qemu/hw/ppc/spapr_nvdimm.c
Greg Kurz 451c690589 spapr: Add a return value to spapr_nvdimm_validate()
As recommended in "qapi/error.h", return true on success and false on
failure. This allows to reduce error propagation overhead in the callers.

Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <20200914123505.612812-13-groug@kaod.org>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2020-10-09 10:15:06 +11:00

502 lines
15 KiB
C

/*
* QEMU PAPR Storage Class Memory Interfaces
*
* Copyright (c) 2019-2020, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/ppc/spapr_drc.h"
#include "hw/ppc/spapr_nvdimm.h"
#include "hw/mem/nvdimm.h"
#include "qemu/nvdimm-utils.h"
#include "qemu/option.h"
#include "hw/ppc/fdt.h"
#include "qemu/range.h"
#include "sysemu/sysemu.h"
#include "hw/ppc/spapr_numa.h"
bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm,
uint64_t size, Error **errp)
{
const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
const MachineState *ms = MACHINE(hotplug_dev);
const char *nvdimm_opt = qemu_opt_get(qemu_get_machine_opts(), "nvdimm");
g_autofree char *uuidstr = NULL;
QemuUUID uuid;
int ret;
if (!mc->nvdimm_supported) {
error_setg(errp, "NVDIMM hotplug not supported for this machine");
return false;
}
/*
* NVDIMM support went live in 5.1 without considering that, in
* other archs, the user needs to enable NVDIMM support with the
* 'nvdimm' machine option and the default behavior is NVDIMM
* support disabled. It is too late to roll back to the standard
* behavior without breaking 5.1 guests. What we can do is to
* ensure that, if the user sets nvdimm=off, we error out
* regardless of being 5.1 or newer.
*/
if (!ms->nvdimms_state->is_enabled && nvdimm_opt) {
error_setg(errp, "nvdimm device found but 'nvdimm=off' was set");
return false;
}
if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP,
&error_abort) == 0) {
error_setg(errp, "PAPR requires NVDIMM devices to have label-size set");
return false;
}
if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)"
" to be a multiple of %" PRIu64 "MB",
SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB);
return false;
}
uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP,
&error_abort);
ret = qemu_uuid_parse(uuidstr, &uuid);
g_assert(!ret);
if (qemu_uuid_is_null(&uuid)) {
error_setg(errp, "NVDIMM device requires the uuid to be set");
return false;
}
return true;
}
void spapr_add_nvdimm(DeviceState *dev, uint64_t slot, Error **errp)
{
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
g_assert(drc);
if (!spapr_drc_attach(drc, dev, errp)) {
return;
}
if (hotplugged) {
spapr_hotplug_req_add_by_index(drc);
}
}
void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
int i;
for (i = 0; i < machine->ram_slots; i++) {
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
}
}
static int spapr_dt_nvdimm(SpaprMachineState *spapr, void *fdt,
int parent_offset, NVDIMMDevice *nvdimm)
{
int child_offset;
char *buf;
SpaprDrc *drc;
uint32_t drc_idx;
uint32_t node = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_NODE_PROP,
&error_abort);
uint64_t slot = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SLOT_PROP,
&error_abort);
uint64_t lsize = nvdimm->label_size;
uint64_t size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
NULL);
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot);
g_assert(drc);
drc_idx = spapr_drc_index(drc);
buf = g_strdup_printf("ibm,pmemory@%x", drc_idx);
child_offset = fdt_add_subnode(fdt, parent_offset, buf);
g_free(buf);
_FDT(child_offset);
_FDT((fdt_setprop_cell(fdt, child_offset, "reg", drc_idx)));
_FDT((fdt_setprop_string(fdt, child_offset, "compatible", "ibm,pmemory")));
_FDT((fdt_setprop_string(fdt, child_offset, "device_type", "ibm,pmemory")));
spapr_numa_write_associativity_dt(spapr, fdt, child_offset, node);
buf = qemu_uuid_unparse_strdup(&nvdimm->uuid);
_FDT((fdt_setprop_string(fdt, child_offset, "ibm,unit-guid", buf)));
g_free(buf);
_FDT((fdt_setprop_cell(fdt, child_offset, "ibm,my-drc-index", drc_idx)));
_FDT((fdt_setprop_u64(fdt, child_offset, "ibm,block-size",
SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
_FDT((fdt_setprop_u64(fdt, child_offset, "ibm,number-of-blocks",
size / SPAPR_MINIMUM_SCM_BLOCK_SIZE)));
_FDT((fdt_setprop_cell(fdt, child_offset, "ibm,metadata-size", lsize)));
_FDT((fdt_setprop_string(fdt, child_offset, "ibm,pmem-application",
"operating-system")));
_FDT(fdt_setprop(fdt, child_offset, "ibm,cache-flush-required", NULL, 0));
return child_offset;
}
int spapr_pmem_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
NVDIMMDevice *nvdimm = NVDIMM(drc->dev);
*fdt_start_offset = spapr_dt_nvdimm(spapr, fdt, 0, nvdimm);
return 0;
}
void spapr_dt_persistent_memory(SpaprMachineState *spapr, void *fdt)
{
int offset = fdt_subnode_offset(fdt, 0, "persistent-memory");
GSList *iter, *nvdimms = nvdimm_get_device_list();
if (offset < 0) {
offset = fdt_add_subnode(fdt, 0, "persistent-memory");
_FDT(offset);
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 0x0)));
_FDT((fdt_setprop_string(fdt, offset, "device_type",
"ibm,persistent-memory")));
}
/* Create DT entries for cold plugged NVDIMM devices */
for (iter = nvdimms; iter; iter = iter->next) {
NVDIMMDevice *nvdimm = iter->data;
spapr_dt_nvdimm(spapr, fdt, offset, nvdimm);
}
g_slist_free(nvdimms);
return;
}
static target_ulong h_scm_read_metadata(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t offset = args[1];
uint64_t len = args[2];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
NVDIMMClass *ddc;
uint64_t data = 0;
uint8_t buf[8] = { 0 };
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
if (len != 1 && len != 2 &&
len != 4 && len != 8) {
return H_P3;
}
nvdimm = NVDIMM(drc->dev);
if ((offset + len < offset) ||
(nvdimm->label_size < len + offset)) {
return H_P2;
}
ddc = NVDIMM_GET_CLASS(nvdimm);
ddc->read_label_data(nvdimm, buf, len, offset);
switch (len) {
case 1:
data = ldub_p(buf);
break;
case 2:
data = lduw_be_p(buf);
break;
case 4:
data = ldl_be_p(buf);
break;
case 8:
data = ldq_be_p(buf);
break;
default:
g_assert_not_reached();
}
args[0] = data;
return H_SUCCESS;
}
static target_ulong h_scm_write_metadata(PowerPCCPU *cpu,
SpaprMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t offset = args[1];
uint64_t data = args[2];
uint64_t len = args[3];
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
NVDIMMClass *ddc;
uint8_t buf[8] = { 0 };
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
if (len != 1 && len != 2 &&
len != 4 && len != 8) {
return H_P4;
}
nvdimm = NVDIMM(drc->dev);
if ((offset + len < offset) ||
(nvdimm->label_size < len + offset)) {
return H_P2;
}
switch (len) {
case 1:
if (data & 0xffffffffffffff00) {
return H_P2;
}
stb_p(buf, data);
break;
case 2:
if (data & 0xffffffffffff0000) {
return H_P2;
}
stw_be_p(buf, data);
break;
case 4:
if (data & 0xffffffff00000000) {
return H_P2;
}
stl_be_p(buf, data);
break;
case 8:
stq_be_p(buf, data);
break;
default:
g_assert_not_reached();
}
ddc = NVDIMM_GET_CLASS(nvdimm);
ddc->write_label_data(nvdimm, buf, len, offset);
return H_SUCCESS;
}
static target_ulong h_scm_bind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t starting_idx = args[1];
uint64_t no_of_scm_blocks_to_bind = args[2];
uint64_t target_logical_mem_addr = args[3];
uint64_t continue_token = args[4];
uint64_t size;
uint64_t total_no_of_scm_blocks;
SpaprDrc *drc = spapr_drc_by_index(drc_index);
hwaddr addr;
NVDIMMDevice *nvdimm;
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
/*
* Currently continue token should be zero qemu has already bound
* everything and this hcall doesnt return H_BUSY.
*/
if (continue_token > 0) {
return H_P5;
}
/* Currently qemu assigns the address. */
if (target_logical_mem_addr != 0xffffffffffffffff) {
return H_OVERLAP;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_uint(OBJECT(nvdimm),
PC_DIMM_SIZE_PROP, &error_abort);
total_no_of_scm_blocks = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
if (starting_idx > total_no_of_scm_blocks) {
return H_P2;
}
if (((starting_idx + no_of_scm_blocks_to_bind) < starting_idx) ||
((starting_idx + no_of_scm_blocks_to_bind) > total_no_of_scm_blocks)) {
return H_P3;
}
addr = object_property_get_uint(OBJECT(nvdimm),
PC_DIMM_ADDR_PROP, &error_abort);
addr += starting_idx * SPAPR_MINIMUM_SCM_BLOCK_SIZE;
/* Already bound, Return target logical address in R5 */
args[1] = addr;
args[2] = no_of_scm_blocks_to_bind;
return H_SUCCESS;
}
static target_ulong h_scm_unbind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint32_t drc_index = args[0];
uint64_t starting_scm_logical_addr = args[1];
uint64_t no_of_scm_blocks_to_unbind = args[2];
uint64_t continue_token = args[3];
uint64_t size_to_unbind;
Range blockrange = range_empty;
Range nvdimmrange = range_empty;
SpaprDrc *drc = spapr_drc_by_index(drc_index);
NVDIMMDevice *nvdimm;
uint64_t size, addr;
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_PARAMETER;
}
/* continue_token should be zero as this hcall doesn't return H_BUSY. */
if (continue_token > 0) {
return H_P4;
}
/* Check if starting_scm_logical_addr is block aligned */
if (!QEMU_IS_ALIGNED(starting_scm_logical_addr,
SPAPR_MINIMUM_SCM_BLOCK_SIZE)) {
return H_P2;
}
size_to_unbind = no_of_scm_blocks_to_unbind * SPAPR_MINIMUM_SCM_BLOCK_SIZE;
if (no_of_scm_blocks_to_unbind == 0 || no_of_scm_blocks_to_unbind !=
size_to_unbind / SPAPR_MINIMUM_SCM_BLOCK_SIZE) {
return H_P3;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
addr = object_property_get_int(OBJECT(nvdimm), PC_DIMM_ADDR_PROP,
&error_abort);
range_init_nofail(&nvdimmrange, addr, size);
range_init_nofail(&blockrange, starting_scm_logical_addr, size_to_unbind);
if (!range_contains_range(&nvdimmrange, &blockrange)) {
return H_P3;
}
args[1] = no_of_scm_blocks_to_unbind;
/* let unplug take care of actual unbind */
return H_SUCCESS;
}
#define H_UNBIND_SCOPE_ALL 0x1
#define H_UNBIND_SCOPE_DRC 0x2
static target_ulong h_scm_unbind_all(PowerPCCPU *cpu, SpaprMachineState *spapr,
target_ulong opcode, target_ulong *args)
{
uint64_t target_scope = args[0];
uint32_t drc_index = args[1];
uint64_t continue_token = args[2];
NVDIMMDevice *nvdimm;
uint64_t size;
uint64_t no_of_scm_blocks_unbound = 0;
/* continue_token should be zero as this hcall doesn't return H_BUSY. */
if (continue_token > 0) {
return H_P4;
}
if (target_scope == H_UNBIND_SCOPE_DRC) {
SpaprDrc *drc = spapr_drc_by_index(drc_index);
if (!drc || !drc->dev ||
spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) {
return H_P2;
}
nvdimm = NVDIMM(drc->dev);
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
no_of_scm_blocks_unbound = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
} else if (target_scope == H_UNBIND_SCOPE_ALL) {
GSList *list, *nvdimms;
nvdimms = nvdimm_get_device_list();
for (list = nvdimms; list; list = list->next) {
nvdimm = list->data;
size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP,
&error_abort);
no_of_scm_blocks_unbound += size / SPAPR_MINIMUM_SCM_BLOCK_SIZE;
}
g_slist_free(nvdimms);
} else {
return H_PARAMETER;
}
args[1] = no_of_scm_blocks_unbound;
/* let unplug take care of actual unbind */
return H_SUCCESS;
}
static void spapr_scm_register_types(void)
{
/* qemu/scm specific hcalls */
spapr_register_hypercall(H_SCM_READ_METADATA, h_scm_read_metadata);
spapr_register_hypercall(H_SCM_WRITE_METADATA, h_scm_write_metadata);
spapr_register_hypercall(H_SCM_BIND_MEM, h_scm_bind_mem);
spapr_register_hypercall(H_SCM_UNBIND_MEM, h_scm_unbind_mem);
spapr_register_hypercall(H_SCM_UNBIND_ALL, h_scm_unbind_all);
}
type_init(spapr_scm_register_types)