qemu/hw/i386/acpi-build.c
Igor Mammedov 30bd0cf465 pc: acpi: memhp: prepare context in SSDT for moving memhp DSDT code
Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2016-01-08 16:01:37 +02:00

1986 lines
68 KiB
C

/* Support for generating ACPI tables and passing them to Guests
*
* Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
* Copyright (C) 2006 Fabrice Bellard
* Copyright (C) 2013 Red Hat Inc
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "acpi-build.h"
#include <stddef.h>
#include <glib.h>
#include "qemu-common.h"
#include "qemu/bitmap.h"
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "hw/pci/pci.h"
#include "qom/cpu.h"
#include "hw/i386/pc.h"
#include "target-i386/cpu.h"
#include "hw/timer/hpet.h"
#include "hw/acpi/acpi-defs.h"
#include "hw/acpi/acpi.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/loader.h"
#include "hw/isa/isa.h"
#include "hw/acpi/memory_hotplug.h"
#include "hw/mem/nvdimm.h"
#include "sysemu/tpm.h"
#include "hw/acpi/tpm.h"
#include "sysemu/tpm_backend.h"
#include "hw/timer/mc146818rtc_regs.h"
/* Supported chipsets: */
#include "hw/acpi/piix4.h"
#include "hw/acpi/pcihp.h"
#include "hw/i386/ich9.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci-host/q35.h"
#include "hw/i386/intel_iommu.h"
#include "hw/i386/q35-acpi-dsdt.hex"
#include "hw/i386/acpi-dsdt.hex"
#include "hw/acpi/aml-build.h"
#include "qapi/qmp/qint.h"
#include "qom/qom-qobject.h"
/* These are used to size the ACPI tables for -M pc-i440fx-1.7 and
* -M pc-i440fx-2.0. Even if the actual amount of AML generated grows
* a little bit, there should be plenty of free space since the DSDT
* shrunk by ~1.5k between QEMU 2.0 and QEMU 2.1.
*/
#define ACPI_BUILD_LEGACY_CPU_AML_SIZE 97
#define ACPI_BUILD_ALIGN_SIZE 0x1000
#define ACPI_BUILD_TABLE_SIZE 0x20000
/* #define DEBUG_ACPI_BUILD */
#ifdef DEBUG_ACPI_BUILD
#define ACPI_BUILD_DPRINTF(fmt, ...) \
do {printf("ACPI_BUILD: " fmt, ## __VA_ARGS__); } while (0)
#else
#define ACPI_BUILD_DPRINTF(fmt, ...)
#endif
typedef struct AcpiCpuInfo {
DECLARE_BITMAP(found_cpus, ACPI_CPU_HOTPLUG_ID_LIMIT);
} AcpiCpuInfo;
typedef struct AcpiMcfgInfo {
uint64_t mcfg_base;
uint32_t mcfg_size;
} AcpiMcfgInfo;
typedef struct AcpiPmInfo {
bool s3_disabled;
bool s4_disabled;
bool pcihp_bridge_en;
uint8_t s4_val;
uint16_t sci_int;
uint8_t acpi_enable_cmd;
uint8_t acpi_disable_cmd;
uint32_t gpe0_blk;
uint32_t gpe0_blk_len;
uint32_t io_base;
uint16_t cpu_hp_io_base;
uint16_t cpu_hp_io_len;
uint16_t mem_hp_io_base;
uint16_t mem_hp_io_len;
uint16_t pcihp_io_base;
uint16_t pcihp_io_len;
} AcpiPmInfo;
typedef struct AcpiMiscInfo {
bool has_hpet;
TPMVersion tpm_version;
const unsigned char *dsdt_code;
unsigned dsdt_size;
uint16_t pvpanic_port;
uint16_t applesmc_io_base;
} AcpiMiscInfo;
typedef struct AcpiBuildPciBusHotplugState {
GArray *device_table;
GArray *notify_table;
struct AcpiBuildPciBusHotplugState *parent;
bool pcihp_bridge_en;
} AcpiBuildPciBusHotplugState;
static void acpi_get_dsdt(AcpiMiscInfo *info)
{
Object *piix = piix4_pm_find();
Object *lpc = ich9_lpc_find();
assert(!!piix != !!lpc);
if (piix) {
info->dsdt_code = AcpiDsdtAmlCode;
info->dsdt_size = sizeof AcpiDsdtAmlCode;
}
if (lpc) {
info->dsdt_code = Q35AcpiDsdtAmlCode;
info->dsdt_size = sizeof Q35AcpiDsdtAmlCode;
}
}
static
int acpi_add_cpu_info(Object *o, void *opaque)
{
AcpiCpuInfo *cpu = opaque;
uint64_t apic_id;
if (object_dynamic_cast(o, TYPE_CPU)) {
apic_id = object_property_get_int(o, "apic-id", NULL);
assert(apic_id < ACPI_CPU_HOTPLUG_ID_LIMIT);
set_bit(apic_id, cpu->found_cpus);
}
object_child_foreach(o, acpi_add_cpu_info, opaque);
return 0;
}
static void acpi_get_cpu_info(AcpiCpuInfo *cpu)
{
Object *root = object_get_root();
memset(cpu->found_cpus, 0, sizeof cpu->found_cpus);
object_child_foreach(root, acpi_add_cpu_info, cpu);
}
static void acpi_get_pm_info(AcpiPmInfo *pm)
{
Object *piix = piix4_pm_find();
Object *lpc = ich9_lpc_find();
Object *obj = NULL;
QObject *o;
pm->cpu_hp_io_base = 0;
pm->pcihp_io_base = 0;
pm->pcihp_io_len = 0;
if (piix) {
obj = piix;
pm->cpu_hp_io_base = PIIX4_CPU_HOTPLUG_IO_BASE;
pm->pcihp_io_base =
object_property_get_int(obj, ACPI_PCIHP_IO_BASE_PROP, NULL);
pm->pcihp_io_len =
object_property_get_int(obj, ACPI_PCIHP_IO_LEN_PROP, NULL);
}
if (lpc) {
obj = lpc;
pm->cpu_hp_io_base = ICH9_CPU_HOTPLUG_IO_BASE;
}
assert(obj);
pm->cpu_hp_io_len = ACPI_GPE_PROC_LEN;
pm->mem_hp_io_base = ACPI_MEMORY_HOTPLUG_BASE;
pm->mem_hp_io_len = ACPI_MEMORY_HOTPLUG_IO_LEN;
/* Fill in optional s3/s4 related properties */
o = object_property_get_qobject(obj, ACPI_PM_PROP_S3_DISABLED, NULL);
if (o) {
pm->s3_disabled = qint_get_int(qobject_to_qint(o));
} else {
pm->s3_disabled = false;
}
qobject_decref(o);
o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_DISABLED, NULL);
if (o) {
pm->s4_disabled = qint_get_int(qobject_to_qint(o));
} else {
pm->s4_disabled = false;
}
qobject_decref(o);
o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_VAL, NULL);
if (o) {
pm->s4_val = qint_get_int(qobject_to_qint(o));
} else {
pm->s4_val = false;
}
qobject_decref(o);
/* Fill in mandatory properties */
pm->sci_int = object_property_get_int(obj, ACPI_PM_PROP_SCI_INT, NULL);
pm->acpi_enable_cmd = object_property_get_int(obj,
ACPI_PM_PROP_ACPI_ENABLE_CMD,
NULL);
pm->acpi_disable_cmd = object_property_get_int(obj,
ACPI_PM_PROP_ACPI_DISABLE_CMD,
NULL);
pm->io_base = object_property_get_int(obj, ACPI_PM_PROP_PM_IO_BASE,
NULL);
pm->gpe0_blk = object_property_get_int(obj, ACPI_PM_PROP_GPE0_BLK,
NULL);
pm->gpe0_blk_len = object_property_get_int(obj, ACPI_PM_PROP_GPE0_BLK_LEN,
NULL);
pm->pcihp_bridge_en =
object_property_get_bool(obj, "acpi-pci-hotplug-with-bridge-support",
NULL);
}
static void acpi_get_misc_info(AcpiMiscInfo *info)
{
info->has_hpet = hpet_find();
info->tpm_version = tpm_get_version();
info->pvpanic_port = pvpanic_port();
info->applesmc_io_base = applesmc_port();
}
/*
* Because of the PXB hosts we cannot simply query TYPE_PCI_HOST_BRIDGE.
* On i386 arch we only have two pci hosts, so we can look only for them.
*/
static Object *acpi_get_i386_pci_host(void)
{
PCIHostState *host;
host = OBJECT_CHECK(PCIHostState,
object_resolve_path("/machine/i440fx", NULL),
TYPE_PCI_HOST_BRIDGE);
if (!host) {
host = OBJECT_CHECK(PCIHostState,
object_resolve_path("/machine/q35", NULL),
TYPE_PCI_HOST_BRIDGE);
}
return OBJECT(host);
}
static void acpi_get_pci_info(PcPciInfo *info)
{
Object *pci_host;
pci_host = acpi_get_i386_pci_host();
g_assert(pci_host);
info->w32.begin = object_property_get_int(pci_host,
PCI_HOST_PROP_PCI_HOLE_START,
NULL);
info->w32.end = object_property_get_int(pci_host,
PCI_HOST_PROP_PCI_HOLE_END,
NULL);
info->w64.begin = object_property_get_int(pci_host,
PCI_HOST_PROP_PCI_HOLE64_START,
NULL);
info->w64.end = object_property_get_int(pci_host,
PCI_HOST_PROP_PCI_HOLE64_END,
NULL);
}
#define ACPI_PORT_SMI_CMD 0x00b2 /* TODO: this is APM_CNT_IOPORT */
static void acpi_align_size(GArray *blob, unsigned align)
{
/* Align size to multiple of given size. This reduces the chance
* we need to change size in the future (breaking cross version migration).
*/
g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align));
}
/* FACS */
static void
build_facs(GArray *table_data, GArray *linker, PcGuestInfo *guest_info)
{
AcpiFacsDescriptorRev1 *facs = acpi_data_push(table_data, sizeof *facs);
memcpy(&facs->signature, "FACS", 4);
facs->length = cpu_to_le32(sizeof(*facs));
}
/* Load chipset information in FADT */
static void fadt_setup(AcpiFadtDescriptorRev1 *fadt, AcpiPmInfo *pm)
{
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(pm->sci_int);
fadt->smi_cmd = cpu_to_le32(ACPI_PORT_SMI_CMD);
fadt->acpi_enable = pm->acpi_enable_cmd;
fadt->acpi_disable = pm->acpi_disable_cmd;
/* EVT, CNT, TMR offset matches hw/acpi/core.c */
fadt->pm1a_evt_blk = cpu_to_le32(pm->io_base);
fadt->pm1a_cnt_blk = cpu_to_le32(pm->io_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(pm->io_base + 0x08);
fadt->gpe0_blk = cpu_to_le32(pm->gpe0_blk);
/* EVT, CNT, TMR length matches hw/acpi/core.c */
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->gpe0_blk_len = pm->gpe0_blk_len;
fadt->plvl2_lat = cpu_to_le16(0xfff); /* C2 state not supported */
fadt->plvl3_lat = cpu_to_le16(0xfff); /* C3 state not supported */
fadt->flags = cpu_to_le32((1 << ACPI_FADT_F_WBINVD) |
(1 << ACPI_FADT_F_PROC_C1) |
(1 << ACPI_FADT_F_SLP_BUTTON) |
(1 << ACPI_FADT_F_RTC_S4));
fadt->flags |= cpu_to_le32(1 << ACPI_FADT_F_USE_PLATFORM_CLOCK);
/* APIC destination mode ("Flat Logical") has an upper limit of 8 CPUs
* For more than 8 CPUs, "Clustered Logical" mode has to be used
*/
if (max_cpus > 8) {
fadt->flags |= cpu_to_le32(1 << ACPI_FADT_F_FORCE_APIC_CLUSTER_MODEL);
}
fadt->century = RTC_CENTURY;
}
/* FADT */
static void
build_fadt(GArray *table_data, GArray *linker, AcpiPmInfo *pm,
unsigned facs, unsigned dsdt)
{
AcpiFadtDescriptorRev1 *fadt = acpi_data_push(table_data, sizeof(*fadt));
fadt->firmware_ctrl = cpu_to_le32(facs);
/* FACS address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_FILE,
table_data, &fadt->firmware_ctrl,
sizeof fadt->firmware_ctrl);
fadt->dsdt = cpu_to_le32(dsdt);
/* DSDT address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_FILE,
table_data, &fadt->dsdt,
sizeof fadt->dsdt);
fadt_setup(fadt, pm);
build_header(linker, table_data,
(void *)fadt, "FACP", sizeof(*fadt), 1, NULL);
}
static void
build_madt(GArray *table_data, GArray *linker, AcpiCpuInfo *cpu,
PcGuestInfo *guest_info)
{
int madt_start = table_data->len;
AcpiMultipleApicTable *madt;
AcpiMadtIoApic *io_apic;
AcpiMadtIntsrcovr *intsrcovr;
AcpiMadtLocalNmi *local_nmi;
int i;
madt = acpi_data_push(table_data, sizeof *madt);
madt->local_apic_address = cpu_to_le32(APIC_DEFAULT_ADDRESS);
madt->flags = cpu_to_le32(1);
for (i = 0; i < guest_info->apic_id_limit; i++) {
AcpiMadtProcessorApic *apic = acpi_data_push(table_data, sizeof *apic);
apic->type = ACPI_APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = i;
apic->local_apic_id = i;
if (test_bit(i, cpu->found_cpus)) {
apic->flags = cpu_to_le32(1);
} else {
apic->flags = cpu_to_le32(0);
}
}
io_apic = acpi_data_push(table_data, sizeof *io_apic);
io_apic->type = ACPI_APIC_IO;
io_apic->length = sizeof(*io_apic);
#define ACPI_BUILD_IOAPIC_ID 0x0
io_apic->io_apic_id = ACPI_BUILD_IOAPIC_ID;
io_apic->address = cpu_to_le32(IO_APIC_DEFAULT_ADDRESS);
io_apic->interrupt = cpu_to_le32(0);
if (guest_info->apic_xrupt_override) {
intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr);
intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = 0;
intsrcovr->gsi = cpu_to_le32(2);
intsrcovr->flags = cpu_to_le16(0); /* conforms to bus specifications */
}
for (i = 1; i < 16; i++) {
#define ACPI_BUILD_PCI_IRQS ((1<<5) | (1<<9) | (1<<10) | (1<<11))
if (!(ACPI_BUILD_PCI_IRQS & (1 << i))) {
/* No need for a INT source override structure. */
continue;
}
intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr);
intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
intsrcovr->source = i;
intsrcovr->gsi = cpu_to_le32(i);
intsrcovr->flags = cpu_to_le16(0xd); /* active high, level triggered */
}
local_nmi = acpi_data_push(table_data, sizeof *local_nmi);
local_nmi->type = ACPI_APIC_LOCAL_NMI;
local_nmi->length = sizeof(*local_nmi);
local_nmi->processor_id = 0xff; /* all processors */
local_nmi->flags = cpu_to_le16(0);
local_nmi->lint = 1; /* ACPI_LINT1 */
build_header(linker, table_data,
(void *)(table_data->data + madt_start), "APIC",
table_data->len - madt_start, 1, NULL);
}
/* Assign BSEL property to all buses. In the future, this can be changed
* to only assign to buses that support hotplug.
*/
static void *acpi_set_bsel(PCIBus *bus, void *opaque)
{
unsigned *bsel_alloc = opaque;
unsigned *bus_bsel;
if (qbus_is_hotpluggable(BUS(bus))) {
bus_bsel = g_malloc(sizeof *bus_bsel);
*bus_bsel = (*bsel_alloc)++;
object_property_add_uint32_ptr(OBJECT(bus), ACPI_PCIHP_PROP_BSEL,
bus_bsel, NULL);
}
return bsel_alloc;
}
static void acpi_set_pci_info(void)
{
PCIBus *bus = find_i440fx(); /* TODO: Q35 support */
unsigned bsel_alloc = 0;
if (bus) {
/* Scan all PCI buses. Set property to enable acpi based hotplug. */
pci_for_each_bus_depth_first(bus, acpi_set_bsel, NULL, &bsel_alloc);
}
}
static void build_append_pcihp_notify_entry(Aml *method, int slot)
{
Aml *if_ctx;
int32_t devfn = PCI_DEVFN(slot, 0);
if_ctx = aml_if(aml_and(aml_arg(0), aml_int(0x1U << slot), NULL));
aml_append(if_ctx, aml_notify(aml_name("S%.02X", devfn), aml_arg(1)));
aml_append(method, if_ctx);
}
static void build_append_pci_bus_devices(Aml *parent_scope, PCIBus *bus,
bool pcihp_bridge_en)
{
Aml *dev, *notify_method, *method;
QObject *bsel;
PCIBus *sec;
int i;
bsel = object_property_get_qobject(OBJECT(bus), ACPI_PCIHP_PROP_BSEL, NULL);
if (bsel) {
int64_t bsel_val = qint_get_int(qobject_to_qint(bsel));
aml_append(parent_scope, aml_name_decl("BSEL", aml_int(bsel_val)));
notify_method = aml_method("DVNT", 2, AML_NOTSERIALIZED);
}
for (i = 0; i < ARRAY_SIZE(bus->devices); i += PCI_FUNC_MAX) {
DeviceClass *dc;
PCIDeviceClass *pc;
PCIDevice *pdev = bus->devices[i];
int slot = PCI_SLOT(i);
bool hotplug_enabled_dev;
bool bridge_in_acpi;
if (!pdev) {
if (bsel) { /* add hotplug slots for non present devices */
dev = aml_device("S%.02X", PCI_DEVFN(slot, 0));
aml_append(dev, aml_name_decl("_SUN", aml_int(slot)));
aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16)));
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN"))
);
aml_append(dev, method);
aml_append(parent_scope, dev);
build_append_pcihp_notify_entry(notify_method, slot);
}
continue;
}
pc = PCI_DEVICE_GET_CLASS(pdev);
dc = DEVICE_GET_CLASS(pdev);
/* When hotplug for bridges is enabled, bridges are
* described in ACPI separately (see build_pci_bus_end).
* In this case they aren't themselves hot-pluggable.
* Hotplugged bridges *are* hot-pluggable.
*/
bridge_in_acpi = pc->is_bridge && pcihp_bridge_en &&
!DEVICE(pdev)->hotplugged;
hotplug_enabled_dev = bsel && dc->hotpluggable && !bridge_in_acpi;
if (pc->class_id == PCI_CLASS_BRIDGE_ISA) {
continue;
}
/* start to compose PCI slot descriptor */
dev = aml_device("S%.02X", PCI_DEVFN(slot, 0));
aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16)));
if (pc->class_id == PCI_CLASS_DISPLAY_VGA) {
/* add VGA specific AML methods */
int s3d;
if (object_dynamic_cast(OBJECT(pdev), "qxl-vga")) {
s3d = 3;
} else {
s3d = 0;
}
method = aml_method("_S1D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0)));
aml_append(dev, method);
method = aml_method("_S2D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(0)));
aml_append(dev, method);
method = aml_method("_S3D", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(s3d)));
aml_append(dev, method);
} else if (hotplug_enabled_dev) {
/* add _SUN/_EJ0 to make slot hotpluggable */
aml_append(dev, aml_name_decl("_SUN", aml_int(slot)));
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN"))
);
aml_append(dev, method);
if (bsel) {
build_append_pcihp_notify_entry(notify_method, slot);
}
} else if (bridge_in_acpi) {
/*
* device is coldplugged bridge,
* add child device descriptions into its scope
*/
PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
build_append_pci_bus_devices(dev, sec_bus, pcihp_bridge_en);
}
/* slot descriptor has been composed, add it into parent context */
aml_append(parent_scope, dev);
}
if (bsel) {
aml_append(parent_scope, notify_method);
}
/* Append PCNT method to notify about events on local and child buses.
* Add unconditionally for root since DSDT expects it.
*/
method = aml_method("PCNT", 0, AML_NOTSERIALIZED);
/* If bus supports hotplug select it and notify about local events */
if (bsel) {
int64_t bsel_val = qint_get_int(qobject_to_qint(bsel));
aml_append(method, aml_store(aml_int(bsel_val), aml_name("BNUM")));
aml_append(method,
aml_call2("DVNT", aml_name("PCIU"), aml_int(1) /* Device Check */)
);
aml_append(method,
aml_call2("DVNT", aml_name("PCID"), aml_int(3)/* Eject Request */)
);
}
/* Notify about child bus events in any case */
if (pcihp_bridge_en) {
QLIST_FOREACH(sec, &bus->child, sibling) {
int32_t devfn = sec->parent_dev->devfn;
aml_append(method, aml_name("^S%.02X.PCNT", devfn));
}
}
aml_append(parent_scope, method);
qobject_decref(bsel);
}
/*
* initialize_route - Initialize the interrupt routing rule
* through a specific LINK:
* if (lnk_idx == idx)
* route using link 'link_name'
*/
static Aml *initialize_route(Aml *route, const char *link_name,
Aml *lnk_idx, int idx)
{
Aml *if_ctx = aml_if(aml_equal(lnk_idx, aml_int(idx)));
Aml *pkg = aml_package(4);
aml_append(pkg, aml_int(0));
aml_append(pkg, aml_int(0));
aml_append(pkg, aml_name("%s", link_name));
aml_append(pkg, aml_int(0));
aml_append(if_ctx, aml_store(pkg, route));
return if_ctx;
}
/*
* build_prt - Define interrupt rounting rules
*
* Returns an array of 128 routes, one for each device,
* based on device location.
* The main goal is to equaly distribute the interrupts
* over the 4 existing ACPI links (works only for i440fx).
* The hash function is (slot + pin) & 3 -> "LNK[D|A|B|C]".
*
*/
static Aml *build_prt(void)
{
Aml *method, *while_ctx, *pin, *res;
method = aml_method("_PRT", 0, AML_NOTSERIALIZED);
res = aml_local(0);
pin = aml_local(1);
aml_append(method, aml_store(aml_package(128), res));
aml_append(method, aml_store(aml_int(0), pin));
/* while (pin < 128) */
while_ctx = aml_while(aml_lless(pin, aml_int(128)));
{
Aml *slot = aml_local(2);
Aml *lnk_idx = aml_local(3);
Aml *route = aml_local(4);
/* slot = pin >> 2 */
aml_append(while_ctx,
aml_store(aml_shiftright(pin, aml_int(2), NULL), slot));
/* lnk_idx = (slot + pin) & 3 */
aml_append(while_ctx,
aml_store(aml_and(aml_add(pin, slot, NULL), aml_int(3), NULL),
lnk_idx));
/* route[2] = "LNK[D|A|B|C]", selection based on pin % 3 */
aml_append(while_ctx, initialize_route(route, "LNKD", lnk_idx, 0));
aml_append(while_ctx, initialize_route(route, "LNKA", lnk_idx, 1));
aml_append(while_ctx, initialize_route(route, "LNKB", lnk_idx, 2));
aml_append(while_ctx, initialize_route(route, "LNKC", lnk_idx, 3));
/* route[0] = 0x[slot]FFFF */
aml_append(while_ctx,
aml_store(aml_or(aml_shiftleft(slot, aml_int(16)), aml_int(0xFFFF),
NULL),
aml_index(route, aml_int(0))));
/* route[1] = pin & 3 */
aml_append(while_ctx,
aml_store(aml_and(pin, aml_int(3), NULL),
aml_index(route, aml_int(1))));
/* res[pin] = route */
aml_append(while_ctx, aml_store(route, aml_index(res, pin)));
/* pin++ */
aml_append(while_ctx, aml_increment(pin));
}
aml_append(method, while_ctx);
/* return res*/
aml_append(method, aml_return(res));
return method;
}
typedef struct CrsRangeEntry {
uint64_t base;
uint64_t limit;
} CrsRangeEntry;
static void crs_range_insert(GPtrArray *ranges, uint64_t base, uint64_t limit)
{
CrsRangeEntry *entry;
entry = g_malloc(sizeof(*entry));
entry->base = base;
entry->limit = limit;
g_ptr_array_add(ranges, entry);
}
static void crs_range_free(gpointer data)
{
CrsRangeEntry *entry = (CrsRangeEntry *)data;
g_free(entry);
}
static gint crs_range_compare(gconstpointer a, gconstpointer b)
{
CrsRangeEntry *entry_a = *(CrsRangeEntry **)a;
CrsRangeEntry *entry_b = *(CrsRangeEntry **)b;
return (int64_t)entry_a->base - (int64_t)entry_b->base;
}
/*
* crs_replace_with_free_ranges - given the 'used' ranges within [start - end]
* interval, computes the 'free' ranges from the same interval.
* Example: If the input array is { [a1 - a2],[b1 - b2] }, the function
* will return { [base - a1], [a2 - b1], [b2 - limit] }.
*/
static void crs_replace_with_free_ranges(GPtrArray *ranges,
uint64_t start, uint64_t end)
{
GPtrArray *free_ranges = g_ptr_array_new_with_free_func(crs_range_free);
uint64_t free_base = start;
int i;
g_ptr_array_sort(ranges, crs_range_compare);
for (i = 0; i < ranges->len; i++) {
CrsRangeEntry *used = g_ptr_array_index(ranges, i);
if (free_base < used->base) {
crs_range_insert(free_ranges, free_base, used->base - 1);
}
free_base = used->limit + 1;
}
if (free_base < end) {
crs_range_insert(free_ranges, free_base, end);
}
g_ptr_array_set_size(ranges, 0);
for (i = 0; i < free_ranges->len; i++) {
g_ptr_array_add(ranges, g_ptr_array_index(free_ranges, i));
}
g_ptr_array_free(free_ranges, false);
}
/*
* crs_range_merge - merges adjacent ranges in the given array.
* Array elements are deleted and replaced with the merged ranges.
*/
static void crs_range_merge(GPtrArray *range)
{
GPtrArray *tmp = g_ptr_array_new_with_free_func(crs_range_free);
CrsRangeEntry *entry;
uint64_t range_base, range_limit;
int i;
if (!range->len) {
return;
}
g_ptr_array_sort(range, crs_range_compare);
entry = g_ptr_array_index(range, 0);
range_base = entry->base;
range_limit = entry->limit;
for (i = 1; i < range->len; i++) {
entry = g_ptr_array_index(range, i);
if (entry->base - 1 == range_limit) {
range_limit = entry->limit;
} else {
crs_range_insert(tmp, range_base, range_limit);
range_base = entry->base;
range_limit = entry->limit;
}
}
crs_range_insert(tmp, range_base, range_limit);
g_ptr_array_set_size(range, 0);
for (i = 0; i < tmp->len; i++) {
entry = g_ptr_array_index(tmp, i);
crs_range_insert(range, entry->base, entry->limit);
}
g_ptr_array_free(tmp, true);
}
static Aml *build_crs(PCIHostState *host,
GPtrArray *io_ranges, GPtrArray *mem_ranges)
{
Aml *crs = aml_resource_template();
GPtrArray *host_io_ranges = g_ptr_array_new_with_free_func(crs_range_free);
GPtrArray *host_mem_ranges = g_ptr_array_new_with_free_func(crs_range_free);
CrsRangeEntry *entry;
uint8_t max_bus = pci_bus_num(host->bus);
uint8_t type;
int devfn;
int i;
for (devfn = 0; devfn < ARRAY_SIZE(host->bus->devices); devfn++) {
uint64_t range_base, range_limit;
PCIDevice *dev = host->bus->devices[devfn];
if (!dev) {
continue;
}
for (i = 0; i < PCI_NUM_REGIONS; i++) {
PCIIORegion *r = &dev->io_regions[i];
range_base = r->addr;
range_limit = r->addr + r->size - 1;
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (!range_base || range_base > range_limit) {
continue;
}
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
crs_range_insert(host_io_ranges, range_base, range_limit);
} else { /* "memory" */
crs_range_insert(host_mem_ranges, range_base, range_limit);
}
}
type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
if (type == PCI_HEADER_TYPE_BRIDGE) {
uint8_t subordinate = dev->config[PCI_SUBORDINATE_BUS];
if (subordinate > max_bus) {
max_bus = subordinate;
}
range_base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO);
range_limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
crs_range_insert(host_io_ranges, range_base, range_limit);
}
range_base =
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY);
range_limit =
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
crs_range_insert(host_mem_ranges, range_base, range_limit);
}
range_base =
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
range_limit =
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH);
/*
* Work-around for old bioses
* that do not support multiple root buses
*/
if (range_base && range_base <= range_limit) {
crs_range_insert(host_mem_ranges, range_base, range_limit);
}
}
}
crs_range_merge(host_io_ranges);
for (i = 0; i < host_io_ranges->len; i++) {
entry = g_ptr_array_index(host_io_ranges, i);
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0, entry->base, entry->limit, 0,
entry->limit - entry->base + 1));
crs_range_insert(io_ranges, entry->base, entry->limit);
}
g_ptr_array_free(host_io_ranges, true);
crs_range_merge(host_mem_ranges);
for (i = 0; i < host_mem_ranges->len; i++) {
entry = g_ptr_array_index(host_mem_ranges, i);
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED,
AML_MAX_FIXED, AML_NON_CACHEABLE,
AML_READ_WRITE,
0, entry->base, entry->limit, 0,
entry->limit - entry->base + 1));
crs_range_insert(mem_ranges, entry->base, entry->limit);
}
g_ptr_array_free(host_mem_ranges, true);
aml_append(crs,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0,
pci_bus_num(host->bus),
max_bus,
0,
max_bus - pci_bus_num(host->bus) + 1));
return crs;
}
static void
build_ssdt(GArray *table_data, GArray *linker,
AcpiCpuInfo *cpu, AcpiPmInfo *pm, AcpiMiscInfo *misc,
PcPciInfo *pci, PcGuestInfo *guest_info)
{
MachineState *machine = MACHINE(qdev_get_machine());
uint32_t nr_mem = machine->ram_slots;
unsigned acpi_cpus = guest_info->apic_id_limit;
Aml *ssdt, *sb_scope, *scope, *pkg, *dev, *method, *crs, *field, *ifctx;
PCIBus *bus = NULL;
GPtrArray *io_ranges = g_ptr_array_new_with_free_func(crs_range_free);
GPtrArray *mem_ranges = g_ptr_array_new_with_free_func(crs_range_free);
CrsRangeEntry *entry;
int root_bus_limit = 0xFF;
int i;
ssdt = init_aml_allocator();
/* The current AML generator can cover the APIC ID range [0..255],
* inclusive, for VCPU hotplug. */
QEMU_BUILD_BUG_ON(ACPI_CPU_HOTPLUG_ID_LIMIT > 256);
g_assert(acpi_cpus <= ACPI_CPU_HOTPLUG_ID_LIMIT);
/* Reserve space for header */
acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
build_memory_hotplug_aml(ssdt, nr_mem, pm->mem_hp_io_base,
pm->mem_hp_io_len);
bus = PC_MACHINE(machine)->bus;
if (bus) {
QLIST_FOREACH(bus, &bus->child, sibling) {
uint8_t bus_num = pci_bus_num(bus);
uint8_t numa_node = pci_bus_numa_node(bus);
/* look only for expander root buses */
if (!pci_bus_is_root(bus)) {
continue;
}
if (bus_num < root_bus_limit) {
root_bus_limit = bus_num - 1;
}
scope = aml_scope("\\_SB");
dev = aml_device("PC%.02X", bus_num);
aml_append(dev, aml_name_decl("_UID", aml_int(bus_num)));
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A03")));
aml_append(dev, aml_name_decl("_BBN", aml_int(bus_num)));
if (numa_node != NUMA_NODE_UNASSIGNED) {
aml_append(dev, aml_name_decl("_PXM", aml_int(numa_node)));
}
aml_append(dev, build_prt());
crs = build_crs(PCI_HOST_BRIDGE(BUS(bus)->parent),
io_ranges, mem_ranges);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(ssdt, scope);
}
}
scope = aml_scope("\\_SB.PCI0");
/* build PCI0._CRS */
crs = aml_resource_template();
aml_append(crs,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0x0000, 0x0, root_bus_limit,
0x0000, root_bus_limit + 1));
aml_append(crs, aml_io(AML_DECODE16, 0x0CF8, 0x0CF8, 0x01, 0x08));
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0x0000, 0x0000, 0x0CF7, 0x0000, 0x0CF8));
crs_replace_with_free_ranges(io_ranges, 0x0D00, 0xFFFF);
for (i = 0; i < io_ranges->len; i++) {
entry = g_ptr_array_index(io_ranges, i);
aml_append(crs,
aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED,
AML_POS_DECODE, AML_ENTIRE_RANGE,
0x0000, entry->base, entry->limit,
0x0000, entry->limit - entry->base + 1));
}
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_WRITE,
0, 0x000A0000, 0x000BFFFF, 0, 0x00020000));
crs_replace_with_free_ranges(mem_ranges, pci->w32.begin, pci->w32.end - 1);
for (i = 0; i < mem_ranges->len; i++) {
entry = g_ptr_array_index(mem_ranges, i);
aml_append(crs,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE,
0, entry->base, entry->limit,
0, entry->limit - entry->base + 1));
}
if (pci->w64.begin) {
aml_append(crs,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_CACHEABLE, AML_READ_WRITE,
0, pci->w64.begin, pci->w64.end - 1, 0,
pci->w64.end - pci->w64.begin));
}
aml_append(scope, aml_name_decl("_CRS", crs));
/* reserve GPE0 block resources */
dev = aml_device("GPE0");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06")));
aml_append(dev, aml_name_decl("_UID", aml_string("GPE0 resources")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, pm->gpe0_blk, pm->gpe0_blk, 1, pm->gpe0_blk_len)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
g_ptr_array_free(io_ranges, true);
g_ptr_array_free(mem_ranges, true);
/* reserve PCIHP resources */
if (pm->pcihp_io_len) {
dev = aml_device("PHPR");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06")));
aml_append(dev,
aml_name_decl("_UID", aml_string("PCI Hotplug resources")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, pm->pcihp_io_base, pm->pcihp_io_base, 1,
pm->pcihp_io_len)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
aml_append(ssdt, scope);
/* create S3_ / S4_ / S5_ packages if necessary */
scope = aml_scope("\\");
if (!pm->s3_disabled) {
pkg = aml_package(4);
aml_append(pkg, aml_int(1)); /* PM1a_CNT.SLP_TYP */
aml_append(pkg, aml_int(1)); /* PM1b_CNT.SLP_TYP, FIXME: not impl. */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S3", pkg));
}
if (!pm->s4_disabled) {
pkg = aml_package(4);
aml_append(pkg, aml_int(pm->s4_val)); /* PM1a_CNT.SLP_TYP */
/* PM1b_CNT.SLP_TYP, FIXME: not impl. */
aml_append(pkg, aml_int(pm->s4_val));
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S4", pkg));
}
pkg = aml_package(4);
aml_append(pkg, aml_int(0)); /* PM1a_CNT.SLP_TYP */
aml_append(pkg, aml_int(0)); /* PM1b_CNT.SLP_TYP not impl. */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(pkg, aml_int(0)); /* reserved */
aml_append(scope, aml_name_decl("_S5", pkg));
aml_append(ssdt, scope);
if (misc->applesmc_io_base) {
scope = aml_scope("\\_SB.PCI0.ISA");
dev = aml_device("SMC");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("APP0001")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, misc->applesmc_io_base, misc->applesmc_io_base,
0x01, APPLESMC_MAX_DATA_LENGTH)
);
aml_append(crs, aml_irq_no_flags(6));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
aml_append(ssdt, scope);
}
if (misc->pvpanic_port) {
scope = aml_scope("\\_SB.PCI0.ISA");
dev = aml_device("PEVT");
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0001")));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, misc->pvpanic_port, misc->pvpanic_port, 1, 1)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(dev, aml_operation_region("PEOR", AML_SYSTEM_IO,
misc->pvpanic_port, 1));
field = aml_field("PEOR", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PEPT", 8));
aml_append(dev, field);
/* device present, functioning, decoding, shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xF)));
method = aml_method("RDPT", 0, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_name("PEPT"), aml_local(0)));
aml_append(method, aml_return(aml_local(0)));
aml_append(dev, method);
method = aml_method("WRPT", 1, AML_NOTSERIALIZED);
aml_append(method, aml_store(aml_arg(0), aml_name("PEPT")));
aml_append(dev, method);
aml_append(scope, dev);
aml_append(ssdt, scope);
}
sb_scope = aml_scope("\\_SB");
{
/* create PCI0.PRES device and its _CRS to reserve CPU hotplug MMIO */
dev = aml_device("PCI0." stringify(CPU_HOTPLUG_RESOURCE_DEVICE));
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A06")));
aml_append(dev,
aml_name_decl("_UID", aml_string("CPU Hotplug resources"))
);
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, pm->cpu_hp_io_base, pm->cpu_hp_io_base, 1,
pm->cpu_hp_io_len)
);
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(sb_scope, dev);
/* declare CPU hotplug MMIO region and PRS field to access it */
aml_append(sb_scope, aml_operation_region(
"PRST", AML_SYSTEM_IO, pm->cpu_hp_io_base, pm->cpu_hp_io_len));
field = aml_field("PRST", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE);
aml_append(field, aml_named_field("PRS", 256));
aml_append(sb_scope, field);
/* build Processor object for each processor */
for (i = 0; i < acpi_cpus; i++) {
dev = aml_processor(i, 0, 0, "CP%.02X", i);
method = aml_method("_MAT", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_call1("CPMA", aml_int(i))));
aml_append(dev, method);
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_call1("CPST", aml_int(i))));
aml_append(dev, method);
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
aml_append(method,
aml_return(aml_call2("CPEJ", aml_int(i), aml_arg(0)))
);
aml_append(dev, method);
aml_append(sb_scope, dev);
}
/* build this code:
* Method(NTFY, 2) {If (LEqual(Arg0, 0x00)) {Notify(CP00, Arg1)} ...}
*/
/* Arg0 = Processor ID = APIC ID */
method = aml_method("NTFY", 2, AML_NOTSERIALIZED);
for (i = 0; i < acpi_cpus; i++) {
ifctx = aml_if(aml_equal(aml_arg(0), aml_int(i)));
aml_append(ifctx,
aml_notify(aml_name("CP%.02X", i), aml_arg(1))
);
aml_append(method, ifctx);
}
aml_append(sb_scope, method);
/* build "Name(CPON, Package() { One, One, ..., Zero, Zero, ... })"
*
* Note: The ability to create variable-sized packages was first
* introduced in ACPI 2.0. ACPI 1.0 only allowed fixed-size packages
* ith up to 255 elements. Windows guests up to win2k8 fail when
* VarPackageOp is used.
*/
pkg = acpi_cpus <= 255 ? aml_package(acpi_cpus) :
aml_varpackage(acpi_cpus);
for (i = 0; i < acpi_cpus; i++) {
uint8_t b = test_bit(i, cpu->found_cpus) ? 0x01 : 0x00;
aml_append(pkg, aml_int(b));
}
aml_append(sb_scope, aml_name_decl("CPON", pkg));
/* build memory devices */
assert(nr_mem <= ACPI_MAX_RAM_SLOTS);
scope = aml_scope("\\_SB.PCI0." stringify(MEMORY_HOTPLUG_DEVICE));
aml_append(scope,
aml_name_decl(stringify(MEMORY_SLOTS_NUMBER), aml_int(nr_mem))
);
crs = aml_resource_template();
aml_append(crs,
aml_io(AML_DECODE16, pm->mem_hp_io_base, pm->mem_hp_io_base, 0,
pm->mem_hp_io_len)
);
aml_append(scope, aml_name_decl("_CRS", crs));
aml_append(scope, aml_operation_region(
stringify(MEMORY_HOTPLUG_IO_REGION), AML_SYSTEM_IO,
pm->mem_hp_io_base, pm->mem_hp_io_len)
);
field = aml_field(stringify(MEMORY_HOTPLUG_IO_REGION), AML_DWORD_ACC,
AML_NOLOCK, AML_PRESERVE);
aml_append(field, /* read only */
aml_named_field(stringify(MEMORY_SLOT_ADDR_LOW), 32));
aml_append(field, /* read only */
aml_named_field(stringify(MEMORY_SLOT_ADDR_HIGH), 32));
aml_append(field, /* read only */
aml_named_field(stringify(MEMORY_SLOT_SIZE_LOW), 32));
aml_append(field, /* read only */
aml_named_field(stringify(MEMORY_SLOT_SIZE_HIGH), 32));
aml_append(field, /* read only */
aml_named_field(stringify(MEMORY_SLOT_PROXIMITY), 32));
aml_append(scope, field);
field = aml_field(stringify(MEMORY_HOTPLUG_IO_REGION), AML_BYTE_ACC,
AML_NOLOCK, AML_WRITE_AS_ZEROS);
aml_append(field, aml_reserved_field(160 /* bits, Offset(20) */));
aml_append(field, /* 1 if enabled, read only */
aml_named_field(stringify(MEMORY_SLOT_ENABLED), 1));
aml_append(field,
/*(read) 1 if has a insert event. (write) 1 to clear event */
aml_named_field(stringify(MEMORY_SLOT_INSERT_EVENT), 1));
aml_append(field,
/* (read) 1 if has a remove event. (write) 1 to clear event */
aml_named_field(stringify(MEMORY_SLOT_REMOVE_EVENT), 1));
aml_append(field,
/* initiates device eject, write only */
aml_named_field(stringify(MEMORY_SLOT_EJECT), 1));
aml_append(scope, field);
field = aml_field(stringify(MEMORY_HOTPLUG_IO_REGION), AML_DWORD_ACC,
AML_NOLOCK, AML_PRESERVE);
aml_append(field, /* DIMM selector, write only */
aml_named_field(stringify(MEMORY_SLOT_SLECTOR), 32));
aml_append(field, /* _OST event code, write only */
aml_named_field(stringify(MEMORY_SLOT_OST_EVENT), 32));
aml_append(field, /* _OST status code, write only */
aml_named_field(stringify(MEMORY_SLOT_OST_STATUS), 32));
aml_append(scope, field);
aml_append(sb_scope, scope);
for (i = 0; i < nr_mem; i++) {
#define BASEPATH "\\_SB.PCI0." stringify(MEMORY_HOTPLUG_DEVICE) "."
const char *s;
dev = aml_device("MP%02X", i);
aml_append(dev, aml_name_decl("_UID", aml_string("0x%02X", i)));
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C80")));
method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
s = BASEPATH stringify(MEMORY_SLOT_CRS_METHOD);
aml_append(method, aml_return(aml_call1(s, aml_name("_UID"))));
aml_append(dev, method);
method = aml_method("_STA", 0, AML_NOTSERIALIZED);
s = BASEPATH stringify(MEMORY_SLOT_STATUS_METHOD);
aml_append(method, aml_return(aml_call1(s, aml_name("_UID"))));
aml_append(dev, method);
method = aml_method("_PXM", 0, AML_NOTSERIALIZED);
s = BASEPATH stringify(MEMORY_SLOT_PROXIMITY_METHOD);
aml_append(method, aml_return(aml_call1(s, aml_name("_UID"))));
aml_append(dev, method);
method = aml_method("_OST", 3, AML_NOTSERIALIZED);
s = BASEPATH stringify(MEMORY_SLOT_OST_METHOD);
aml_append(method, aml_return(aml_call4(
s, aml_name("_UID"), aml_arg(0), aml_arg(1), aml_arg(2)
)));
aml_append(dev, method);
method = aml_method("_EJ0", 1, AML_NOTSERIALIZED);
s = BASEPATH stringify(MEMORY_SLOT_EJECT_METHOD);
aml_append(method, aml_return(aml_call2(
s, aml_name("_UID"), aml_arg(0))));
aml_append(dev, method);
aml_append(sb_scope, dev);
}
/* build Method(MEMORY_SLOT_NOTIFY_METHOD, 2) {
* If (LEqual(Arg0, 0x00)) {Notify(MP00, Arg1)} ... }
*/
method = aml_method(stringify(MEMORY_SLOT_NOTIFY_METHOD), 2,
AML_NOTSERIALIZED);
for (i = 0; i < nr_mem; i++) {
ifctx = aml_if(aml_equal(aml_arg(0), aml_int(i)));
aml_append(ifctx,
aml_notify(aml_name("MP%.02X", i), aml_arg(1))
);
aml_append(method, ifctx);
}
aml_append(sb_scope, method);
{
Object *pci_host;
PCIBus *bus = NULL;
pci_host = acpi_get_i386_pci_host();
if (pci_host) {
bus = PCI_HOST_BRIDGE(pci_host)->bus;
}
if (bus) {
Aml *scope = aml_scope("PCI0");
/* Scan all PCI buses. Generate tables to support hotplug. */
build_append_pci_bus_devices(scope, bus, pm->pcihp_bridge_en);
if (misc->tpm_version != TPM_VERSION_UNSPEC) {
dev = aml_device("ISA.TPM");
aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C31")));
aml_append(dev, aml_name_decl("_STA", aml_int(0xF)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(TPM_TIS_ADDR_BASE,
TPM_TIS_ADDR_SIZE, AML_READ_WRITE));
aml_append(crs, aml_irq_no_flags(TPM_TIS_IRQ));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
aml_append(sb_scope, scope);
}
}
aml_append(ssdt, sb_scope);
}
/* copy AML table into ACPI tables blob and patch header there */
g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
build_header(linker, table_data,
(void *)(table_data->data + table_data->len - ssdt->buf->len),
"SSDT", ssdt->buf->len, 1, NULL);
free_aml_allocator();
}
static void
build_hpet(GArray *table_data, GArray *linker)
{
Acpi20Hpet *hpet;
hpet = acpi_data_push(table_data, sizeof(*hpet));
/* Note timer_block_id value must be kept in sync with value advertised by
* emulated hpet
*/
hpet->timer_block_id = cpu_to_le32(0x8086a201);
hpet->addr.address = cpu_to_le64(HPET_BASE);
build_header(linker, table_data,
(void *)hpet, "HPET", sizeof(*hpet), 1, NULL);
}
static void
build_tpm_tcpa(GArray *table_data, GArray *linker, GArray *tcpalog)
{
Acpi20Tcpa *tcpa = acpi_data_push(table_data, sizeof *tcpa);
uint64_t log_area_start_address = acpi_data_len(tcpalog);
tcpa->platform_class = cpu_to_le16(TPM_TCPA_ACPI_CLASS_CLIENT);
tcpa->log_area_minimum_length = cpu_to_le32(TPM_LOG_AREA_MINIMUM_SIZE);
tcpa->log_area_start_address = cpu_to_le64(log_area_start_address);
bios_linker_loader_alloc(linker, ACPI_BUILD_TPMLOG_FILE, 1,
false /* high memory */);
/* log area start address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TPMLOG_FILE,
table_data, &tcpa->log_area_start_address,
sizeof(tcpa->log_area_start_address));
build_header(linker, table_data,
(void *)tcpa, "TCPA", sizeof(*tcpa), 2, NULL);
acpi_data_push(tcpalog, TPM_LOG_AREA_MINIMUM_SIZE);
}
static void
build_tpm2(GArray *table_data, GArray *linker)
{
Acpi20TPM2 *tpm2_ptr;
tpm2_ptr = acpi_data_push(table_data, sizeof *tpm2_ptr);
tpm2_ptr->platform_class = cpu_to_le16(TPM2_ACPI_CLASS_CLIENT);
tpm2_ptr->control_area_address = cpu_to_le64(0);
tpm2_ptr->start_method = cpu_to_le32(TPM2_START_METHOD_MMIO);
build_header(linker, table_data,
(void *)tpm2_ptr, "TPM2", sizeof(*tpm2_ptr), 4, NULL);
}
typedef enum {
MEM_AFFINITY_NOFLAGS = 0,
MEM_AFFINITY_ENABLED = (1 << 0),
MEM_AFFINITY_HOTPLUGGABLE = (1 << 1),
MEM_AFFINITY_NON_VOLATILE = (1 << 2),
} MemoryAffinityFlags;
static void
acpi_build_srat_memory(AcpiSratMemoryAffinity *numamem, uint64_t base,
uint64_t len, int node, MemoryAffinityFlags flags)
{
numamem->type = ACPI_SRAT_MEMORY;
numamem->length = sizeof(*numamem);
memset(numamem->proximity, 0, 4);
numamem->proximity[0] = node;
numamem->flags = cpu_to_le32(flags);
numamem->base_addr = cpu_to_le64(base);
numamem->range_length = cpu_to_le64(len);
}
static void
build_srat(GArray *table_data, GArray *linker, PcGuestInfo *guest_info)
{
AcpiSystemResourceAffinityTable *srat;
AcpiSratProcessorAffinity *core;
AcpiSratMemoryAffinity *numamem;
int i;
uint64_t curnode;
int srat_start, numa_start, slots;
uint64_t mem_len, mem_base, next_base;
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
ram_addr_t hotplugabble_address_space_size =
object_property_get_int(OBJECT(pcms), PC_MACHINE_MEMHP_REGION_SIZE,
NULL);
srat_start = table_data->len;
srat = acpi_data_push(table_data, sizeof *srat);
srat->reserved1 = cpu_to_le32(1);
core = (void *)(srat + 1);
for (i = 0; i < guest_info->apic_id_limit; ++i) {
core = acpi_data_push(table_data, sizeof *core);
core->type = ACPI_SRAT_PROCESSOR;
core->length = sizeof(*core);
core->local_apic_id = i;
curnode = guest_info->node_cpu[i];
core->proximity_lo = curnode;
memset(core->proximity_hi, 0, 3);
core->local_sapic_eid = 0;
core->flags = cpu_to_le32(1);
}
/* the memory map is a bit tricky, it contains at least one hole
* from 640k-1M and possibly another one from 3.5G-4G.
*/
next_base = 0;
numa_start = table_data->len;
numamem = acpi_data_push(table_data, sizeof *numamem);
acpi_build_srat_memory(numamem, 0, 640*1024, 0, MEM_AFFINITY_ENABLED);
next_base = 1024 * 1024;
for (i = 1; i < guest_info->numa_nodes + 1; ++i) {
mem_base = next_base;
mem_len = guest_info->node_mem[i - 1];
if (i == 1) {
mem_len -= 1024 * 1024;
}
next_base = mem_base + mem_len;
/* Cut out the ACPI_PCI hole */
if (mem_base <= guest_info->ram_size_below_4g &&
next_base > guest_info->ram_size_below_4g) {
mem_len -= next_base - guest_info->ram_size_below_4g;
if (mem_len > 0) {
numamem = acpi_data_push(table_data, sizeof *numamem);
acpi_build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
mem_base = 1ULL << 32;
mem_len = next_base - guest_info->ram_size_below_4g;
next_base += (1ULL << 32) - guest_info->ram_size_below_4g;
}
numamem = acpi_data_push(table_data, sizeof *numamem);
acpi_build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
slots = (table_data->len - numa_start) / sizeof *numamem;
for (; slots < guest_info->numa_nodes + 2; slots++) {
numamem = acpi_data_push(table_data, sizeof *numamem);
acpi_build_srat_memory(numamem, 0, 0, 0, MEM_AFFINITY_NOFLAGS);
}
/*
* Entry is required for Windows to enable memory hotplug in OS.
* Memory devices may override proximity set by this entry,
* providing _PXM method if necessary.
*/
if (hotplugabble_address_space_size) {
numamem = acpi_data_push(table_data, sizeof *numamem);
acpi_build_srat_memory(numamem, pcms->hotplug_memory.base,
hotplugabble_address_space_size, 0,
MEM_AFFINITY_HOTPLUGGABLE |
MEM_AFFINITY_ENABLED);
}
build_header(linker, table_data,
(void *)(table_data->data + srat_start),
"SRAT",
table_data->len - srat_start, 1, NULL);
}
static void
build_mcfg_q35(GArray *table_data, GArray *linker, AcpiMcfgInfo *info)
{
AcpiTableMcfg *mcfg;
const char *sig;
int len = sizeof(*mcfg) + 1 * sizeof(mcfg->allocation[0]);
mcfg = acpi_data_push(table_data, len);
mcfg->allocation[0].address = cpu_to_le64(info->mcfg_base);
/* Only a single allocation so no need to play with segments */
mcfg->allocation[0].pci_segment = cpu_to_le16(0);
mcfg->allocation[0].start_bus_number = 0;
mcfg->allocation[0].end_bus_number = PCIE_MMCFG_BUS(info->mcfg_size - 1);
/* MCFG is used for ECAM which can be enabled or disabled by guest.
* To avoid table size changes (which create migration issues),
* always create the table even if there are no allocations,
* but set the signature to a reserved value in this case.
* ACPI spec requires OSPMs to ignore such tables.
*/
if (info->mcfg_base == PCIE_BASE_ADDR_UNMAPPED) {
/* Reserved signature: ignored by OSPM */
sig = "QEMU";
} else {
sig = "MCFG";
}
build_header(linker, table_data, (void *)mcfg, sig, len, 1, NULL);
}
static void
build_dmar_q35(GArray *table_data, GArray *linker)
{
int dmar_start = table_data->len;
AcpiTableDmar *dmar;
AcpiDmarHardwareUnit *drhd;
dmar = acpi_data_push(table_data, sizeof(*dmar));
dmar->host_address_width = VTD_HOST_ADDRESS_WIDTH - 1;
dmar->flags = 0; /* No intr_remap for now */
/* DMAR Remapping Hardware Unit Definition structure */
drhd = acpi_data_push(table_data, sizeof(*drhd));
drhd->type = cpu_to_le16(ACPI_DMAR_TYPE_HARDWARE_UNIT);
drhd->length = cpu_to_le16(sizeof(*drhd)); /* No device scope now */
drhd->flags = ACPI_DMAR_INCLUDE_PCI_ALL;
drhd->pci_segment = cpu_to_le16(0);
drhd->address = cpu_to_le64(Q35_HOST_BRIDGE_IOMMU_ADDR);
build_header(linker, table_data, (void *)(table_data->data + dmar_start),
"DMAR", table_data->len - dmar_start, 1, NULL);
}
static void
build_dsdt(GArray *table_data, GArray *linker, AcpiMiscInfo *misc)
{
AcpiTableHeader *dsdt;
assert(misc->dsdt_code && misc->dsdt_size);
dsdt = acpi_data_push(table_data, misc->dsdt_size);
memcpy(dsdt, misc->dsdt_code, misc->dsdt_size);
memset(dsdt, 0, sizeof *dsdt);
build_header(linker, table_data, dsdt, "DSDT",
misc->dsdt_size, 1, NULL);
}
static GArray *
build_rsdp(GArray *rsdp_table, GArray *linker, unsigned rsdt)
{
AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp);
bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, 16,
true /* fseg memory */);
memcpy(&rsdp->signature, "RSD PTR ", 8);
memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, 6);
rsdp->rsdt_physical_address = cpu_to_le32(rsdt);
/* Address to be filled by Guest linker */
bios_linker_loader_add_pointer(linker, ACPI_BUILD_RSDP_FILE,
ACPI_BUILD_TABLE_FILE,
rsdp_table, &rsdp->rsdt_physical_address,
sizeof rsdp->rsdt_physical_address);
rsdp->checksum = 0;
/* Checksum to be filled by Guest linker */
bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE,
rsdp, rsdp, sizeof *rsdp, &rsdp->checksum);
return rsdp_table;
}
typedef
struct AcpiBuildState {
/* Copy of table in RAM (for patching). */
MemoryRegion *table_mr;
/* Is table patched? */
uint8_t patched;
PcGuestInfo *guest_info;
void *rsdp;
MemoryRegion *rsdp_mr;
MemoryRegion *linker_mr;
} AcpiBuildState;
static bool acpi_get_mcfg(AcpiMcfgInfo *mcfg)
{
Object *pci_host;
QObject *o;
pci_host = acpi_get_i386_pci_host();
g_assert(pci_host);
o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_BASE, NULL);
if (!o) {
return false;
}
mcfg->mcfg_base = qint_get_int(qobject_to_qint(o));
qobject_decref(o);
o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_SIZE, NULL);
assert(o);
mcfg->mcfg_size = qint_get_int(qobject_to_qint(o));
qobject_decref(o);
return true;
}
static bool acpi_has_iommu(void)
{
bool ambiguous;
Object *intel_iommu;
intel_iommu = object_resolve_path_type("", TYPE_INTEL_IOMMU_DEVICE,
&ambiguous);
return intel_iommu && !ambiguous;
}
static bool acpi_has_nvdimm(void)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
return pcms->nvdimm;
}
static
void acpi_build(PcGuestInfo *guest_info, AcpiBuildTables *tables)
{
GArray *table_offsets;
unsigned facs, ssdt, dsdt, rsdt;
AcpiCpuInfo cpu;
AcpiPmInfo pm;
AcpiMiscInfo misc;
AcpiMcfgInfo mcfg;
PcPciInfo pci;
uint8_t *u;
size_t aml_len = 0;
GArray *tables_blob = tables->table_data;
acpi_get_cpu_info(&cpu);
acpi_get_pm_info(&pm);
acpi_get_dsdt(&misc);
acpi_get_misc_info(&misc);
acpi_get_pci_info(&pci);
table_offsets = g_array_new(false, true /* clear */,
sizeof(uint32_t));
ACPI_BUILD_DPRINTF("init ACPI tables\n");
bios_linker_loader_alloc(tables->linker, ACPI_BUILD_TABLE_FILE,
64 /* Ensure FACS is aligned */,
false /* high memory */);
/*
* FACS is pointed to by FADT.
* We place it first since it's the only table that has alignment
* requirements.
*/
facs = tables_blob->len;
build_facs(tables_blob, tables->linker, guest_info);
/* DSDT is pointed to by FADT */
dsdt = tables_blob->len;
build_dsdt(tables_blob, tables->linker, &misc);
/* Count the size of the DSDT and SSDT, we will need it for legacy
* sizing of ACPI tables.
*/
aml_len += tables_blob->len - dsdt;
/* ACPI tables pointed to by RSDT */
acpi_add_table(table_offsets, tables_blob);
build_fadt(tables_blob, tables->linker, &pm, facs, dsdt);
ssdt = tables_blob->len;
acpi_add_table(table_offsets, tables_blob);
build_ssdt(tables_blob, tables->linker, &cpu, &pm, &misc, &pci,
guest_info);
aml_len += tables_blob->len - ssdt;
acpi_add_table(table_offsets, tables_blob);
build_madt(tables_blob, tables->linker, &cpu, guest_info);
if (misc.has_hpet) {
acpi_add_table(table_offsets, tables_blob);
build_hpet(tables_blob, tables->linker);
}
if (misc.tpm_version != TPM_VERSION_UNSPEC) {
acpi_add_table(table_offsets, tables_blob);
build_tpm_tcpa(tables_blob, tables->linker, tables->tcpalog);
if (misc.tpm_version == TPM_VERSION_2_0) {
acpi_add_table(table_offsets, tables_blob);
build_tpm2(tables_blob, tables->linker);
}
}
if (guest_info->numa_nodes) {
acpi_add_table(table_offsets, tables_blob);
build_srat(tables_blob, tables->linker, guest_info);
}
if (acpi_get_mcfg(&mcfg)) {
acpi_add_table(table_offsets, tables_blob);
build_mcfg_q35(tables_blob, tables->linker, &mcfg);
}
if (acpi_has_iommu()) {
acpi_add_table(table_offsets, tables_blob);
build_dmar_q35(tables_blob, tables->linker);
}
if (acpi_has_nvdimm()) {
nvdimm_build_acpi(table_offsets, tables_blob, tables->linker);
}
/* Add tables supplied by user (if any) */
for (u = acpi_table_first(); u; u = acpi_table_next(u)) {
unsigned len = acpi_table_len(u);
acpi_add_table(table_offsets, tables_blob);
g_array_append_vals(tables_blob, u, len);
}
/* RSDT is pointed to by RSDP */
rsdt = tables_blob->len;
build_rsdt(tables_blob, tables->linker, table_offsets);
/* RSDP is in FSEG memory, so allocate it separately */
build_rsdp(tables->rsdp, tables->linker, rsdt);
/* We'll expose it all to Guest so we want to reduce
* chance of size changes.
*
* We used to align the tables to 4k, but of course this would
* too simple to be enough. 4k turned out to be too small an
* alignment very soon, and in fact it is almost impossible to
* keep the table size stable for all (max_cpus, max_memory_slots)
* combinations. So the table size is always 64k for pc-i440fx-2.1
* and we give an error if the table grows beyond that limit.
*
* We still have the problem of migrating from "-M pc-i440fx-2.0". For
* that, we exploit the fact that QEMU 2.1 generates _smaller_ tables
* than 2.0 and we can always pad the smaller tables with zeros. We can
* then use the exact size of the 2.0 tables.
*
* All this is for PIIX4, since QEMU 2.0 didn't support Q35 migration.
*/
if (guest_info->legacy_acpi_table_size) {
/* Subtracting aml_len gives the size of fixed tables. Then add the
* size of the PIIX4 DSDT/SSDT in QEMU 2.0.
*/
int legacy_aml_len =
guest_info->legacy_acpi_table_size +
ACPI_BUILD_LEGACY_CPU_AML_SIZE * max_cpus;
int legacy_table_size =
ROUND_UP(tables_blob->len - aml_len + legacy_aml_len,
ACPI_BUILD_ALIGN_SIZE);
if (tables_blob->len > legacy_table_size) {
/* Should happen only with PCI bridges and -M pc-i440fx-2.0. */
error_report("Warning: migration may not work.");
}
g_array_set_size(tables_blob, legacy_table_size);
} else {
/* Make sure we have a buffer in case we need to resize the tables. */
if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) {
/* As of QEMU 2.1, this fires with 160 VCPUs and 255 memory slots. */
error_report("Warning: ACPI tables are larger than 64k.");
error_report("Warning: migration may not work.");
error_report("Warning: please remove CPUs, NUMA nodes, "
"memory slots or PCI bridges.");
}
acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE);
}
acpi_align_size(tables->linker, ACPI_BUILD_ALIGN_SIZE);
/* Cleanup memory that's no longer used. */
g_array_free(table_offsets, true);
}
static void acpi_ram_update(MemoryRegion *mr, GArray *data)
{
uint32_t size = acpi_data_len(data);
/* Make sure RAM size is correct - in case it got changed e.g. by migration */
memory_region_ram_resize(mr, size, &error_abort);
memcpy(memory_region_get_ram_ptr(mr), data->data, size);
memory_region_set_dirty(mr, 0, size);
}
static void acpi_build_update(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
AcpiBuildTables tables;
/* No state to update or already patched? Nothing to do. */
if (!build_state || build_state->patched) {
return;
}
build_state->patched = 1;
acpi_build_tables_init(&tables);
acpi_build(build_state->guest_info, &tables);
acpi_ram_update(build_state->table_mr, tables.table_data);
if (build_state->rsdp) {
memcpy(build_state->rsdp, tables.rsdp->data, acpi_data_len(tables.rsdp));
} else {
acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
}
acpi_ram_update(build_state->linker_mr, tables.linker);
acpi_build_tables_cleanup(&tables, true);
}
static void acpi_build_reset(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
build_state->patched = 0;
}
static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state,
GArray *blob, const char *name,
uint64_t max_size)
{
return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1,
name, acpi_build_update, build_state);
}
static const VMStateDescription vmstate_acpi_build = {
.name = "acpi_build",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(patched, AcpiBuildState),
VMSTATE_END_OF_LIST()
},
};
void acpi_setup(PcGuestInfo *guest_info)
{
AcpiBuildTables tables;
AcpiBuildState *build_state;
if (!guest_info->fw_cfg) {
ACPI_BUILD_DPRINTF("No fw cfg. Bailing out.\n");
return;
}
if (!guest_info->has_acpi_build) {
ACPI_BUILD_DPRINTF("ACPI build disabled. Bailing out.\n");
return;
}
if (!acpi_enabled) {
ACPI_BUILD_DPRINTF("ACPI disabled. Bailing out.\n");
return;
}
build_state = g_malloc0(sizeof *build_state);
build_state->guest_info = guest_info;
acpi_set_pci_info();
acpi_build_tables_init(&tables);
acpi_build(build_state->guest_info, &tables);
/* Now expose it all to Guest */
build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data,
ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_MAX_SIZE);
assert(build_state->table_mr != NULL);
build_state->linker_mr =
acpi_add_rom_blob(build_state, tables.linker, "etc/table-loader", 0);
fw_cfg_add_file(guest_info->fw_cfg, ACPI_BUILD_TPMLOG_FILE,
tables.tcpalog->data, acpi_data_len(tables.tcpalog));
if (!guest_info->rsdp_in_ram) {
/*
* Keep for compatibility with old machine types.
* Though RSDP is small, its contents isn't immutable, so
* we'll update it along with the rest of tables on guest access.
*/
uint32_t rsdp_size = acpi_data_len(tables.rsdp);
build_state->rsdp = g_memdup(tables.rsdp->data, rsdp_size);
fw_cfg_add_file_callback(guest_info->fw_cfg, ACPI_BUILD_RSDP_FILE,
acpi_build_update, build_state,
build_state->rsdp, rsdp_size);
build_state->rsdp_mr = NULL;
} else {
build_state->rsdp = NULL;
build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp,
ACPI_BUILD_RSDP_FILE, 0);
}
qemu_register_reset(acpi_build_reset, build_state);
acpi_build_reset(build_state);
vmstate_register(NULL, 0, &vmstate_acpi_build, build_state);
/* Cleanup tables but don't free the memory: we track it
* in build_state.
*/
acpi_build_tables_cleanup(&tables, false);
}