qemu/target/openrisc/fpu_helper.c
Richard Henderson 4e2d30079c target-openrisc: Write back result before FPE exception
The architecture manual is unclear about this, but the or1ksim
does writeback before the exception.  This requires splitting
the helpers in half, with the exception raised by the second.

Acked-by: Stafford Horne <shorne@gmail.com>
Reviewed-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Signed-off-by: Richard Henderson <rth@twiddle.net>
2018-05-14 14:35:02 -07:00

129 lines
3.9 KiB
C

/*
* OpenRISC float helper routines
*
* Copyright (c) 2011-2012 Jia Liu <proljc@gmail.com>
* Feng Gao <gf91597@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exception.h"
#include "fpu/softfloat.h"
static int ieee_ex_to_openrisc(int fexcp)
{
int ret = 0;
if (fexcp & float_flag_invalid) {
ret |= FPCSR_IVF;
}
if (fexcp & float_flag_overflow) {
ret |= FPCSR_OVF;
}
if (fexcp & float_flag_underflow) {
ret |= FPCSR_UNF;
}
if (fexcp & float_flag_divbyzero) {
ret |= FPCSR_DZF;
}
if (fexcp & float_flag_inexact) {
ret |= FPCSR_IXF;
}
return ret;
}
void HELPER(update_fpcsr)(CPUOpenRISCState *env)
{
int tmp = get_float_exception_flags(&env->fp_status);
if (tmp) {
set_float_exception_flags(0, &env->fp_status);
tmp = ieee_ex_to_openrisc(tmp);
if (tmp) {
env->fpcsr |= tmp;
if (env->fpcsr & FPCSR_FPEE) {
helper_exception(env, EXCP_FPE);
}
}
}
}
uint64_t HELPER(itofd)(CPUOpenRISCState *env, uint64_t val)
{
return int32_to_float64(val, &env->fp_status);
}
uint32_t HELPER(itofs)(CPUOpenRISCState *env, uint32_t val)
{
return int32_to_float32(val, &env->fp_status);
}
uint64_t HELPER(ftoid)(CPUOpenRISCState *env, uint64_t val)
{
return float32_to_int64(val, &env->fp_status);
}
uint32_t HELPER(ftois)(CPUOpenRISCState *env, uint32_t val)
{
return float32_to_int32(val, &env->fp_status);
}
#define FLOAT_CALC(name) \
uint64_t helper_float_ ## name ## _d(CPUOpenRISCState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ return float64_ ## name(fdt0, fdt1, &env->fp_status); } \
uint32_t helper_float_ ## name ## _s(CPUOpenRISCState *env, \
uint32_t fdt0, uint32_t fdt1) \
{ return float32_ ## name(fdt0, fdt1, &env->fp_status); }
FLOAT_CALC(add)
FLOAT_CALC(sub)
FLOAT_CALC(mul)
FLOAT_CALC(div)
FLOAT_CALC(rem)
#undef FLOAT_CALC
uint64_t helper_float_madd_d(CPUOpenRISCState *env, uint64_t a,
uint64_t b, uint64_t c)
{
/* Note that or1ksim doesn't use fused operation. */
b = float64_mul(b, c, &env->fp_status);
return float64_add(a, b, &env->fp_status);
}
uint32_t helper_float_madd_s(CPUOpenRISCState *env, uint32_t a,
uint32_t b, uint32_t c)
{
/* Note that or1ksim doesn't use fused operation. */
b = float32_mul(b, c, &env->fp_status);
return float32_add(a, b, &env->fp_status);
}
#define FLOAT_CMP(name, impl) \
target_ulong helper_float_ ## name ## _d(CPUOpenRISCState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ return float64_ ## impl(fdt0, fdt1, &env->fp_status); } \
target_ulong helper_float_ ## name ## _s(CPUOpenRISCState *env, \
uint32_t fdt0, uint32_t fdt1) \
{ return float32_ ## impl(fdt0, fdt1, &env->fp_status); }
FLOAT_CMP(le, le)
FLOAT_CMP(lt, lt)
FLOAT_CMP(eq, eq_quiet)
#undef FLOAT_CMP