qemu/contrib/plugins/ips.c
Alex Bennée 8148fb56c7 contrib/plugins: avoid hanging program
Although we asks for instructions per second we work in quanta and
that cannot be 0. Fail to load the plugin instead and report the
minimum IPS we can handle.

Reported-by: Elisha Hollander <just4now666666@gmail.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Message-Id: <20240916085400.1046925-19-alex.bennee@linaro.org>
2024-09-19 15:58:01 +01:00

171 lines
5.4 KiB
C

/*
* Instructions Per Second (IPS) rate limiting plugin.
*
* This plugin can be used to restrict the execution of a system to a
* particular number of Instructions Per Second (IPS). This controls
* time as seen by the guest so while wall-clock time may be longer
* from the guests point of view time will pass at the normal rate.
*
* This uses the new plugin API which allows the plugin to control
* system time.
*
* Copyright (c) 2023 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
/* how many times do we update time per sec */
#define NUM_TIME_UPDATE_PER_SEC 10
#define NSEC_IN_ONE_SEC (1000 * 1000 * 1000)
static GMutex global_state_lock;
static uint64_t max_insn_per_second = 1000 * 1000 * 1000; /* ips per core, per second */
static uint64_t max_insn_per_quantum; /* trap every N instructions */
static int64_t virtual_time_ns; /* last set virtual time */
static const void *time_handle;
typedef struct {
uint64_t total_insn;
uint64_t quantum_insn; /* insn in last quantum */
int64_t last_quantum_time; /* time when last quantum started */
} vCPUTime;
struct qemu_plugin_scoreboard *vcpus;
/* return epoch time in ns */
static int64_t now_ns(void)
{
return g_get_real_time() * 1000;
}
static uint64_t num_insn_during(int64_t elapsed_ns)
{
double num_secs = elapsed_ns / (double) NSEC_IN_ONE_SEC;
return num_secs * (double) max_insn_per_second;
}
static int64_t time_for_insn(uint64_t num_insn)
{
double num_secs = (double) num_insn / (double) max_insn_per_second;
return num_secs * (double) NSEC_IN_ONE_SEC;
}
static void update_system_time(vCPUTime *vcpu)
{
int64_t elapsed_ns = now_ns() - vcpu->last_quantum_time;
uint64_t max_insn = num_insn_during(elapsed_ns);
if (vcpu->quantum_insn >= max_insn) {
/* this vcpu ran faster than expected, so it has to sleep */
uint64_t insn_advance = vcpu->quantum_insn - max_insn;
uint64_t time_advance_ns = time_for_insn(insn_advance);
int64_t sleep_us = time_advance_ns / 1000;
g_usleep(sleep_us);
}
vcpu->total_insn += vcpu->quantum_insn;
vcpu->quantum_insn = 0;
vcpu->last_quantum_time = now_ns();
/* based on total number of instructions, what should be the new time? */
int64_t new_virtual_time = time_for_insn(vcpu->total_insn);
g_mutex_lock(&global_state_lock);
/* Time only moves forward. Another vcpu might have updated it already. */
if (new_virtual_time > virtual_time_ns) {
qemu_plugin_update_ns(time_handle, new_virtual_time);
virtual_time_ns = new_virtual_time;
}
g_mutex_unlock(&global_state_lock);
}
static void vcpu_init(qemu_plugin_id_t id, unsigned int cpu_index)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
vcpu->total_insn = 0;
vcpu->quantum_insn = 0;
vcpu->last_quantum_time = now_ns();
}
static void vcpu_exit(qemu_plugin_id_t id, unsigned int cpu_index)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
update_system_time(vcpu);
}
static void every_quantum_insn(unsigned int cpu_index, void *udata)
{
vCPUTime *vcpu = qemu_plugin_scoreboard_find(vcpus, cpu_index);
g_assert(vcpu->quantum_insn >= max_insn_per_quantum);
update_system_time(vcpu);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n_insns = qemu_plugin_tb_n_insns(tb);
qemu_plugin_u64 quantum_insn =
qemu_plugin_scoreboard_u64_in_struct(vcpus, vCPUTime, quantum_insn);
/* count (and eventually trap) once per tb */
qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
tb, QEMU_PLUGIN_INLINE_ADD_U64, quantum_insn, n_insns);
qemu_plugin_register_vcpu_tb_exec_cond_cb(
tb, every_quantum_insn,
QEMU_PLUGIN_CB_NO_REGS, QEMU_PLUGIN_COND_GE,
quantum_insn, max_insn_per_quantum, NULL);
}
static void plugin_exit(qemu_plugin_id_t id, void *udata)
{
qemu_plugin_scoreboard_free(vcpus);
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info, int argc,
char **argv)
{
for (int i = 0; i < argc; i++) {
char *opt = argv[i];
g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
if (g_strcmp0(tokens[0], "ips") == 0) {
max_insn_per_second = g_ascii_strtoull(tokens[1], NULL, 10);
if (!max_insn_per_second && errno) {
fprintf(stderr, "%s: couldn't parse %s (%s)\n",
__func__, tokens[1], g_strerror(errno));
return -1;
}
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
vcpus = qemu_plugin_scoreboard_new(sizeof(vCPUTime));
max_insn_per_quantum = max_insn_per_second / NUM_TIME_UPDATE_PER_SEC;
if (max_insn_per_quantum == 0) {
fprintf(stderr, "minimum of %d instructions per second needed\n",
NUM_TIME_UPDATE_PER_SEC);
return -1;
}
time_handle = qemu_plugin_request_time_control();
g_assert(time_handle);
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_vcpu_init_cb(id, vcpu_init);
qemu_plugin_register_vcpu_exit_cb(id, vcpu_exit);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}