcr_env->read_error)(dcrn);
return -1;
}
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_write == NULL)
goto error;
trace_ppc_dcr_write(dcrn, val);
(*dcr->dcr_write)(dcr->opaque, dcrn, val);
return 0;
error:
if (dcr_env->write_error != NULL)
return (*dcr_env->write_error)(dcrn);
return -1;
}
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
dcr_read_cb dcr_read, dcr_write_cb dcr_write)
{
ppc_dcr_t *dcr_env;
ppc_dcrn_t *dcr;
dcr_env = env->dcr_env;
if (dcr_env == NULL)
return -1;
if (dcrn < 0 || dcrn >= DCRN_NB)
return -1;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->opaque != NULL ||
dcr->dcr_read != NULL ||
dcr->dcr_write != NULL)
return -1;
dcr->opaque = opaque;
dcr->dcr_read = dcr_read;
dcr->dcr_write = dcr_write;
return 0;
}
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
int (*write_error)(int dcrn))
{
ppc_dcr_t *dcr_env;
dcr_env = g_new0(ppc_dcr_t, 1);
dcr_env->read_error = read_error;
dcr_env->write_error = write_error;
env->dcr_env = dcr_env;
return 0;
}
/*****************************************************************************/
int ppc_cpu_pir(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
return env->spr_cb[SPR_PIR].default_value;
}
int ppc_cpu_tir(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
return env->spr_cb[SPR_TIR].default_value;
}
PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
if (ppc_cpu_pir(cpu) == pir) {
return cpu;
}
}
return NULL;
}
void ppc_irq_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_input_state = 0;
if (kvm_enabled()) {
kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
}
}