qemu/tests/fp/fp-test.c
Philippe Mathieu-Daudé d5f846813c tests/fp/fp-test: Replace the word 'blacklist'
Follow the inclusive terminology from the "Conscious Language in your
Open Source Projects" guidelines [*] and replace the word "blacklist"
appropriately.

[*] https://github.com/conscious-lang/conscious-lang-docs/blob/main/faq.md

Acked-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20210303184644.1639691-6-philmd@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2021-03-09 22:17:06 +01:00

1019 lines
33 KiB
C

/*
* fp-test.c - test QEMU's softfloat implementation using Berkeley's Testfloat
*
* Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* This file is derived from testfloat/source/testsoftfloat.c. Its copyright
* info follows:
*
* Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 The Regents of the
* University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions, and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the University nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef HW_POISON_H
#error Must define HW_POISON_H to work around TARGET_* poisoning
#endif
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include <math.h>
#include "fpu/softfloat.h"
#include "platform.h"
#include "fail.h"
#include "slowfloat.h"
#include "functions.h"
#include "genCases.h"
#include "verCases.h"
#include "writeCase.h"
#include "testLoops.h"
typedef float16_t (*abz_f16)(float16_t, float16_t);
typedef bool (*ab_f16_z_bool)(float16_t, float16_t);
typedef float32_t (*abz_f32)(float32_t, float32_t);
typedef bool (*ab_f32_z_bool)(float32_t, float32_t);
typedef float64_t (*abz_f64)(float64_t, float64_t);
typedef bool (*ab_f64_z_bool)(float64_t, float64_t);
typedef void (*abz_extF80M)(const extFloat80_t *, const extFloat80_t *,
extFloat80_t *);
typedef bool (*ab_extF80M_z_bool)(const extFloat80_t *, const extFloat80_t *);
typedef void (*abz_f128M)(const float128_t *, const float128_t *, float128_t *);
typedef bool (*ab_f128M_z_bool)(const float128_t *, const float128_t *);
static const char * const round_mode_names[] = {
[ROUND_NEAR_EVEN] = "even",
[ROUND_MINMAG] = "zero",
[ROUND_MIN] = "down",
[ROUND_MAX] = "up",
[ROUND_NEAR_MAXMAG] = "tieaway",
[ROUND_ODD] = "odd",
};
static unsigned int *test_ops;
static unsigned int n_test_ops;
static unsigned int n_max_errors = 20;
static unsigned int test_round_mode = ROUND_NEAR_EVEN;
static unsigned int *round_modes;
static unsigned int n_round_modes;
static int test_level = 1;
static uint8_t slow_init_flags;
static uint8_t qemu_init_flags;
/* qemu softfloat status */
static float_status qsf;
static const char commands_string[] =
"operations:\n"
" <int>_to_<float> <float>_add <float>_eq\n"
" <float>_to_<int> <float>_sub <float>_le\n"
" <float>_to_<int>_r_minMag <float>_mul <float>_lt\n"
" <float>_to_<float> <float>_mulAdd <float>_eq_signaling\n"
" <float>_roundToInt <float>_div <float>_le_quiet\n"
" <float>_rem <float>_lt_quiet\n"
" <float>_sqrt\n"
" Where <int>: ui32, ui64, i32, i64\n"
" <float>: f16, f32, f64, extF80, f128\n"
" If no operation is provided, all the above are tested\n"
"options:\n"
" -e = max error count per test. Default: 20. Set no limit with 0\n"
" -f = initial FP exception flags (vioux). Default: none\n"
" -l = thoroughness level (1 (default), 2)\n"
" -r = rounding mode (even (default), zero, down, up, tieaway, odd)\n"
" Set to 'all' to test all rounding modes, if applicable\n"
" -s = stop when a test fails";
static void usage_complete(int argc, char *argv[])
{
fprintf(stderr, "Usage: %s [options] [operation1 ...]\n", argv[0]);
fprintf(stderr, "%s\n", commands_string);
exit(EXIT_FAILURE);
}
/* keep wrappers separate but do not bother defining headers for all of them */
#include "wrap.c.inc"
static void not_implemented(void)
{
fprintf(stderr, "Not implemented.\n");
}
static bool is_allowed(unsigned op, int rmode)
{
/* odd has not been implemented for any 80-bit ops */
if (rmode == softfloat_round_odd) {
switch (op) {
case EXTF80_TO_UI32:
case EXTF80_TO_UI64:
case EXTF80_TO_I32:
case EXTF80_TO_I64:
case EXTF80_TO_UI32_R_MINMAG:
case EXTF80_TO_UI64_R_MINMAG:
case EXTF80_TO_I32_R_MINMAG:
case EXTF80_TO_I64_R_MINMAG:
case EXTF80_TO_F16:
case EXTF80_TO_F32:
case EXTF80_TO_F64:
case EXTF80_TO_F128:
case EXTF80_ROUNDTOINT:
case EXTF80_ADD:
case EXTF80_SUB:
case EXTF80_MUL:
case EXTF80_DIV:
case EXTF80_REM:
case EXTF80_SQRT:
case EXTF80_EQ:
case EXTF80_LE:
case EXTF80_LT:
case EXTF80_EQ_SIGNALING:
case EXTF80_LE_QUIET:
case EXTF80_LT_QUIET:
case UI32_TO_EXTF80:
case UI64_TO_EXTF80:
case I32_TO_EXTF80:
case I64_TO_EXTF80:
case F16_TO_EXTF80:
case F32_TO_EXTF80:
case F64_TO_EXTF80:
case F128_TO_EXTF80:
return false;
}
}
return true;
}
static void do_testfloat(int op, int rmode, bool exact)
{
abz_f16 true_abz_f16;
abz_f16 subj_abz_f16;
ab_f16_z_bool true_f16_z_bool;
ab_f16_z_bool subj_f16_z_bool;
abz_f32 true_abz_f32;
abz_f32 subj_abz_f32;
ab_f32_z_bool true_ab_f32_z_bool;
ab_f32_z_bool subj_ab_f32_z_bool;
abz_f64 true_abz_f64;
abz_f64 subj_abz_f64;
ab_f64_z_bool true_ab_f64_z_bool;
ab_f64_z_bool subj_ab_f64_z_bool;
abz_extF80M true_abz_extF80M;
abz_extF80M subj_abz_extF80M;
ab_extF80M_z_bool true_ab_extF80M_z_bool;
ab_extF80M_z_bool subj_ab_extF80M_z_bool;
abz_f128M true_abz_f128M;
abz_f128M subj_abz_f128M;
ab_f128M_z_bool true_ab_f128M_z_bool;
ab_f128M_z_bool subj_ab_f128M_z_bool;
fputs(">> Testing ", stderr);
verCases_writeFunctionName(stderr);
fputs("\n", stderr);
if (!is_allowed(op, rmode)) {
not_implemented();
return;
}
switch (op) {
case UI32_TO_F16:
test_a_ui32_z_f16(slow_ui32_to_f16, qemu_ui32_to_f16);
break;
case UI32_TO_F32:
test_a_ui32_z_f32(slow_ui32_to_f32, qemu_ui32_to_f32);
break;
case UI32_TO_F64:
test_a_ui32_z_f64(slow_ui32_to_f64, qemu_ui32_to_f64);
break;
case UI32_TO_EXTF80:
not_implemented();
break;
case UI32_TO_F128:
not_implemented();
break;
case UI64_TO_F16:
test_a_ui64_z_f16(slow_ui64_to_f16, qemu_ui64_to_f16);
break;
case UI64_TO_F32:
test_a_ui64_z_f32(slow_ui64_to_f32, qemu_ui64_to_f32);
break;
case UI64_TO_F64:
test_a_ui64_z_f64(slow_ui64_to_f64, qemu_ui64_to_f64);
break;
case UI64_TO_EXTF80:
not_implemented();
break;
case UI64_TO_F128:
test_a_ui64_z_f128(slow_ui64_to_f128M, qemu_ui64_to_f128M);
break;
case I32_TO_F16:
test_a_i32_z_f16(slow_i32_to_f16, qemu_i32_to_f16);
break;
case I32_TO_F32:
test_a_i32_z_f32(slow_i32_to_f32, qemu_i32_to_f32);
break;
case I32_TO_F64:
test_a_i32_z_f64(slow_i32_to_f64, qemu_i32_to_f64);
break;
case I32_TO_EXTF80:
test_a_i32_z_extF80(slow_i32_to_extF80M, qemu_i32_to_extF80M);
break;
case I32_TO_F128:
test_a_i32_z_f128(slow_i32_to_f128M, qemu_i32_to_f128M);
break;
case I64_TO_F16:
test_a_i64_z_f16(slow_i64_to_f16, qemu_i64_to_f16);
break;
case I64_TO_F32:
test_a_i64_z_f32(slow_i64_to_f32, qemu_i64_to_f32);
break;
case I64_TO_F64:
test_a_i64_z_f64(slow_i64_to_f64, qemu_i64_to_f64);
break;
case I64_TO_EXTF80:
test_a_i64_z_extF80(slow_i64_to_extF80M, qemu_i64_to_extF80M);
break;
case I64_TO_F128:
test_a_i64_z_f128(slow_i64_to_f128M, qemu_i64_to_f128M);
break;
case F16_TO_UI32:
test_a_f16_z_ui32_rx(slow_f16_to_ui32, qemu_f16_to_ui32, rmode, exact);
break;
case F16_TO_UI64:
test_a_f16_z_ui64_rx(slow_f16_to_ui64, qemu_f16_to_ui64, rmode, exact);
break;
case F16_TO_I32:
test_a_f16_z_i32_rx(slow_f16_to_i32, qemu_f16_to_i32, rmode, exact);
break;
case F16_TO_I64:
test_a_f16_z_i64_rx(slow_f16_to_i64, qemu_f16_to_i64, rmode, exact);
break;
case F16_TO_UI32_R_MINMAG:
test_a_f16_z_ui32_x(slow_f16_to_ui32_r_minMag,
qemu_f16_to_ui32_r_minMag, exact);
break;
case F16_TO_UI64_R_MINMAG:
test_a_f16_z_ui64_x(slow_f16_to_ui64_r_minMag,
qemu_f16_to_ui64_r_minMag, exact);
break;
case F16_TO_I32_R_MINMAG:
test_a_f16_z_i32_x(slow_f16_to_i32_r_minMag, qemu_f16_to_i32_r_minMag,
exact);
break;
case F16_TO_I64_R_MINMAG:
test_a_f16_z_i64_x(slow_f16_to_i64_r_minMag, qemu_f16_to_i64_r_minMag,
exact);
break;
case F16_TO_F32:
test_a_f16_z_f32(slow_f16_to_f32, qemu_f16_to_f32);
break;
case F16_TO_F64:
test_a_f16_z_f64(slow_f16_to_f64, qemu_f16_to_f64);
break;
case F16_TO_EXTF80:
not_implemented();
break;
case F16_TO_F128:
not_implemented();
break;
case F16_ROUNDTOINT:
test_az_f16_rx(slow_f16_roundToInt, qemu_f16_roundToInt, rmode, exact);
break;
case F16_ADD:
true_abz_f16 = slow_f16_add;
subj_abz_f16 = qemu_f16_add;
goto test_abz_f16;
case F16_SUB:
true_abz_f16 = slow_f16_sub;
subj_abz_f16 = qemu_f16_sub;
goto test_abz_f16;
case F16_MUL:
true_abz_f16 = slow_f16_mul;
subj_abz_f16 = qemu_f16_mul;
goto test_abz_f16;
case F16_DIV:
true_abz_f16 = slow_f16_div;
subj_abz_f16 = qemu_f16_div;
goto test_abz_f16;
case F16_REM:
not_implemented();
break;
test_abz_f16:
test_abz_f16(true_abz_f16, subj_abz_f16);
break;
case F16_MULADD:
test_abcz_f16(slow_f16_mulAdd, qemu_f16_mulAdd);
break;
case F16_SQRT:
test_az_f16(slow_f16_sqrt, qemu_f16_sqrt);
break;
case F16_EQ:
true_f16_z_bool = slow_f16_eq;
subj_f16_z_bool = qemu_f16_eq;
goto test_ab_f16_z_bool;
case F16_LE:
true_f16_z_bool = slow_f16_le;
subj_f16_z_bool = qemu_f16_le;
goto test_ab_f16_z_bool;
case F16_LT:
true_f16_z_bool = slow_f16_lt;
subj_f16_z_bool = qemu_f16_lt;
goto test_ab_f16_z_bool;
case F16_EQ_SIGNALING:
true_f16_z_bool = slow_f16_eq_signaling;
subj_f16_z_bool = qemu_f16_eq_signaling;
goto test_ab_f16_z_bool;
case F16_LE_QUIET:
true_f16_z_bool = slow_f16_le_quiet;
subj_f16_z_bool = qemu_f16_le_quiet;
goto test_ab_f16_z_bool;
case F16_LT_QUIET:
true_f16_z_bool = slow_f16_lt_quiet;
subj_f16_z_bool = qemu_f16_lt_quiet;
test_ab_f16_z_bool:
test_ab_f16_z_bool(true_f16_z_bool, subj_f16_z_bool);
break;
case F32_TO_UI32:
test_a_f32_z_ui32_rx(slow_f32_to_ui32, qemu_f32_to_ui32, rmode, exact);
break;
case F32_TO_UI64:
test_a_f32_z_ui64_rx(slow_f32_to_ui64, qemu_f32_to_ui64, rmode, exact);
break;
case F32_TO_I32:
test_a_f32_z_i32_rx(slow_f32_to_i32, qemu_f32_to_i32, rmode, exact);
break;
case F32_TO_I64:
test_a_f32_z_i64_rx(slow_f32_to_i64, qemu_f32_to_i64, rmode, exact);
break;
case F32_TO_UI32_R_MINMAG:
test_a_f32_z_ui32_x(slow_f32_to_ui32_r_minMag,
qemu_f32_to_ui32_r_minMag, exact);
break;
case F32_TO_UI64_R_MINMAG:
test_a_f32_z_ui64_x(slow_f32_to_ui64_r_minMag,
qemu_f32_to_ui64_r_minMag, exact);
break;
case F32_TO_I32_R_MINMAG:
test_a_f32_z_i32_x(slow_f32_to_i32_r_minMag, qemu_f32_to_i32_r_minMag,
exact);
break;
case F32_TO_I64_R_MINMAG:
test_a_f32_z_i64_x(slow_f32_to_i64_r_minMag, qemu_f32_to_i64_r_minMag,
exact);
break;
case F32_TO_F16:
test_a_f32_z_f16(slow_f32_to_f16, qemu_f32_to_f16);
break;
case F32_TO_F64:
test_a_f32_z_f64(slow_f32_to_f64, qemu_f32_to_f64);
break;
case F32_TO_EXTF80:
test_a_f32_z_extF80(slow_f32_to_extF80M, qemu_f32_to_extF80M);
break;
case F32_TO_F128:
test_a_f32_z_f128(slow_f32_to_f128M, qemu_f32_to_f128M);
break;
case F32_ROUNDTOINT:
test_az_f32_rx(slow_f32_roundToInt, qemu_f32_roundToInt, rmode, exact);
break;
case F32_ADD:
true_abz_f32 = slow_f32_add;
subj_abz_f32 = qemu_f32_add;
goto test_abz_f32;
case F32_SUB:
true_abz_f32 = slow_f32_sub;
subj_abz_f32 = qemu_f32_sub;
goto test_abz_f32;
case F32_MUL:
true_abz_f32 = slow_f32_mul;
subj_abz_f32 = qemu_f32_mul;
goto test_abz_f32;
case F32_DIV:
true_abz_f32 = slow_f32_div;
subj_abz_f32 = qemu_f32_div;
goto test_abz_f32;
case F32_REM:
true_abz_f32 = slow_f32_rem;
subj_abz_f32 = qemu_f32_rem;
test_abz_f32:
test_abz_f32(true_abz_f32, subj_abz_f32);
break;
case F32_MULADD:
test_abcz_f32(slow_f32_mulAdd, qemu_f32_mulAdd);
break;
case F32_SQRT:
test_az_f32(slow_f32_sqrt, qemu_f32_sqrt);
break;
case F32_EQ:
true_ab_f32_z_bool = slow_f32_eq;
subj_ab_f32_z_bool = qemu_f32_eq;
goto test_ab_f32_z_bool;
case F32_LE:
true_ab_f32_z_bool = slow_f32_le;
subj_ab_f32_z_bool = qemu_f32_le;
goto test_ab_f32_z_bool;
case F32_LT:
true_ab_f32_z_bool = slow_f32_lt;
subj_ab_f32_z_bool = qemu_f32_lt;
goto test_ab_f32_z_bool;
case F32_EQ_SIGNALING:
true_ab_f32_z_bool = slow_f32_eq_signaling;
subj_ab_f32_z_bool = qemu_f32_eq_signaling;
goto test_ab_f32_z_bool;
case F32_LE_QUIET:
true_ab_f32_z_bool = slow_f32_le_quiet;
subj_ab_f32_z_bool = qemu_f32_le_quiet;
goto test_ab_f32_z_bool;
case F32_LT_QUIET:
true_ab_f32_z_bool = slow_f32_lt_quiet;
subj_ab_f32_z_bool = qemu_f32_lt_quiet;
test_ab_f32_z_bool:
test_ab_f32_z_bool(true_ab_f32_z_bool, subj_ab_f32_z_bool);
break;
case F64_TO_UI32:
test_a_f64_z_ui32_rx(slow_f64_to_ui32, qemu_f64_to_ui32, rmode, exact);
break;
case F64_TO_UI64:
test_a_f64_z_ui64_rx(slow_f64_to_ui64, qemu_f64_to_ui64, rmode, exact);
break;
case F64_TO_I32:
test_a_f64_z_i32_rx(slow_f64_to_i32, qemu_f64_to_i32, rmode, exact);
break;
case F64_TO_I64:
test_a_f64_z_i64_rx(slow_f64_to_i64, qemu_f64_to_i64, rmode, exact);
break;
case F64_TO_UI32_R_MINMAG:
test_a_f64_z_ui32_x(slow_f64_to_ui32_r_minMag,
qemu_f64_to_ui32_r_minMag, exact);
break;
case F64_TO_UI64_R_MINMAG:
test_a_f64_z_ui64_x(slow_f64_to_ui64_r_minMag,
qemu_f64_to_ui64_r_minMag, exact);
break;
case F64_TO_I32_R_MINMAG:
test_a_f64_z_i32_x(slow_f64_to_i32_r_minMag, qemu_f64_to_i32_r_minMag,
exact);
break;
case F64_TO_I64_R_MINMAG:
test_a_f64_z_i64_x(slow_f64_to_i64_r_minMag, qemu_f64_to_i64_r_minMag,
exact);
break;
case F64_TO_F16:
test_a_f64_z_f16(slow_f64_to_f16, qemu_f64_to_f16);
break;
case F64_TO_F32:
test_a_f64_z_f32(slow_f64_to_f32, qemu_f64_to_f32);
break;
case F64_TO_EXTF80:
test_a_f64_z_extF80(slow_f64_to_extF80M, qemu_f64_to_extF80M);
break;
case F64_TO_F128:
test_a_f64_z_f128(slow_f64_to_f128M, qemu_f64_to_f128M);
break;
case F64_ROUNDTOINT:
test_az_f64_rx(slow_f64_roundToInt, qemu_f64_roundToInt, rmode, exact);
break;
case F64_ADD:
true_abz_f64 = slow_f64_add;
subj_abz_f64 = qemu_f64_add;
goto test_abz_f64;
case F64_SUB:
true_abz_f64 = slow_f64_sub;
subj_abz_f64 = qemu_f64_sub;
goto test_abz_f64;
case F64_MUL:
true_abz_f64 = slow_f64_mul;
subj_abz_f64 = qemu_f64_mul;
goto test_abz_f64;
case F64_DIV:
true_abz_f64 = slow_f64_div;
subj_abz_f64 = qemu_f64_div;
goto test_abz_f64;
case F64_REM:
true_abz_f64 = slow_f64_rem;
subj_abz_f64 = qemu_f64_rem;
test_abz_f64:
test_abz_f64(true_abz_f64, subj_abz_f64);
break;
case F64_MULADD:
test_abcz_f64(slow_f64_mulAdd, qemu_f64_mulAdd);
break;
case F64_SQRT:
test_az_f64(slow_f64_sqrt, qemu_f64_sqrt);
break;
case F64_EQ:
true_ab_f64_z_bool = slow_f64_eq;
subj_ab_f64_z_bool = qemu_f64_eq;
goto test_ab_f64_z_bool;
case F64_LE:
true_ab_f64_z_bool = slow_f64_le;
subj_ab_f64_z_bool = qemu_f64_le;
goto test_ab_f64_z_bool;
case F64_LT:
true_ab_f64_z_bool = slow_f64_lt;
subj_ab_f64_z_bool = qemu_f64_lt;
goto test_ab_f64_z_bool;
case F64_EQ_SIGNALING:
true_ab_f64_z_bool = slow_f64_eq_signaling;
subj_ab_f64_z_bool = qemu_f64_eq_signaling;
goto test_ab_f64_z_bool;
case F64_LE_QUIET:
true_ab_f64_z_bool = slow_f64_le_quiet;
subj_ab_f64_z_bool = qemu_f64_le_quiet;
goto test_ab_f64_z_bool;
case F64_LT_QUIET:
true_ab_f64_z_bool = slow_f64_lt_quiet;
subj_ab_f64_z_bool = qemu_f64_lt_quiet;
test_ab_f64_z_bool:
test_ab_f64_z_bool(true_ab_f64_z_bool, subj_ab_f64_z_bool);
break;
case EXTF80_TO_UI32:
not_implemented();
break;
case EXTF80_TO_UI64:
not_implemented();
break;
case EXTF80_TO_I32:
test_a_extF80_z_i32_rx(slow_extF80M_to_i32, qemu_extF80M_to_i32, rmode,
exact);
break;
case EXTF80_TO_I64:
test_a_extF80_z_i64_rx(slow_extF80M_to_i64, qemu_extF80M_to_i64, rmode,
exact);
break;
case EXTF80_TO_UI32_R_MINMAG:
not_implemented();
break;
case EXTF80_TO_UI64_R_MINMAG:
not_implemented();
break;
case EXTF80_TO_I32_R_MINMAG:
test_a_extF80_z_i32_x(slow_extF80M_to_i32_r_minMag,
qemu_extF80M_to_i32_r_minMag, exact);
break;
case EXTF80_TO_I64_R_MINMAG:
test_a_extF80_z_i64_x(slow_extF80M_to_i64_r_minMag,
qemu_extF80M_to_i64_r_minMag, exact);
break;
case EXTF80_TO_F16:
not_implemented();
break;
case EXTF80_TO_F32:
test_a_extF80_z_f32(slow_extF80M_to_f32, qemu_extF80M_to_f32);
break;
case EXTF80_TO_F64:
test_a_extF80_z_f64(slow_extF80M_to_f64, qemu_extF80M_to_f64);
break;
case EXTF80_TO_F128:
test_a_extF80_z_f128(slow_extF80M_to_f128M, qemu_extF80M_to_f128M);
break;
case EXTF80_ROUNDTOINT:
test_az_extF80_rx(slow_extF80M_roundToInt, qemu_extF80M_roundToInt,
rmode, exact);
break;
case EXTF80_ADD:
true_abz_extF80M = slow_extF80M_add;
subj_abz_extF80M = qemu_extF80M_add;
goto test_abz_extF80;
case EXTF80_SUB:
true_abz_extF80M = slow_extF80M_sub;
subj_abz_extF80M = qemu_extF80M_sub;
goto test_abz_extF80;
case EXTF80_MUL:
true_abz_extF80M = slow_extF80M_mul;
subj_abz_extF80M = qemu_extF80M_mul;
goto test_abz_extF80;
case EXTF80_DIV:
true_abz_extF80M = slow_extF80M_div;
subj_abz_extF80M = qemu_extF80M_div;
goto test_abz_extF80;
case EXTF80_REM:
true_abz_extF80M = slow_extF80M_rem;
subj_abz_extF80M = qemu_extF80M_rem;
test_abz_extF80:
test_abz_extF80(true_abz_extF80M, subj_abz_extF80M);
break;
case EXTF80_SQRT:
test_az_extF80(slow_extF80M_sqrt, qemu_extF80M_sqrt);
break;
case EXTF80_EQ:
true_ab_extF80M_z_bool = slow_extF80M_eq;
subj_ab_extF80M_z_bool = qemu_extF80M_eq;
goto test_ab_extF80_z_bool;
case EXTF80_LE:
true_ab_extF80M_z_bool = slow_extF80M_le;
subj_ab_extF80M_z_bool = qemu_extF80M_le;
goto test_ab_extF80_z_bool;
case EXTF80_LT:
true_ab_extF80M_z_bool = slow_extF80M_lt;
subj_ab_extF80M_z_bool = qemu_extF80M_lt;
goto test_ab_extF80_z_bool;
case EXTF80_EQ_SIGNALING:
true_ab_extF80M_z_bool = slow_extF80M_eq_signaling;
subj_ab_extF80M_z_bool = qemu_extF80M_eq_signaling;
goto test_ab_extF80_z_bool;
case EXTF80_LE_QUIET:
true_ab_extF80M_z_bool = slow_extF80M_le_quiet;
subj_ab_extF80M_z_bool = qemu_extF80M_le_quiet;
goto test_ab_extF80_z_bool;
case EXTF80_LT_QUIET:
true_ab_extF80M_z_bool = slow_extF80M_lt_quiet;
subj_ab_extF80M_z_bool = qemu_extF80M_lt_quiet;
test_ab_extF80_z_bool:
test_ab_extF80_z_bool(true_ab_extF80M_z_bool, subj_ab_extF80M_z_bool);
break;
case F128_TO_UI32:
test_a_f128_z_ui32_rx(slow_f128M_to_ui32, qemu_f128M_to_ui32, rmode,
exact);
break;
case F128_TO_UI64:
test_a_f128_z_ui64_rx(slow_f128M_to_ui64, qemu_f128M_to_ui64, rmode,
exact);
break;
case F128_TO_I32:
test_a_f128_z_i32_rx(slow_f128M_to_i32, qemu_f128M_to_i32, rmode,
exact);
break;
case F128_TO_I64:
test_a_f128_z_i64_rx(slow_f128M_to_i64, qemu_f128M_to_i64, rmode,
exact);
break;
case F128_TO_UI32_R_MINMAG:
test_a_f128_z_ui32_x(slow_f128M_to_ui32_r_minMag,
qemu_f128M_to_ui32_r_minMag, exact);
break;
case F128_TO_UI64_R_MINMAG:
test_a_f128_z_ui64_x(slow_f128M_to_ui64_r_minMag,
qemu_f128M_to_ui64_r_minMag, exact);
break;
case F128_TO_I32_R_MINMAG:
test_a_f128_z_i32_x(slow_f128M_to_i32_r_minMag,
qemu_f128M_to_i32_r_minMag, exact);
break;
case F128_TO_I64_R_MINMAG:
test_a_f128_z_i64_x(slow_f128M_to_i64_r_minMag,
qemu_f128M_to_i64_r_minMag, exact);
break;
case F128_TO_F16:
not_implemented();
break;
case F128_TO_F32:
test_a_f128_z_f32(slow_f128M_to_f32, qemu_f128M_to_f32);
break;
case F128_TO_F64:
test_a_f128_z_f64(slow_f128M_to_f64, qemu_f128M_to_f64);
break;
case F128_TO_EXTF80:
test_a_f128_z_extF80(slow_f128M_to_extF80M, qemu_f128M_to_extF80M);
break;
case F128_ROUNDTOINT:
test_az_f128_rx(slow_f128M_roundToInt, qemu_f128M_roundToInt, rmode,
exact);
break;
case F128_ADD:
true_abz_f128M = slow_f128M_add;
subj_abz_f128M = qemu_f128M_add;
goto test_abz_f128;
case F128_SUB:
true_abz_f128M = slow_f128M_sub;
subj_abz_f128M = qemu_f128M_sub;
goto test_abz_f128;
case F128_MUL:
true_abz_f128M = slow_f128M_mul;
subj_abz_f128M = qemu_f128M_mul;
goto test_abz_f128;
case F128_DIV:
true_abz_f128M = slow_f128M_div;
subj_abz_f128M = qemu_f128M_div;
goto test_abz_f128;
case F128_REM:
true_abz_f128M = slow_f128M_rem;
subj_abz_f128M = qemu_f128M_rem;
test_abz_f128:
test_abz_f128(true_abz_f128M, subj_abz_f128M);
break;
case F128_MULADD:
not_implemented();
break;
case F128_SQRT:
test_az_f128(slow_f128M_sqrt, qemu_f128M_sqrt);
break;
case F128_EQ:
true_ab_f128M_z_bool = slow_f128M_eq;
subj_ab_f128M_z_bool = qemu_f128M_eq;
goto test_ab_f128_z_bool;
case F128_LE:
true_ab_f128M_z_bool = slow_f128M_le;
subj_ab_f128M_z_bool = qemu_f128M_le;
goto test_ab_f128_z_bool;
case F128_LT:
true_ab_f128M_z_bool = slow_f128M_lt;
subj_ab_f128M_z_bool = qemu_f128M_lt;
goto test_ab_f128_z_bool;
case F128_EQ_SIGNALING:
true_ab_f128M_z_bool = slow_f128M_eq_signaling;
subj_ab_f128M_z_bool = qemu_f128M_eq_signaling;
goto test_ab_f128_z_bool;
case F128_LE_QUIET:
true_ab_f128M_z_bool = slow_f128M_le_quiet;
subj_ab_f128M_z_bool = qemu_f128M_le_quiet;
goto test_ab_f128_z_bool;
case F128_LT_QUIET:
true_ab_f128M_z_bool = slow_f128M_lt_quiet;
subj_ab_f128M_z_bool = qemu_f128M_lt_quiet;
test_ab_f128_z_bool:
test_ab_f128_z_bool(true_ab_f128M_z_bool, subj_ab_f128M_z_bool);
break;
}
if ((verCases_errorStop && verCases_anyErrors)) {
verCases_exitWithStatus();
}
}
static unsigned int test_name_to_op(const char *arg)
{
unsigned int i;
/* counting begins at 1 */
for (i = 1; i < NUM_FUNCTIONS; i++) {
const char *name = functionInfos[i].namePtr;
if (name && !strcmp(name, arg)) {
return i;
}
}
return 0;
}
static unsigned int round_name_to_mode(const char *name)
{
int i;
/* counting begins at 1 */
for (i = 1; i < NUM_ROUNDINGMODES; i++) {
if (!strcmp(round_mode_names[i], name)) {
return i;
}
}
return 0;
}
static int set_init_flags(const char *flags)
{
const char *p;
for (p = flags; *p != '\0'; p++) {
switch (*p) {
case 'v':
slow_init_flags |= softfloat_flag_invalid;
qemu_init_flags |= float_flag_invalid;
break;
case 'i':
slow_init_flags |= softfloat_flag_infinite;
qemu_init_flags |= float_flag_divbyzero;
break;
case 'o':
slow_init_flags |= softfloat_flag_overflow;
qemu_init_flags |= float_flag_overflow;
break;
case 'u':
slow_init_flags |= softfloat_flag_underflow;
qemu_init_flags |= float_flag_underflow;
break;
case 'x':
slow_init_flags |= softfloat_flag_inexact;
qemu_init_flags |= float_flag_inexact;
break;
default:
return 1;
}
}
return 0;
}
static uint_fast8_t slow_clear_flags(void)
{
uint8_t prev = slowfloat_exceptionFlags;
slowfloat_exceptionFlags = slow_init_flags;
return prev;
}
static uint_fast8_t qemu_clear_flags(void)
{
uint8_t prev = qemu_flags_to_sf(qsf.float_exception_flags);
qsf.float_exception_flags = qemu_init_flags;
return prev;
}
static void parse_args(int argc, char *argv[])
{
unsigned int i;
int c;
for (;;) {
c = getopt(argc, argv, "he:f:l:r:s");
if (c < 0) {
break;
}
switch (c) {
case 'h':
usage_complete(argc, argv);
exit(EXIT_SUCCESS);
case 'e':
if (qemu_strtoui(optarg, NULL, 0, &n_max_errors)) {
fprintf(stderr, "fatal: invalid max error count\n");
exit(EXIT_FAILURE);
}
break;
case 'f':
if (set_init_flags(optarg)) {
fprintf(stderr, "fatal: flags must be a subset of 'vioux'\n");
exit(EXIT_FAILURE);
}
break;
case 'l':
if (qemu_strtoi(optarg, NULL, 0, &test_level)) {
fprintf(stderr, "fatal: invalid test level\n");
exit(EXIT_FAILURE);
}
break;
case 'r':
if (!strcmp(optarg, "all")) {
test_round_mode = 0;
} else {
test_round_mode = round_name_to_mode(optarg);
if (test_round_mode == 0) {
fprintf(stderr, "fatal: invalid rounding mode\n");
exit(EXIT_FAILURE);
}
}
break;
case 's':
verCases_errorStop = true;
break;
case '?':
/* invalid option or missing argument; getopt prints error info */
exit(EXIT_FAILURE);
}
}
/* set rounding modes */
if (test_round_mode == 0) {
/* test all rounding modes; note that counting begins at 1 */
n_round_modes = NUM_ROUNDINGMODES - 1;
round_modes = g_malloc_n(n_round_modes, sizeof(*round_modes));
for (i = 0; i < n_round_modes; i++) {
round_modes[i] = i + 1;
}
} else {
n_round_modes = 1;
round_modes = g_malloc(sizeof(*round_modes));
round_modes[0] = test_round_mode;
}
/* set test ops */
if (optind == argc) {
/* test all ops; note that counting begins at 1 */
n_test_ops = NUM_FUNCTIONS - 1;
test_ops = g_malloc_n(n_test_ops, sizeof(*test_ops));
for (i = 0; i < n_test_ops; i++) {
test_ops[i] = i + 1;
}
} else {
n_test_ops = argc - optind;
test_ops = g_malloc_n(n_test_ops, sizeof(*test_ops));
for (i = 0; i < n_test_ops; i++) {
const char *name = argv[i + optind];
unsigned int op = test_name_to_op(name);
if (op == 0) {
fprintf(stderr, "fatal: invalid op '%s'\n", name);
exit(EXIT_FAILURE);
}
test_ops[i] = op;
}
}
}
static void QEMU_NORETURN run_test(void)
{
unsigned int i;
genCases_setLevel(test_level);
verCases_maxErrorCount = n_max_errors;
testLoops_trueFlagsFunction = slow_clear_flags;
testLoops_subjFlagsFunction = qemu_clear_flags;
for (i = 0; i < n_test_ops; i++) {
unsigned int op = test_ops[i];
int j;
if (functionInfos[op].namePtr == NULL) {
continue;
}
verCases_functionNamePtr = functionInfos[op].namePtr;
for (j = 0; j < n_round_modes; j++) {
int attrs = functionInfos[op].attribs;
int round = round_modes[j];
int rmode = roundingModes[round];
int k;
verCases_roundingCode = 0;
slowfloat_roundingMode = rmode;
qsf.float_rounding_mode = sf_rounding_to_qemu(rmode);
if (attrs & (FUNC_ARG_ROUNDINGMODE | FUNC_EFF_ROUNDINGMODE)) {
/* print rounding mode if the op is affected by it */
verCases_roundingCode = round;
} else if (j > 0) {
/* if the op is not sensitive to rounding, move on */
break;
}
/* QEMU doesn't have !exact */
verCases_exact = true;
verCases_usesExact = !!(attrs & FUNC_ARG_EXACT);
for (k = 0; k < 3; k++) {
int prec80 = 32;
int l;
if (k == 1) {
prec80 = 64;
} else if (k == 2) {
prec80 = 80;
}
verCases_roundingPrecision = 0;
slow_extF80_roundingPrecision = prec80;
qsf.floatx80_rounding_precision = prec80;
if (attrs & FUNC_EFF_ROUNDINGPRECISION) {
verCases_roundingPrecision = prec80;
} else if (k > 0) {
/* if the op is not sensitive to prec80, move on */
break;
}
/* note: the count begins at 1 */
for (l = 1; l < NUM_TININESSMODES; l++) {
int tmode = tininessModes[l];
verCases_tininessCode = 0;
slowfloat_detectTininess = tmode;
qsf.tininess_before_rounding = sf_tininess_to_qemu(tmode);
if (attrs & FUNC_EFF_TININESSMODE ||
((attrs & FUNC_EFF_TININESSMODE_REDUCEDPREC) &&
prec80 && prec80 < 80)) {
verCases_tininessCode = l;
} else if (l > 1) {
/* if the op is not sensitive to tininess, move on */
break;
}
do_testfloat(op, rmode, true);
}
}
}
}
verCases_exitWithStatus();
/* old compilers might miss that we exited */
g_assert_not_reached();
}
int main(int argc, char *argv[])
{
parse_args(argc, argv);
fail_programName = argv[0];
run_test(); /* does not return */
}