e37e98b7f9
When FEAT_NV is turned on via the HCR_EL2.NV bit, ERET instructions are trapped, with the same syndrome information as for the existing FEAT_FGT fine-grained trap (in the pseudocode this is handled in AArch64.CheckForEretTrap()). Rename the DisasContext and tbflag bits to reflect that they are no longer exclusively for FGT traps, and set the tbflag bit when FEAT_NV is enabled as well as when the FGT is enabled. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Miguel Luis <miguel.luis@oracle.com>
441 lines
14 KiB
C
441 lines
14 KiB
C
/*
|
|
* ARM hflags
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "cpu-features.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "cpregs.h"
|
|
|
|
static inline bool fgt_svc(CPUARMState *env, int el)
|
|
{
|
|
/*
|
|
* Assuming fine-grained-traps are active, return true if we
|
|
* should be trapping on SVC instructions. Only AArch64 can
|
|
* trap on an SVC at EL1, but we don't need to special-case this
|
|
* because if this is AArch32 EL1 then arm_fgt_active() is false.
|
|
* We also know el is 0 or 1.
|
|
*/
|
|
return el == 0 ?
|
|
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
|
|
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
|
|
ARMMMUIdx mmu_idx,
|
|
CPUARMTBFlags flags)
|
|
{
|
|
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
|
|
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
|
|
|
|
if (arm_singlestep_active(env)) {
|
|
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
|
|
}
|
|
|
|
return flags;
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
|
|
ARMMMUIdx mmu_idx,
|
|
CPUARMTBFlags flags)
|
|
{
|
|
bool sctlr_b = arm_sctlr_b(env);
|
|
|
|
if (sctlr_b) {
|
|
DP_TBFLAG_A32(flags, SCTLR__B, 1);
|
|
}
|
|
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
|
|
DP_TBFLAG_ANY(flags, BE_DATA, 1);
|
|
}
|
|
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
|
|
|
|
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
CPUARMTBFlags flags = {};
|
|
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
|
|
|
|
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
|
|
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
|
|
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
|
|
}
|
|
|
|
if (arm_v7m_is_handler_mode(env)) {
|
|
DP_TBFLAG_M32(flags, HANDLER, 1);
|
|
}
|
|
|
|
/*
|
|
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
|
|
* is suppressing them because the requested execution priority
|
|
* is less than 0.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V8) &&
|
|
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
|
|
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
|
|
DP_TBFLAG_M32(flags, STACKCHECK, 1);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
|
|
DP_TBFLAG_M32(flags, SECURE, 1);
|
|
}
|
|
|
|
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
|
|
}
|
|
|
|
/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
|
|
static bool sme_fa64(CPUARMState *env, int el)
|
|
{
|
|
if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
|
|
return false;
|
|
}
|
|
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
|
|
return false;
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
CPUARMTBFlags flags = {};
|
|
int el = arm_current_el(env);
|
|
|
|
if (arm_sctlr(env, el) & SCTLR_A) {
|
|
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
|
|
}
|
|
|
|
if (arm_el_is_aa64(env, 1)) {
|
|
DP_TBFLAG_A32(flags, VFPEN, 1);
|
|
}
|
|
|
|
if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
|
|
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
|
|
}
|
|
|
|
if (arm_fgt_active(env, el)) {
|
|
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
|
|
if (fgt_svc(env, el)) {
|
|
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
|
|
}
|
|
}
|
|
|
|
if (env->uncached_cpsr & CPSR_IL) {
|
|
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
|
|
}
|
|
|
|
/*
|
|
* The SME exception we are testing for is raised via
|
|
* AArch64.CheckFPAdvSIMDEnabled(), as called from
|
|
* AArch32.CheckAdvSIMDOrFPEnabled().
|
|
*/
|
|
if (el == 0
|
|
&& FIELD_EX64(env->svcr, SVCR, SM)
|
|
&& (!arm_is_el2_enabled(env)
|
|
|| (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
|
|
&& arm_el_is_aa64(env, 1)
|
|
&& !sme_fa64(env, el)) {
|
|
DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
|
|
}
|
|
|
|
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
CPUARMTBFlags flags = {};
|
|
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
|
|
uint64_t tcr = regime_tcr(env, mmu_idx);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
uint64_t sctlr;
|
|
int tbii, tbid;
|
|
|
|
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
|
|
|
|
/* Get control bits for tagged addresses. */
|
|
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
|
|
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
|
|
|
|
DP_TBFLAG_A64(flags, TBII, tbii);
|
|
DP_TBFLAG_A64(flags, TBID, tbid);
|
|
|
|
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
|
|
int sve_el = sve_exception_el(env, el);
|
|
|
|
/*
|
|
* If either FP or SVE are disabled, translator does not need len.
|
|
* If SVE EL > FP EL, FP exception has precedence, and translator
|
|
* does not need SVE EL. Save potential re-translations by forcing
|
|
* the unneeded data to zero.
|
|
*/
|
|
if (fp_el != 0) {
|
|
if (sve_el > fp_el) {
|
|
sve_el = 0;
|
|
}
|
|
} else if (sve_el == 0) {
|
|
DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
|
|
}
|
|
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
|
|
}
|
|
if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
|
|
int sme_el = sme_exception_el(env, el);
|
|
bool sm = FIELD_EX64(env->svcr, SVCR, SM);
|
|
|
|
DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
|
|
if (sme_el == 0) {
|
|
/* Similarly, do not compute SVL if SME is disabled. */
|
|
int svl = sve_vqm1_for_el_sm(env, el, true);
|
|
DP_TBFLAG_A64(flags, SVL, svl);
|
|
if (sm) {
|
|
/* If SVE is disabled, we will not have set VL above. */
|
|
DP_TBFLAG_A64(flags, VL, svl);
|
|
}
|
|
}
|
|
if (sm) {
|
|
DP_TBFLAG_A64(flags, PSTATE_SM, 1);
|
|
DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
|
|
}
|
|
DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
|
|
}
|
|
|
|
sctlr = regime_sctlr(env, stage1);
|
|
|
|
if (sctlr & SCTLR_A) {
|
|
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
|
|
}
|
|
|
|
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
|
|
DP_TBFLAG_ANY(flags, BE_DATA, 1);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
|
|
/*
|
|
* In order to save space in flags, we record only whether
|
|
* pauth is "inactive", meaning all insns are implemented as
|
|
* a nop, or "active" when some action must be performed.
|
|
* The decision of which action to take is left to a helper.
|
|
*/
|
|
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
|
|
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
|
|
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
|
|
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
|
|
DP_TBFLAG_A64(flags, BT, 1);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
|
|
if (sctlr & SCTLR_nAA) {
|
|
DP_TBFLAG_A64(flags, NAA, 1);
|
|
}
|
|
}
|
|
|
|
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
|
|
if (!(env->pstate & PSTATE_UAO)) {
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
/* TODO: ARMv8.3-NV */
|
|
DP_TBFLAG_A64(flags, UNPRIV, 1);
|
|
break;
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
/*
|
|
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
|
|
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
|
|
*/
|
|
if (env->cp15.hcr_el2 & HCR_TGE) {
|
|
DP_TBFLAG_A64(flags, UNPRIV, 1);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (env->pstate & PSTATE_IL) {
|
|
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
|
|
}
|
|
|
|
if (arm_fgt_active(env, el)) {
|
|
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
|
|
if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
|
|
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
|
|
}
|
|
if (fgt_svc(env, el)) {
|
|
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
|
|
* of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
|
|
*/
|
|
if (el == 1 && (hcr & HCR_NV)) {
|
|
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
|
|
/*
|
|
* Set MTE_ACTIVE if any access may be Checked, and leave clear
|
|
* if all accesses must be Unchecked:
|
|
* 1) If no TBI, then there are no tags in the address to check,
|
|
* 2) If Tag Check Override, then all accesses are Unchecked,
|
|
* 3) If Tag Check Fail == 0, then Checked access have no effect,
|
|
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
|
|
*/
|
|
if (allocation_tag_access_enabled(env, el, sctlr)) {
|
|
DP_TBFLAG_A64(flags, ATA, 1);
|
|
if (tbid
|
|
&& !(env->pstate & PSTATE_TCO)
|
|
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
|
|
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
|
|
if (!EX_TBFLAG_A64(flags, UNPRIV)) {
|
|
/*
|
|
* In non-unpriv contexts (eg EL0), unpriv load/stores
|
|
* act like normal ones; duplicate the MTE info to
|
|
* avoid translate-a64.c having to check UNPRIV to see
|
|
* whether it is OK to index into MTE_ACTIVE[].
|
|
*/
|
|
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
|
|
}
|
|
}
|
|
}
|
|
/* And again for unprivileged accesses, if required. */
|
|
if (EX_TBFLAG_A64(flags, UNPRIV)
|
|
&& tbid
|
|
&& !(env->pstate & PSTATE_TCO)
|
|
&& (sctlr & SCTLR_TCF0)
|
|
&& allocation_tag_access_enabled(env, 0, sctlr)) {
|
|
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
|
|
}
|
|
/*
|
|
* For unpriv tag-setting accesses we also need ATA0. Again, in
|
|
* contexts where unpriv and normal insns are the same we
|
|
* duplicate the ATA bit to save effort for translate-a64.c.
|
|
*/
|
|
if (EX_TBFLAG_A64(flags, UNPRIV)) {
|
|
if (allocation_tag_access_enabled(env, 0, sctlr)) {
|
|
DP_TBFLAG_A64(flags, ATA0, 1);
|
|
}
|
|
} else {
|
|
DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
|
|
}
|
|
/* Cache TCMA as well as TBI. */
|
|
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
|
|
}
|
|
|
|
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
|
|
}
|
|
|
|
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
|
|
{
|
|
int el = arm_current_el(env);
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
|
|
if (is_a64(env)) {
|
|
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
|
|
} else if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return rebuild_hflags_m32(env, fp_el, mmu_idx);
|
|
} else {
|
|
return rebuild_hflags_a32(env, fp_el, mmu_idx);
|
|
}
|
|
}
|
|
|
|
void arm_rebuild_hflags(CPUARMState *env)
|
|
{
|
|
env->hflags = rebuild_hflags_internal(env);
|
|
}
|
|
|
|
/*
|
|
* If we have triggered a EL state change we can't rely on the
|
|
* translator having passed it to us, we need to recompute.
|
|
*/
|
|
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
|
|
{
|
|
int el = arm_current_el(env);
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
|
|
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
|
|
}
|
|
|
|
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
|
|
{
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
|
|
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
|
|
}
|
|
|
|
/*
|
|
* If we have triggered a EL state change we can't rely on the
|
|
* translator having passed it to us, we need to recompute.
|
|
*/
|
|
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
|
|
{
|
|
int el = arm_current_el(env);
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
|
|
}
|
|
|
|
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
|
|
{
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
|
|
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
|
|
}
|
|
|
|
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
|
|
{
|
|
int fp_el = fp_exception_el(env, el);
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
|
|
|
|
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
|
|
}
|
|
|
|
void assert_hflags_rebuild_correctly(CPUARMState *env)
|
|
{
|
|
#ifdef CONFIG_DEBUG_TCG
|
|
CPUARMTBFlags c = env->hflags;
|
|
CPUARMTBFlags r = rebuild_hflags_internal(env);
|
|
|
|
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
|
|
fprintf(stderr, "TCG hflags mismatch "
|
|
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
|
|
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
|
|
c.flags, c.flags2, r.flags, r.flags2);
|
|
abort();
|
|
}
|
|
#endif
|
|
}
|