e1571908a2
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5505 c046a42c-6fe2-441c-8c8c-71466251a162
3028 lines
76 KiB
C
3028 lines
76 KiB
C
/*
|
|
* PowerPC emulation helpers for qemu.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "exec.h"
|
|
#include "host-utils.h"
|
|
|
|
#include "helper_regs.h"
|
|
#include "op_helper.h"
|
|
|
|
#define MEMSUFFIX _raw
|
|
#include "op_helper.h"
|
|
#include "op_helper_mem.h"
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#define MEMSUFFIX _user
|
|
#include "op_helper.h"
|
|
#include "op_helper_mem.h"
|
|
#define MEMSUFFIX _kernel
|
|
#include "op_helper.h"
|
|
#include "op_helper_mem.h"
|
|
#define MEMSUFFIX _hypv
|
|
#include "op_helper.h"
|
|
#include "op_helper_mem.h"
|
|
#endif
|
|
|
|
//#define DEBUG_OP
|
|
//#define DEBUG_EXCEPTIONS
|
|
//#define DEBUG_SOFTWARE_TLB
|
|
|
|
/*****************************************************************************/
|
|
/* Exceptions processing helpers */
|
|
|
|
void do_raise_exception_err (uint32_t exception, int error_code)
|
|
{
|
|
#if 0
|
|
printf("Raise exception %3x code : %d\n", exception, error_code);
|
|
#endif
|
|
env->exception_index = exception;
|
|
env->error_code = error_code;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
void do_raise_exception (uint32_t exception)
|
|
{
|
|
do_raise_exception_err(exception, 0);
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Registers load and stores */
|
|
uint32_t helper_load_cr (void)
|
|
{
|
|
return (env->crf[0] << 28) |
|
|
(env->crf[1] << 24) |
|
|
(env->crf[2] << 20) |
|
|
(env->crf[3] << 16) |
|
|
(env->crf[4] << 12) |
|
|
(env->crf[5] << 8) |
|
|
(env->crf[6] << 4) |
|
|
(env->crf[7] << 0);
|
|
}
|
|
|
|
void helper_store_cr (target_ulong val, uint32_t mask)
|
|
{
|
|
int i, sh;
|
|
|
|
for (i = 0, sh = 7; i < 8; i++, sh--) {
|
|
if (mask & (1 << sh))
|
|
env->crf[i] = (val >> (sh * 4)) & 0xFUL;
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_store_pri (int prio)
|
|
{
|
|
env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
|
|
env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
|
|
}
|
|
#endif
|
|
|
|
target_ulong ppc_load_dump_spr (int sprn)
|
|
{
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
|
|
sprn, sprn, env->spr[sprn]);
|
|
}
|
|
|
|
return env->spr[sprn];
|
|
}
|
|
|
|
void ppc_store_dump_spr (int sprn, target_ulong val)
|
|
{
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
|
|
sprn, sprn, env->spr[sprn], val);
|
|
}
|
|
env->spr[sprn] = val;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Fixed point operations helpers */
|
|
void do_adde (void)
|
|
{
|
|
T2 = T0;
|
|
T0 += T1 + xer_ca;
|
|
if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
|
|
(xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_adde_64 (void)
|
|
{
|
|
T2 = T0;
|
|
T0 += T1 + xer_ca;
|
|
if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
|
|
(xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_addmeo (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 += xer_ca + (-1);
|
|
ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint32_t)T1 != 0))
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_addmeo_64 (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 += xer_ca + (-1);
|
|
ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint64_t)T1 != 0))
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
#endif
|
|
|
|
void do_divwo (void)
|
|
{
|
|
if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
|
|
(int32_t)T1 == 0))) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = (int32_t)T0 / (int32_t)T1;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_divdo (void)
|
|
{
|
|
if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
|
|
(int64_t)T1 == 0))) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = (int64_t)T0 / (int64_t)T1;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_divwuo (void)
|
|
{
|
|
if (likely((uint32_t)T1 != 0)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = (uint32_t)T0 / (uint32_t)T1;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
T0 = 0;
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_divduo (void)
|
|
{
|
|
if (likely((uint64_t)T1 != 0)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = (uint64_t)T0 / (uint64_t)T1;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
T0 = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_mullwo (void)
|
|
{
|
|
int64_t res = (int64_t)(int32_t)T0 * (int64_t)(int32_t)T1;
|
|
|
|
if (likely((int32_t)res == res)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
T0 = (int32_t)res;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_mulldo (void)
|
|
{
|
|
int64_t th;
|
|
uint64_t tl;
|
|
|
|
muls64(&tl, (uint64_t *)&th, T0, T1);
|
|
T0 = (int64_t)tl;
|
|
/* If th != 0 && th != -1, then we had an overflow */
|
|
if (likely((uint64_t)(th + 1) <= 1)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_nego (void)
|
|
{
|
|
if (likely((int32_t)T0 != INT32_MIN)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = -(int32_t)T0;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_nego_64 (void)
|
|
{
|
|
if (likely((int64_t)T0 != INT64_MIN)) {
|
|
env->xer &= ~(1 << XER_OV);
|
|
T0 = -(int64_t)T0;
|
|
} else {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_subfe (void)
|
|
{
|
|
T0 = T1 + ~T0 + xer_ca;
|
|
if (likely((uint32_t)T0 >= (uint32_t)T1 &&
|
|
(xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_subfe_64 (void)
|
|
{
|
|
T0 = T1 + ~T0 + xer_ca;
|
|
if (likely((uint64_t)T0 >= (uint64_t)T1 &&
|
|
(xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_subfmeo (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 = ~T0 + xer_ca - 1;
|
|
ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint32_t)T1 != UINT32_MAX))
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_subfmeo_64 (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 = ~T0 + xer_ca - 1;
|
|
ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint64_t)T1 != UINT64_MAX))
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
#endif
|
|
|
|
void do_subfzeo (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 = ~T0 + xer_ca;
|
|
ov = (((uint32_t)~T1 ^ UINT32_MAX) &
|
|
((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_subfzeo_64 (void)
|
|
{
|
|
int ov;
|
|
T1 = T0;
|
|
T0 = ~T0 + xer_ca;
|
|
ov = (((uint64_t)~T1 ^ UINT64_MAX) &
|
|
((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
|
|
if (ov) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void do_cntlzw (void)
|
|
{
|
|
T0 = clz32(T0);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_cntlzd (void)
|
|
{
|
|
T0 = clz64(T0);
|
|
}
|
|
#endif
|
|
|
|
/* shift right arithmetic helper */
|
|
void do_sraw (void)
|
|
{
|
|
int32_t ret;
|
|
|
|
if (likely(!(T1 & 0x20UL))) {
|
|
if (likely((uint32_t)T1 != 0)) {
|
|
ret = (int32_t)T0 >> (T1 & 0x1fUL);
|
|
if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = T0;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
T0 = ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_srad (void)
|
|
{
|
|
int64_t ret;
|
|
|
|
if (likely(!(T1 & 0x40UL))) {
|
|
if (likely((uint64_t)T1 != 0)) {
|
|
ret = (int64_t)T0 >> (T1 & 0x3FUL);
|
|
if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = T0;
|
|
env->xer &= ~(1 << XER_CA);
|
|
}
|
|
} else {
|
|
ret = UINT64_MAX * ((uint64_t)T0 >> 63);
|
|
if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
|
|
env->xer &= ~(1 << XER_CA);
|
|
} else {
|
|
env->xer |= (1 << XER_CA);
|
|
}
|
|
}
|
|
T0 = ret;
|
|
}
|
|
#endif
|
|
|
|
void do_popcntb (void)
|
|
{
|
|
uint32_t ret;
|
|
int i;
|
|
|
|
ret = 0;
|
|
for (i = 0; i < 32; i += 8)
|
|
ret |= ctpop8((T0 >> i) & 0xFF) << i;
|
|
T0 = ret;
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_popcntb_64 (void)
|
|
{
|
|
uint64_t ret;
|
|
int i;
|
|
|
|
ret = 0;
|
|
for (i = 0; i < 64; i += 8)
|
|
ret |= ctpop8((T0 >> i) & 0xFF) << i;
|
|
T0 = ret;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Floating point operations helpers */
|
|
static always_inline int fpisneg (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return u.ll >> 63 != 0;
|
|
}
|
|
|
|
static always_inline int isden (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return ((u.ll >> 52) & 0x7FF) == 0;
|
|
}
|
|
|
|
static always_inline int iszero (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return (u.ll & ~0x8000000000000000ULL) == 0;
|
|
}
|
|
|
|
static always_inline int isinfinity (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
|
|
(u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
static always_inline int isfinite (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
return (((u.ll >> 52) & 0x7FF) != 0x7FF);
|
|
}
|
|
|
|
static always_inline int isnormal (float64 d)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = d;
|
|
|
|
uint32_t exp = (u.ll >> 52) & 0x7FF;
|
|
return ((0 < exp) && (exp < 0x7FF));
|
|
}
|
|
#endif
|
|
|
|
void do_compute_fprf (int set_fprf)
|
|
{
|
|
int isneg;
|
|
|
|
isneg = fpisneg(FT0);
|
|
if (unlikely(float64_is_nan(FT0))) {
|
|
if (float64_is_signaling_nan(FT0)) {
|
|
/* Signaling NaN: flags are undefined */
|
|
T0 = 0x00;
|
|
} else {
|
|
/* Quiet NaN */
|
|
T0 = 0x11;
|
|
}
|
|
} else if (unlikely(isinfinity(FT0))) {
|
|
/* +/- infinity */
|
|
if (isneg)
|
|
T0 = 0x09;
|
|
else
|
|
T0 = 0x05;
|
|
} else {
|
|
if (iszero(FT0)) {
|
|
/* +/- zero */
|
|
if (isneg)
|
|
T0 = 0x12;
|
|
else
|
|
T0 = 0x02;
|
|
} else {
|
|
if (isden(FT0)) {
|
|
/* Denormalized numbers */
|
|
T0 = 0x10;
|
|
} else {
|
|
/* Normalized numbers */
|
|
T0 = 0x00;
|
|
}
|
|
if (isneg) {
|
|
T0 |= 0x08;
|
|
} else {
|
|
T0 |= 0x04;
|
|
}
|
|
}
|
|
}
|
|
if (set_fprf) {
|
|
/* We update FPSCR_FPRF */
|
|
env->fpscr &= ~(0x1F << FPSCR_FPRF);
|
|
env->fpscr |= T0 << FPSCR_FPRF;
|
|
}
|
|
/* We just need fpcc to update Rc1 */
|
|
T0 &= 0xF;
|
|
}
|
|
|
|
/* Floating-point invalid operations exception */
|
|
static always_inline void fload_invalid_op_excp (int op)
|
|
{
|
|
int ve;
|
|
|
|
ve = fpscr_ve;
|
|
if (op & POWERPC_EXCP_FP_VXSNAN) {
|
|
/* Operation on signaling NaN */
|
|
env->fpscr |= 1 << FPSCR_VXSNAN;
|
|
}
|
|
if (op & POWERPC_EXCP_FP_VXSOFT) {
|
|
/* Software-defined condition */
|
|
env->fpscr |= 1 << FPSCR_VXSOFT;
|
|
}
|
|
switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
|
|
case POWERPC_EXCP_FP_VXISI:
|
|
/* Magnitude subtraction of infinities */
|
|
env->fpscr |= 1 << FPSCR_VXISI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIDI:
|
|
/* Division of infinity by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIDI;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXZDZ:
|
|
/* Division of zero by zero */
|
|
env->fpscr |= 1 << FPSCR_VXZDZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXIMZ:
|
|
/* Multiplication of zero by infinity */
|
|
env->fpscr |= 1 << FPSCR_VXIMZ;
|
|
goto update_arith;
|
|
case POWERPC_EXCP_FP_VXVC:
|
|
/* Ordered comparison of NaN */
|
|
env->fpscr |= 1 << FPSCR_VXVC;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
/* We must update the target FPR before raising the exception */
|
|
if (ve != 0) {
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* Exception is differed */
|
|
ve = 0;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXSQRT:
|
|
/* Square root of a negative number */
|
|
env->fpscr |= 1 << FPSCR_VXSQRT;
|
|
update_arith:
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
FT0 = UINT64_MAX;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
case POWERPC_EXCP_FP_VXCVI:
|
|
/* Invalid conversion */
|
|
env->fpscr |= 1 << FPSCR_VXCVI;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
if (ve == 0) {
|
|
/* Set the result to quiet NaN */
|
|
FT0 = UINT64_MAX;
|
|
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
|
env->fpscr |= 0x11 << FPSCR_FPCC;
|
|
}
|
|
break;
|
|
}
|
|
/* Update the floating-point invalid operation summary */
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (ve != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0)
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
|
|
}
|
|
}
|
|
|
|
static always_inline void float_zero_divide_excp (void)
|
|
{
|
|
CPU_DoubleU u0, u1;
|
|
|
|
env->fpscr |= 1 << FPSCR_ZX;
|
|
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
if (msr_fe0 != 0 || msr_fe1 != 0) {
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
|
|
}
|
|
} else {
|
|
/* Set the result to infinity */
|
|
u0.d = FT0;
|
|
u1.d = FT1;
|
|
u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
|
|
u0.ll |= 0x7FFULL << 52;
|
|
FT0 = u0.d;
|
|
}
|
|
}
|
|
|
|
static always_inline void float_overflow_excp (void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_OX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
} else {
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
env->fpscr |= 1 << FPSCR_FI;
|
|
}
|
|
}
|
|
|
|
static always_inline void float_underflow_excp (void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_UX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue != 0) {
|
|
/* XXX: should adjust the result */
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
}
|
|
}
|
|
|
|
static always_inline void float_inexact_excp (void)
|
|
{
|
|
env->fpscr |= 1 << FPSCR_XX;
|
|
/* Update the floating-point exception summary */
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe != 0) {
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We must update the target FPR before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
}
|
|
}
|
|
|
|
static always_inline void fpscr_set_rounding_mode (void)
|
|
{
|
|
int rnd_type;
|
|
|
|
/* Set rounding mode */
|
|
switch (fpscr_rn) {
|
|
case 0:
|
|
/* Best approximation (round to nearest) */
|
|
rnd_type = float_round_nearest_even;
|
|
break;
|
|
case 1:
|
|
/* Smaller magnitude (round toward zero) */
|
|
rnd_type = float_round_to_zero;
|
|
break;
|
|
case 2:
|
|
/* Round toward +infinite */
|
|
rnd_type = float_round_up;
|
|
break;
|
|
default:
|
|
case 3:
|
|
/* Round toward -infinite */
|
|
rnd_type = float_round_down;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_type, &env->fp_status);
|
|
}
|
|
|
|
void do_fpscr_setbit (int bit)
|
|
{
|
|
int prev;
|
|
|
|
prev = (env->fpscr >> bit) & 1;
|
|
env->fpscr |= 1 << bit;
|
|
if (prev == 0) {
|
|
switch (bit) {
|
|
case FPSCR_VX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve)
|
|
goto raise_ve;
|
|
case FPSCR_OX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_oe)
|
|
goto raise_oe;
|
|
break;
|
|
case FPSCR_UX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ue)
|
|
goto raise_ue;
|
|
break;
|
|
case FPSCR_ZX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ze)
|
|
goto raise_ze;
|
|
break;
|
|
case FPSCR_XX:
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_xe)
|
|
goto raise_xe;
|
|
break;
|
|
case FPSCR_VXSNAN:
|
|
case FPSCR_VXISI:
|
|
case FPSCR_VXIDI:
|
|
case FPSCR_VXZDZ:
|
|
case FPSCR_VXIMZ:
|
|
case FPSCR_VXVC:
|
|
case FPSCR_VXSOFT:
|
|
case FPSCR_VXSQRT:
|
|
case FPSCR_VXCVI:
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
env->fpscr |= 1 << FPSCR_FX;
|
|
if (fpscr_ve != 0)
|
|
goto raise_ve;
|
|
break;
|
|
case FPSCR_VE:
|
|
if (fpscr_vx != 0) {
|
|
raise_ve:
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
if (fpscr_vxsnan)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSNAN;
|
|
if (fpscr_vxisi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXISI;
|
|
if (fpscr_vxidi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXIDI;
|
|
if (fpscr_vxzdz)
|
|
env->error_code |= POWERPC_EXCP_FP_VXZDZ;
|
|
if (fpscr_vximz)
|
|
env->error_code |= POWERPC_EXCP_FP_VXIMZ;
|
|
if (fpscr_vxvc)
|
|
env->error_code |= POWERPC_EXCP_FP_VXVC;
|
|
if (fpscr_vxsoft)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSOFT;
|
|
if (fpscr_vxsqrt)
|
|
env->error_code |= POWERPC_EXCP_FP_VXSQRT;
|
|
if (fpscr_vxcvi)
|
|
env->error_code |= POWERPC_EXCP_FP_VXCVI;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_OE:
|
|
if (fpscr_ox != 0) {
|
|
raise_oe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_UE:
|
|
if (fpscr_ux != 0) {
|
|
raise_ue:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_ZE:
|
|
if (fpscr_zx != 0) {
|
|
raise_ze:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_XE:
|
|
if (fpscr_xx != 0) {
|
|
raise_xe:
|
|
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
|
|
goto raise_excp;
|
|
}
|
|
break;
|
|
case FPSCR_RN1:
|
|
case FPSCR_RN:
|
|
fpscr_set_rounding_mode();
|
|
break;
|
|
default:
|
|
break;
|
|
raise_excp:
|
|
/* Update the floating-point enabled exception summary */
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
/* We have to update Rc1 before raising the exception */
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(WORDS_BIGENDIAN)
|
|
#define WORD0 0
|
|
#define WORD1 1
|
|
#else
|
|
#define WORD0 1
|
|
#define WORD1 0
|
|
#endif
|
|
void do_store_fpscr (uint32_t mask)
|
|
{
|
|
/*
|
|
* We use only the 32 LSB of the incoming fpr
|
|
*/
|
|
CPU_DoubleU u;
|
|
uint32_t prev, new;
|
|
int i;
|
|
|
|
u.d = FT0;
|
|
prev = env->fpscr;
|
|
new = u.l.lower;
|
|
new &= ~0x90000000;
|
|
new |= prev & 0x90000000;
|
|
for (i = 0; i < 7; i++) {
|
|
if (mask & (1 << i)) {
|
|
env->fpscr &= ~(0xF << (4 * i));
|
|
env->fpscr |= new & (0xF << (4 * i));
|
|
}
|
|
}
|
|
/* Update VX and FEX */
|
|
if (fpscr_ix != 0)
|
|
env->fpscr |= 1 << FPSCR_VX;
|
|
else
|
|
env->fpscr &= ~(1 << FPSCR_VX);
|
|
if ((fpscr_ex & fpscr_eex) != 0) {
|
|
env->fpscr |= 1 << FPSCR_FEX;
|
|
env->exception_index = POWERPC_EXCP_PROGRAM;
|
|
/* XXX: we should compute it properly */
|
|
env->error_code = POWERPC_EXCP_FP;
|
|
}
|
|
else
|
|
env->fpscr &= ~(1 << FPSCR_FEX);
|
|
fpscr_set_rounding_mode();
|
|
}
|
|
#undef WORD0
|
|
#undef WORD1
|
|
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
void do_float_check_status (void)
|
|
{
|
|
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
|
|
(env->error_code & POWERPC_EXCP_FP)) {
|
|
/* Differred floating-point exception after target FPR update */
|
|
if (msr_fe0 != 0 || msr_fe1 != 0)
|
|
do_raise_exception_err(env->exception_index, env->error_code);
|
|
} else if (env->fp_status.float_exception_flags & float_flag_overflow) {
|
|
float_overflow_excp();
|
|
} else if (env->fp_status.float_exception_flags & float_flag_underflow) {
|
|
float_underflow_excp();
|
|
} else if (env->fp_status.float_exception_flags & float_flag_inexact) {
|
|
float_inexact_excp();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if USE_PRECISE_EMULATION
|
|
void do_fadd (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1))) {
|
|
/* sNaN addition */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (likely(isfinite(FT0) || isfinite(FT1) ||
|
|
fpisneg(FT0) == fpisneg(FT1))) {
|
|
FT0 = float64_add(FT0, FT1, &env->fp_status);
|
|
} else {
|
|
/* Magnitude subtraction of infinities */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
}
|
|
}
|
|
|
|
void do_fsub (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1))) {
|
|
/* sNaN subtraction */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (likely(isfinite(FT0) || isfinite(FT1) ||
|
|
fpisneg(FT0) != fpisneg(FT1))) {
|
|
FT0 = float64_sub(FT0, FT1, &env->fp_status);
|
|
} else {
|
|
/* Magnitude subtraction of infinities */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
|
|
}
|
|
}
|
|
|
|
void do_fmul (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1))) {
|
|
/* sNaN multiplication */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
|
|
(iszero(FT0) && isinfinity(FT1)))) {
|
|
/* Multiplication of zero by infinity */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
|
|
} else {
|
|
FT0 = float64_mul(FT0, FT1, &env->fp_status);
|
|
}
|
|
}
|
|
|
|
void do_fdiv (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1))) {
|
|
/* sNaN division */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
|
|
/* Division of infinity by infinity */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
|
|
} else if (unlikely(iszero(FT1))) {
|
|
if (iszero(FT0)) {
|
|
/* Division of zero by zero */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
|
|
} else {
|
|
/* Division by zero */
|
|
float_zero_divide_excp();
|
|
}
|
|
} else {
|
|
FT0 = float64_div(FT0, FT1, &env->fp_status);
|
|
}
|
|
}
|
|
#endif /* USE_PRECISE_EMULATION */
|
|
|
|
void do_fctiw (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
|
|
/* qNan / infinity conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
p.ll = float64_to_int32(FT0, &env->fp_status);
|
|
#if USE_PRECISE_EMULATION
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
p.ll |= 0xFFF80000ULL << 32;
|
|
#endif
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
void do_fctiwz (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
|
|
/* qNan / infinity conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
|
|
#if USE_PRECISE_EMULATION
|
|
/* XXX: higher bits are not supposed to be significant.
|
|
* to make tests easier, return the same as a real PowerPC 750
|
|
*/
|
|
p.ll |= 0xFFF80000ULL << 32;
|
|
#endif
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_fcfid (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
p.d = FT0;
|
|
FT0 = int64_to_float64(p.ll, &env->fp_status);
|
|
}
|
|
|
|
void do_fctid (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
|
|
/* qNan / infinity conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
p.ll = float64_to_int64(FT0, &env->fp_status);
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
void do_fctidz (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
|
|
/* qNan / infinity conversion */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
static always_inline void do_fri (int rounding_mode)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN round */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
|
|
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
|
|
/* qNan / infinity round */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
|
|
} else {
|
|
set_float_rounding_mode(rounding_mode, &env->fp_status);
|
|
FT0 = float64_round_to_int(FT0, &env->fp_status);
|
|
/* Restore rounding mode from FPSCR */
|
|
fpscr_set_rounding_mode();
|
|
}
|
|
}
|
|
|
|
void do_frin (void)
|
|
{
|
|
do_fri(float_round_nearest_even);
|
|
}
|
|
|
|
void do_friz (void)
|
|
{
|
|
do_fri(float_round_to_zero);
|
|
}
|
|
|
|
void do_frip (void)
|
|
{
|
|
do_fri(float_round_up);
|
|
}
|
|
|
|
void do_frim (void)
|
|
{
|
|
do_fri(float_round_down);
|
|
}
|
|
|
|
#if USE_PRECISE_EMULATION
|
|
void do_fmadd (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1) ||
|
|
float64_is_signaling_nan(FT2))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(FT0, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT1, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT2, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
FT0 = float128_to_float64(ft0_128, &env->fp_status);
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
FT0 = (FT0 * FT1) + FT2;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void do_fmsub (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1) ||
|
|
float64_is_signaling_nan(FT2))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(FT0, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT1, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT2, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
FT0 = float128_to_float64(ft0_128, &env->fp_status);
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
FT0 = (FT0 * FT1) - FT2;
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* USE_PRECISE_EMULATION */
|
|
|
|
void do_fnmadd (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1) ||
|
|
float64_is_signaling_nan(FT2))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
#if USE_PRECISE_EMULATION
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(FT0, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT1, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT2, &env->fp_status);
|
|
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
|
|
FT0 = float128_to_float64(ft0_128, &env->fp_status);
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
FT0 = (FT0 * FT1) + FT2;
|
|
#endif
|
|
#else
|
|
FT0 = float64_mul(FT0, FT1, &env->fp_status);
|
|
FT0 = float64_add(FT0, FT2, &env->fp_status);
|
|
#endif
|
|
if (likely(!isnan(FT0)))
|
|
FT0 = float64_chs(FT0);
|
|
}
|
|
}
|
|
|
|
void do_fnmsub (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1) ||
|
|
float64_is_signaling_nan(FT2))) {
|
|
/* sNaN operation */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
#if USE_PRECISE_EMULATION
|
|
#ifdef FLOAT128
|
|
/* This is the way the PowerPC specification defines it */
|
|
float128 ft0_128, ft1_128;
|
|
|
|
ft0_128 = float64_to_float128(FT0, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT1, &env->fp_status);
|
|
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
|
|
ft1_128 = float64_to_float128(FT2, &env->fp_status);
|
|
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
|
|
FT0 = float128_to_float64(ft0_128, &env->fp_status);
|
|
#else
|
|
/* This is OK on x86 hosts */
|
|
FT0 = (FT0 * FT1) - FT2;
|
|
#endif
|
|
#else
|
|
FT0 = float64_mul(FT0, FT1, &env->fp_status);
|
|
FT0 = float64_sub(FT0, FT2, &env->fp_status);
|
|
#endif
|
|
if (likely(!isnan(FT0)))
|
|
FT0 = float64_chs(FT0);
|
|
}
|
|
}
|
|
|
|
#if USE_PRECISE_EMULATION
|
|
void do_frsp (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
FT0 = float64_to_float32(FT0, &env->fp_status);
|
|
}
|
|
}
|
|
#endif /* USE_PRECISE_EMULATION */
|
|
|
|
void do_fsqrt (void)
|
|
{
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
|
|
/* Square root of a negative nonzero number */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
|
|
} else {
|
|
FT0 = float64_sqrt(FT0, &env->fp_status);
|
|
}
|
|
}
|
|
|
|
void do_fre (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely(iszero(FT0))) {
|
|
/* Zero reciprocal */
|
|
float_zero_divide_excp();
|
|
} else if (likely(isnormal(FT0))) {
|
|
FT0 = float64_div(1.0, FT0, &env->fp_status);
|
|
} else {
|
|
p.d = FT0;
|
|
if (p.ll == 0x8000000000000000ULL) {
|
|
p.ll = 0xFFF0000000000000ULL;
|
|
} else if (p.ll == 0x0000000000000000ULL) {
|
|
p.ll = 0x7FF0000000000000ULL;
|
|
} else if (isnan(FT0)) {
|
|
p.ll = 0x7FF8000000000000ULL;
|
|
} else if (fpisneg(FT0)) {
|
|
p.ll = 0x8000000000000000ULL;
|
|
} else {
|
|
p.ll = 0x0000000000000000ULL;
|
|
}
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
void do_fres (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN reciprocal */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely(iszero(FT0))) {
|
|
/* Zero reciprocal */
|
|
float_zero_divide_excp();
|
|
} else if (likely(isnormal(FT0))) {
|
|
#if USE_PRECISE_EMULATION
|
|
FT0 = float64_div(1.0, FT0, &env->fp_status);
|
|
FT0 = float64_to_float32(FT0, &env->fp_status);
|
|
#else
|
|
FT0 = float32_div(1.0, FT0, &env->fp_status);
|
|
#endif
|
|
} else {
|
|
p.d = FT0;
|
|
if (p.ll == 0x8000000000000000ULL) {
|
|
p.ll = 0xFFF0000000000000ULL;
|
|
} else if (p.ll == 0x0000000000000000ULL) {
|
|
p.ll = 0x7FF0000000000000ULL;
|
|
} else if (isnan(FT0)) {
|
|
p.ll = 0x7FF8000000000000ULL;
|
|
} else if (fpisneg(FT0)) {
|
|
p.ll = 0x8000000000000000ULL;
|
|
} else {
|
|
p.ll = 0x0000000000000000ULL;
|
|
}
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
void do_frsqrte (void)
|
|
{
|
|
CPU_DoubleU p;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0))) {
|
|
/* sNaN reciprocal square root */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
|
|
/* Reciprocal square root of a negative nonzero number */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
|
|
} else if (likely(isnormal(FT0))) {
|
|
FT0 = float64_sqrt(FT0, &env->fp_status);
|
|
FT0 = float32_div(1.0, FT0, &env->fp_status);
|
|
} else {
|
|
p.d = FT0;
|
|
if (p.ll == 0x8000000000000000ULL) {
|
|
p.ll = 0xFFF0000000000000ULL;
|
|
} else if (p.ll == 0x0000000000000000ULL) {
|
|
p.ll = 0x7FF0000000000000ULL;
|
|
} else if (isnan(FT0)) {
|
|
p.ll |= 0x000FFFFFFFFFFFFFULL;
|
|
} else if (fpisneg(FT0)) {
|
|
p.ll = 0x7FF8000000000000ULL;
|
|
} else {
|
|
p.ll = 0x0000000000000000ULL;
|
|
}
|
|
FT0 = p.d;
|
|
}
|
|
}
|
|
|
|
void do_fsel (void)
|
|
{
|
|
if (!fpisneg(FT0) || iszero(FT0))
|
|
FT0 = FT1;
|
|
else
|
|
FT0 = FT2;
|
|
}
|
|
|
|
uint32_t helper_fcmpu (void)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (unlikely(float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1))) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
|
|
} else {
|
|
if (float64_lt(FT0, FT1, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
}
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
return ret;
|
|
}
|
|
|
|
uint32_t helper_fcmpo (void)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (unlikely(float64_is_nan(FT0) ||
|
|
float64_is_nan(FT1))) {
|
|
if (float64_is_signaling_nan(FT0) ||
|
|
float64_is_signaling_nan(FT1)) {
|
|
/* sNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
|
|
POWERPC_EXCP_FP_VXVC);
|
|
} else {
|
|
/* qNaN comparison */
|
|
fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
|
|
}
|
|
} else {
|
|
if (float64_lt(FT0, FT1, &env->fp_status)) {
|
|
ret = 0x08UL;
|
|
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
|
|
ret = 0x04UL;
|
|
} else {
|
|
ret = 0x02UL;
|
|
}
|
|
}
|
|
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
|
env->fpscr |= ret << FPSCR_FPRF;
|
|
return ret;
|
|
}
|
|
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
|
|
|
|
void do_store_msr (void)
|
|
{
|
|
T0 = hreg_store_msr(env, T0, 0);
|
|
if (T0 != 0) {
|
|
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
do_raise_exception(T0);
|
|
}
|
|
}
|
|
|
|
static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
|
|
target_ulong msrm, int keep_msrh)
|
|
{
|
|
#if defined(TARGET_PPC64)
|
|
if (msr & (1ULL << MSR_SF)) {
|
|
nip = (uint64_t)nip;
|
|
msr &= (uint64_t)msrm;
|
|
} else {
|
|
nip = (uint32_t)nip;
|
|
msr = (uint32_t)(msr & msrm);
|
|
if (keep_msrh)
|
|
msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
|
|
}
|
|
#else
|
|
nip = (uint32_t)nip;
|
|
msr &= (uint32_t)msrm;
|
|
#endif
|
|
/* XXX: beware: this is false if VLE is supported */
|
|
env->nip = nip & ~((target_ulong)0x00000003);
|
|
hreg_store_msr(env, msr, 1);
|
|
#if defined (DEBUG_OP)
|
|
cpu_dump_rfi(env->nip, env->msr);
|
|
#endif
|
|
/* No need to raise an exception here,
|
|
* as rfi is always the last insn of a TB
|
|
*/
|
|
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
|
|
void do_rfi (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
|
|
~((target_ulong)0xFFFF0000), 1);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_rfid (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
|
|
~((target_ulong)0xFFFF0000), 0);
|
|
}
|
|
|
|
void do_hrfid (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
|
|
~((target_ulong)0xFFFF0000), 0);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
void do_tw (int flags)
|
|
{
|
|
if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
|
|
((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
|
|
((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
|
|
((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
|
|
((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
void do_td (int flags)
|
|
{
|
|
if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
|
|
((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
|
|
((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
|
|
((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
|
|
((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC 601 specific instructions (POWER bridge) */
|
|
void do_POWER_abso (void)
|
|
{
|
|
if ((int32_t)T0 == INT32_MIN) {
|
|
T0 = INT32_MAX;
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else if ((int32_t)T0 < 0) {
|
|
T0 = -T0;
|
|
env->xer &= ~(1 << XER_OV);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
}
|
|
|
|
void do_POWER_clcs (void)
|
|
{
|
|
switch (T0) {
|
|
case 0x0CUL:
|
|
/* Instruction cache line size */
|
|
T0 = env->icache_line_size;
|
|
break;
|
|
case 0x0DUL:
|
|
/* Data cache line size */
|
|
T0 = env->dcache_line_size;
|
|
break;
|
|
case 0x0EUL:
|
|
/* Minimum cache line size */
|
|
T0 = env->icache_line_size < env->dcache_line_size ?
|
|
env->icache_line_size : env->dcache_line_size;
|
|
break;
|
|
case 0x0FUL:
|
|
/* Maximum cache line size */
|
|
T0 = env->icache_line_size > env->dcache_line_size ?
|
|
env->icache_line_size : env->dcache_line_size;
|
|
break;
|
|
default:
|
|
/* Undefined */
|
|
break;
|
|
}
|
|
}
|
|
|
|
void do_POWER_div (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
|
|
(int32_t)T1 == 0) {
|
|
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
env->spr[SPR_MQ] = 0;
|
|
} else {
|
|
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
|
|
env->spr[SPR_MQ] = tmp % T1;
|
|
T0 = tmp / (int32_t)T1;
|
|
}
|
|
}
|
|
|
|
void do_POWER_divo (void)
|
|
{
|
|
int64_t tmp;
|
|
|
|
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
|
|
(int32_t)T1 == 0) {
|
|
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
env->spr[SPR_MQ] = 0;
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
|
|
env->spr[SPR_MQ] = tmp % T1;
|
|
tmp /= (int32_t)T1;
|
|
if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
T0 = tmp;
|
|
}
|
|
}
|
|
|
|
void do_POWER_divs (void)
|
|
{
|
|
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
|
|
(int32_t)T1 == 0) {
|
|
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
env->spr[SPR_MQ] = 0;
|
|
} else {
|
|
env->spr[SPR_MQ] = T0 % T1;
|
|
T0 = (int32_t)T0 / (int32_t)T1;
|
|
}
|
|
}
|
|
|
|
void do_POWER_divso (void)
|
|
{
|
|
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
|
|
(int32_t)T1 == 0) {
|
|
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
|
|
env->spr[SPR_MQ] = 0;
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
T0 = (int32_t)T0 / (int32_t)T1;
|
|
env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
}
|
|
|
|
void do_POWER_dozo (void)
|
|
{
|
|
if ((int32_t)T1 > (int32_t)T0) {
|
|
T2 = T0;
|
|
T0 = T1 - T0;
|
|
if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
|
|
((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
} else {
|
|
T0 = 0;
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
}
|
|
|
|
void do_POWER_maskg (void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
|
|
ret = UINT32_MAX;
|
|
} else {
|
|
ret = (UINT32_MAX >> ((uint32_t)T0)) ^
|
|
((UINT32_MAX >> ((uint32_t)T1)) >> 1);
|
|
if ((uint32_t)T0 > (uint32_t)T1)
|
|
ret = ~ret;
|
|
}
|
|
T0 = ret;
|
|
}
|
|
|
|
void do_POWER_mulo (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = (uint64_t)T0 * (uint64_t)T1;
|
|
env->spr[SPR_MQ] = tmp >> 32;
|
|
T0 = tmp;
|
|
if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
|
|
env->xer |= (1 << XER_OV) | (1 << XER_SO);
|
|
} else {
|
|
env->xer &= ~(1 << XER_OV);
|
|
}
|
|
}
|
|
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
void do_POWER_rac (void)
|
|
{
|
|
mmu_ctx_t ctx;
|
|
int nb_BATs;
|
|
|
|
/* We don't have to generate many instances of this instruction,
|
|
* as rac is supervisor only.
|
|
*/
|
|
/* XXX: FIX THIS: Pretend we have no BAT */
|
|
nb_BATs = env->nb_BATs;
|
|
env->nb_BATs = 0;
|
|
if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
|
|
T0 = ctx.raddr;
|
|
env->nb_BATs = nb_BATs;
|
|
}
|
|
|
|
void do_POWER_rfsvc (void)
|
|
{
|
|
__do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
|
|
}
|
|
|
|
void do_store_hid0_601 (void)
|
|
{
|
|
uint32_t hid0;
|
|
|
|
hid0 = env->spr[SPR_HID0];
|
|
if ((T0 ^ hid0) & 0x00000008) {
|
|
/* Change current endianness */
|
|
env->hflags &= ~(1 << MSR_LE);
|
|
env->hflags_nmsr &= ~(1 << MSR_LE);
|
|
env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
|
|
env->hflags |= env->hflags_nmsr;
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
|
|
__func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
|
|
}
|
|
}
|
|
env->spr[SPR_HID0] = T0;
|
|
}
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* 602 specific instructions */
|
|
/* mfrom is the most crazy instruction ever seen, imho ! */
|
|
/* Real implementation uses a ROM table. Do the same */
|
|
#define USE_MFROM_ROM_TABLE
|
|
void do_op_602_mfrom (void)
|
|
{
|
|
if (likely(T0 < 602)) {
|
|
#if defined(USE_MFROM_ROM_TABLE)
|
|
#include "mfrom_table.c"
|
|
T0 = mfrom_ROM_table[T0];
|
|
#else
|
|
double d;
|
|
/* Extremly decomposed:
|
|
* -T0 / 256
|
|
* T0 = 256 * log10(10 + 1.0) + 0.5
|
|
*/
|
|
d = T0;
|
|
d = float64_div(d, 256, &env->fp_status);
|
|
d = float64_chs(d);
|
|
d = exp10(d); // XXX: use float emulation function
|
|
d = float64_add(d, 1.0, &env->fp_status);
|
|
d = log10(d); // XXX: use float emulation function
|
|
d = float64_mul(d, 256, &env->fp_status);
|
|
d = float64_add(d, 0.5, &env->fp_status);
|
|
T0 = float64_round_to_int(d, &env->fp_status);
|
|
#endif
|
|
} else {
|
|
T0 = 0;
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Embedded PowerPC specific helpers */
|
|
void do_405_check_sat (void)
|
|
{
|
|
if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
|
|
!(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
|
|
/* Saturate result */
|
|
if (T2 >> 31) {
|
|
T0 = INT32_MIN;
|
|
} else {
|
|
T0 = INT32_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* XXX: to be improved to check access rights when in user-mode */
|
|
void do_load_dcr (void)
|
|
{
|
|
target_ulong val;
|
|
|
|
if (unlikely(env->dcr_env == NULL)) {
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "No DCR environment\n");
|
|
}
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
|
|
} else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
|
|
}
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
|
|
} else {
|
|
T0 = val;
|
|
}
|
|
}
|
|
|
|
void do_store_dcr (void)
|
|
{
|
|
if (unlikely(env->dcr_env == NULL)) {
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "No DCR environment\n");
|
|
}
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
|
|
} else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
|
|
}
|
|
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void do_40x_rfci (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
|
|
~((target_ulong)0xFFFF0000), 0);
|
|
}
|
|
|
|
void do_rfci (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
|
|
void do_rfdi (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
|
|
void do_rfmci (void)
|
|
{
|
|
__do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
|
|
~((target_ulong)0x3FFF0000), 0);
|
|
}
|
|
|
|
void do_load_403_pb (int num)
|
|
{
|
|
T0 = env->pb[num];
|
|
}
|
|
|
|
void do_store_403_pb (int num)
|
|
{
|
|
if (likely(env->pb[num] != T0)) {
|
|
env->pb[num] = T0;
|
|
/* Should be optimized */
|
|
tlb_flush(env, 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* 440 specific */
|
|
void do_440_dlmzb (void)
|
|
{
|
|
target_ulong mask;
|
|
int i;
|
|
|
|
i = 1;
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((T0 & mask) == 0)
|
|
goto done;
|
|
i++;
|
|
}
|
|
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
|
|
if ((T1 & mask) == 0)
|
|
break;
|
|
i++;
|
|
}
|
|
done:
|
|
T0 = i;
|
|
}
|
|
|
|
/* SPE extension helpers */
|
|
/* Use a table to make this quicker */
|
|
static uint8_t hbrev[16] = {
|
|
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
|
|
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
|
|
};
|
|
|
|
static always_inline uint8_t byte_reverse (uint8_t val)
|
|
{
|
|
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
|
|
}
|
|
|
|
static always_inline uint32_t word_reverse (uint32_t val)
|
|
{
|
|
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
|
|
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
|
|
}
|
|
|
|
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
|
|
void do_brinc (void)
|
|
{
|
|
uint32_t a, b, d, mask;
|
|
|
|
mask = UINT32_MAX >> (32 - MASKBITS);
|
|
a = T0 & mask;
|
|
b = T1 & mask;
|
|
d = word_reverse(1 + word_reverse(a | ~b));
|
|
T0 = (T0 & ~mask) | (d & b);
|
|
}
|
|
|
|
#define DO_SPE_OP2(name) \
|
|
void do_ev##name (void) \
|
|
{ \
|
|
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
|
|
(uint64_t)_do_e##name(T0_64, T1_64); \
|
|
}
|
|
|
|
#define DO_SPE_OP1(name) \
|
|
void do_ev##name (void) \
|
|
{ \
|
|
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
|
|
(uint64_t)_do_e##name(T0_64); \
|
|
}
|
|
|
|
/* Fixed-point vector arithmetic */
|
|
static always_inline uint32_t _do_eabs (uint32_t val)
|
|
{
|
|
if ((val & 0x80000000) && val != 0x80000000)
|
|
val -= val;
|
|
|
|
return val;
|
|
}
|
|
|
|
static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
|
|
{
|
|
return op1 + op2;
|
|
}
|
|
|
|
static always_inline int _do_ecntlsw (uint32_t val)
|
|
{
|
|
if (val & 0x80000000)
|
|
return clz32(~val);
|
|
else
|
|
return clz32(val);
|
|
}
|
|
|
|
static always_inline int _do_ecntlzw (uint32_t val)
|
|
{
|
|
return clz32(val);
|
|
}
|
|
|
|
static always_inline uint32_t _do_eneg (uint32_t val)
|
|
{
|
|
if (val != 0x80000000)
|
|
val -= val;
|
|
|
|
return val;
|
|
}
|
|
|
|
static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
|
|
{
|
|
return rotl32(op1, op2);
|
|
}
|
|
|
|
static always_inline uint32_t _do_erndw (uint32_t val)
|
|
{
|
|
return (val + 0x000080000000) & 0xFFFF0000;
|
|
}
|
|
|
|
static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
|
|
{
|
|
/* No error here: 6 bits are used */
|
|
return op1 << (op2 & 0x3F);
|
|
}
|
|
|
|
static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
|
|
{
|
|
/* No error here: 6 bits are used */
|
|
return op1 >> (op2 & 0x3F);
|
|
}
|
|
|
|
static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
|
|
{
|
|
/* No error here: 6 bits are used */
|
|
return op1 >> (op2 & 0x3F);
|
|
}
|
|
|
|
static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
|
|
{
|
|
return op2 - op1;
|
|
}
|
|
|
|
/* evabs */
|
|
DO_SPE_OP1(abs);
|
|
/* evaddw */
|
|
DO_SPE_OP2(addw);
|
|
/* evcntlsw */
|
|
DO_SPE_OP1(cntlsw);
|
|
/* evcntlzw */
|
|
DO_SPE_OP1(cntlzw);
|
|
/* evneg */
|
|
DO_SPE_OP1(neg);
|
|
/* evrlw */
|
|
DO_SPE_OP2(rlw);
|
|
/* evrnd */
|
|
DO_SPE_OP1(rndw);
|
|
/* evslw */
|
|
DO_SPE_OP2(slw);
|
|
/* evsrws */
|
|
DO_SPE_OP2(srws);
|
|
/* evsrwu */
|
|
DO_SPE_OP2(srwu);
|
|
/* evsubfw */
|
|
DO_SPE_OP2(subfw);
|
|
|
|
/* evsel is a little bit more complicated... */
|
|
static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
|
|
{
|
|
if (n)
|
|
return op1;
|
|
else
|
|
return op2;
|
|
}
|
|
|
|
void do_evsel (void)
|
|
{
|
|
T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
|
|
(uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
|
|
}
|
|
|
|
/* Fixed-point vector comparisons */
|
|
#define DO_SPE_CMP(name) \
|
|
void do_ev##name (void) \
|
|
{ \
|
|
T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
|
|
T1_64 >> 32) << 32, \
|
|
_do_e##name(T0_64, T1_64)); \
|
|
}
|
|
|
|
static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
|
|
{
|
|
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
|
|
}
|
|
static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
|
|
{
|
|
return op1 == op2 ? 1 : 0;
|
|
}
|
|
|
|
static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
|
|
{
|
|
return op1 > op2 ? 1 : 0;
|
|
}
|
|
|
|
static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
|
|
{
|
|
return op1 > op2 ? 1 : 0;
|
|
}
|
|
|
|
static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
|
|
{
|
|
return op1 < op2 ? 1 : 0;
|
|
}
|
|
|
|
static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
|
|
{
|
|
return op1 < op2 ? 1 : 0;
|
|
}
|
|
|
|
/* evcmpeq */
|
|
DO_SPE_CMP(cmpeq);
|
|
/* evcmpgts */
|
|
DO_SPE_CMP(cmpgts);
|
|
/* evcmpgtu */
|
|
DO_SPE_CMP(cmpgtu);
|
|
/* evcmplts */
|
|
DO_SPE_CMP(cmplts);
|
|
/* evcmpltu */
|
|
DO_SPE_CMP(cmpltu);
|
|
|
|
/* Single precision floating-point conversions from/to integer */
|
|
static always_inline uint32_t _do_efscfsi (int32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = int32_to_float32(val, &env->spe_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static always_inline uint32_t _do_efscfui (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.f = uint32_to_float32(val, &env->spe_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static always_inline int32_t _do_efsctsi (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_int32(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint32_t _do_efsctui (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_uint32(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline int32_t _do_efsctsiz (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint32_t _do_efsctuiz (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
|
|
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
|
|
}
|
|
|
|
void do_efscfsi (void)
|
|
{
|
|
T0_64 = _do_efscfsi(T0_64);
|
|
}
|
|
|
|
void do_efscfui (void)
|
|
{
|
|
T0_64 = _do_efscfui(T0_64);
|
|
}
|
|
|
|
void do_efsctsi (void)
|
|
{
|
|
T0_64 = _do_efsctsi(T0_64);
|
|
}
|
|
|
|
void do_efsctui (void)
|
|
{
|
|
T0_64 = _do_efsctui(T0_64);
|
|
}
|
|
|
|
void do_efsctsiz (void)
|
|
{
|
|
T0_64 = _do_efsctsiz(T0_64);
|
|
}
|
|
|
|
void do_efsctuiz (void)
|
|
{
|
|
T0_64 = _do_efsctuiz(T0_64);
|
|
}
|
|
|
|
/* Single precision floating-point conversion to/from fractional */
|
|
static always_inline uint32_t _do_efscfsf (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = int32_to_float32(val, &env->spe_status);
|
|
tmp = int64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_div(u.f, tmp, &env->spe_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static always_inline uint32_t _do_efscfuf (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.f = uint32_to_float32(val, &env->spe_status);
|
|
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_div(u.f, tmp, &env->spe_status);
|
|
|
|
return u.l;
|
|
}
|
|
|
|
static always_inline int32_t _do_efsctsf (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_mul(u.f, tmp, &env->spe_status);
|
|
|
|
return float32_to_int32(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint32_t _do_efsctuf (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_mul(u.f, tmp, &env->spe_status);
|
|
|
|
return float32_to_uint32(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline int32_t _do_efsctsfz (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_mul(u.f, tmp, &env->spe_status);
|
|
|
|
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint32_t _do_efsctufz (uint32_t val)
|
|
{
|
|
CPU_FloatU u;
|
|
float32 tmp;
|
|
|
|
u.l = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.f)))
|
|
return 0;
|
|
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
|
|
u.f = float32_mul(u.f, tmp, &env->spe_status);
|
|
|
|
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
|
|
}
|
|
|
|
void do_efscfsf (void)
|
|
{
|
|
T0_64 = _do_efscfsf(T0_64);
|
|
}
|
|
|
|
void do_efscfuf (void)
|
|
{
|
|
T0_64 = _do_efscfuf(T0_64);
|
|
}
|
|
|
|
void do_efsctsf (void)
|
|
{
|
|
T0_64 = _do_efsctsf(T0_64);
|
|
}
|
|
|
|
void do_efsctuf (void)
|
|
{
|
|
T0_64 = _do_efsctuf(T0_64);
|
|
}
|
|
|
|
void do_efsctsfz (void)
|
|
{
|
|
T0_64 = _do_efsctsfz(T0_64);
|
|
}
|
|
|
|
void do_efsctufz (void)
|
|
{
|
|
T0_64 = _do_efsctufz(T0_64);
|
|
}
|
|
|
|
/* Double precision floating point helpers */
|
|
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efdtstlt(op1, op2);
|
|
}
|
|
|
|
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efdtstgt(op1, op2);
|
|
}
|
|
|
|
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efdtsteq(op1, op2);
|
|
}
|
|
|
|
void do_efdcmplt (void)
|
|
{
|
|
T0 = _do_efdcmplt(T0_64, T1_64);
|
|
}
|
|
|
|
void do_efdcmpgt (void)
|
|
{
|
|
T0 = _do_efdcmpgt(T0_64, T1_64);
|
|
}
|
|
|
|
void do_efdcmpeq (void)
|
|
{
|
|
T0 = _do_efdcmpeq(T0_64, T1_64);
|
|
}
|
|
|
|
/* Double precision floating-point conversion to/from integer */
|
|
static always_inline uint64_t _do_efdcfsi (int64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = int64_to_float64(val, &env->spe_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdcfui (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = uint64_to_float64(val, &env->spe_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
static always_inline int64_t _do_efdctsi (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
|
|
return float64_to_int64(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdctui (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
|
|
return float64_to_uint64(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline int64_t _do_efdctsiz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
|
|
return float64_to_int64_round_to_zero(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdctuiz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
|
|
return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
|
|
}
|
|
|
|
void do_efdcfsi (void)
|
|
{
|
|
T0_64 = _do_efdcfsi(T0_64);
|
|
}
|
|
|
|
void do_efdcfui (void)
|
|
{
|
|
T0_64 = _do_efdcfui(T0_64);
|
|
}
|
|
|
|
void do_efdctsi (void)
|
|
{
|
|
T0_64 = _do_efdctsi(T0_64);
|
|
}
|
|
|
|
void do_efdctui (void)
|
|
{
|
|
T0_64 = _do_efdctui(T0_64);
|
|
}
|
|
|
|
void do_efdctsiz (void)
|
|
{
|
|
T0_64 = _do_efdctsiz(T0_64);
|
|
}
|
|
|
|
void do_efdctuiz (void)
|
|
{
|
|
T0_64 = _do_efdctuiz(T0_64);
|
|
}
|
|
|
|
/* Double precision floating-point conversion to/from fractional */
|
|
static always_inline uint64_t _do_efdcfsf (int64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = int32_to_float64(val, &env->spe_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_div(u.d, tmp, &env->spe_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdcfuf (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.d = uint32_to_float64(val, &env->spe_status);
|
|
tmp = int64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_div(u.d, tmp, &env->spe_status);
|
|
|
|
return u.ll;
|
|
}
|
|
|
|
static always_inline int64_t _do_efdctsf (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_mul(u.d, tmp, &env->spe_status);
|
|
|
|
return float64_to_int32(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdctuf (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_mul(u.d, tmp, &env->spe_status);
|
|
|
|
return float64_to_uint32(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline int64_t _do_efdctsfz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_mul(u.d, tmp, &env->spe_status);
|
|
|
|
return float64_to_int32_round_to_zero(u.d, &env->spe_status);
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdctufz (uint64_t val)
|
|
{
|
|
CPU_DoubleU u;
|
|
float64 tmp;
|
|
|
|
u.ll = val;
|
|
/* NaN are not treated the same way IEEE 754 does */
|
|
if (unlikely(isnan(u.d)))
|
|
return 0;
|
|
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
|
|
u.d = float64_mul(u.d, tmp, &env->spe_status);
|
|
|
|
return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
|
|
}
|
|
|
|
void do_efdcfsf (void)
|
|
{
|
|
T0_64 = _do_efdcfsf(T0_64);
|
|
}
|
|
|
|
void do_efdcfuf (void)
|
|
{
|
|
T0_64 = _do_efdcfuf(T0_64);
|
|
}
|
|
|
|
void do_efdctsf (void)
|
|
{
|
|
T0_64 = _do_efdctsf(T0_64);
|
|
}
|
|
|
|
void do_efdctuf (void)
|
|
{
|
|
T0_64 = _do_efdctuf(T0_64);
|
|
}
|
|
|
|
void do_efdctsfz (void)
|
|
{
|
|
T0_64 = _do_efdctsfz(T0_64);
|
|
}
|
|
|
|
void do_efdctufz (void)
|
|
{
|
|
T0_64 = _do_efdctufz(T0_64);
|
|
}
|
|
|
|
/* Floating point conversion between single and double precision */
|
|
static always_inline uint32_t _do_efscfd (uint64_t val)
|
|
{
|
|
CPU_DoubleU u1;
|
|
CPU_FloatU u2;
|
|
|
|
u1.ll = val;
|
|
u2.f = float64_to_float32(u1.d, &env->spe_status);
|
|
|
|
return u2.l;
|
|
}
|
|
|
|
static always_inline uint64_t _do_efdcfs (uint32_t val)
|
|
{
|
|
CPU_DoubleU u2;
|
|
CPU_FloatU u1;
|
|
|
|
u1.l = val;
|
|
u2.d = float32_to_float64(u1.f, &env->spe_status);
|
|
|
|
return u2.ll;
|
|
}
|
|
|
|
void do_efscfd (void)
|
|
{
|
|
T0_64 = _do_efscfd(T0_64);
|
|
}
|
|
|
|
void do_efdcfs (void)
|
|
{
|
|
T0_64 = _do_efdcfs(T0_64);
|
|
}
|
|
|
|
/* Single precision fixed-point vector arithmetic */
|
|
/* evfsabs */
|
|
DO_SPE_OP1(fsabs);
|
|
/* evfsnabs */
|
|
DO_SPE_OP1(fsnabs);
|
|
/* evfsneg */
|
|
DO_SPE_OP1(fsneg);
|
|
/* evfsadd */
|
|
DO_SPE_OP2(fsadd);
|
|
/* evfssub */
|
|
DO_SPE_OP2(fssub);
|
|
/* evfsmul */
|
|
DO_SPE_OP2(fsmul);
|
|
/* evfsdiv */
|
|
DO_SPE_OP2(fsdiv);
|
|
|
|
/* Single-precision floating-point comparisons */
|
|
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efststlt(op1, op2);
|
|
}
|
|
|
|
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efststgt(op1, op2);
|
|
}
|
|
|
|
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
|
|
{
|
|
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
|
return _do_efststeq(op1, op2);
|
|
}
|
|
|
|
void do_efscmplt (void)
|
|
{
|
|
T0 = _do_efscmplt(T0_64, T1_64);
|
|
}
|
|
|
|
void do_efscmpgt (void)
|
|
{
|
|
T0 = _do_efscmpgt(T0_64, T1_64);
|
|
}
|
|
|
|
void do_efscmpeq (void)
|
|
{
|
|
T0 = _do_efscmpeq(T0_64, T1_64);
|
|
}
|
|
|
|
/* Single-precision floating-point vector comparisons */
|
|
/* evfscmplt */
|
|
DO_SPE_CMP(fscmplt);
|
|
/* evfscmpgt */
|
|
DO_SPE_CMP(fscmpgt);
|
|
/* evfscmpeq */
|
|
DO_SPE_CMP(fscmpeq);
|
|
/* evfststlt */
|
|
DO_SPE_CMP(fststlt);
|
|
/* evfststgt */
|
|
DO_SPE_CMP(fststgt);
|
|
/* evfststeq */
|
|
DO_SPE_CMP(fststeq);
|
|
|
|
/* Single-precision floating-point vector conversions */
|
|
/* evfscfsi */
|
|
DO_SPE_OP1(fscfsi);
|
|
/* evfscfui */
|
|
DO_SPE_OP1(fscfui);
|
|
/* evfscfuf */
|
|
DO_SPE_OP1(fscfuf);
|
|
/* evfscfsf */
|
|
DO_SPE_OP1(fscfsf);
|
|
/* evfsctsi */
|
|
DO_SPE_OP1(fsctsi);
|
|
/* evfsctui */
|
|
DO_SPE_OP1(fsctui);
|
|
/* evfsctsiz */
|
|
DO_SPE_OP1(fsctsiz);
|
|
/* evfsctuiz */
|
|
DO_SPE_OP1(fsctuiz);
|
|
/* evfsctsf */
|
|
DO_SPE_OP1(fsctsf);
|
|
/* evfsctuf */
|
|
DO_SPE_OP1(fsctuf);
|
|
|
|
/*****************************************************************************/
|
|
/* Softmmu support */
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
NULL, it means that the function was called in C code (i.e. not
|
|
from generated code or from helper.c) */
|
|
/* XXX: fix it to restore all registers */
|
|
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUState *saved_env;
|
|
unsigned long pc;
|
|
int ret;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
|
if (unlikely(ret != 0)) {
|
|
if (likely(retaddr)) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (likely(tb)) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, NULL);
|
|
}
|
|
}
|
|
do_raise_exception_err(env->exception_index, env->error_code);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
/* Software driven TLBs management */
|
|
/* PowerPC 602/603 software TLB load instructions helpers */
|
|
void do_load_6xx_tlb (int is_code)
|
|
{
|
|
target_ulong RPN, CMP, EPN;
|
|
int way;
|
|
|
|
RPN = env->spr[SPR_RPA];
|
|
if (is_code) {
|
|
CMP = env->spr[SPR_ICMP];
|
|
EPN = env->spr[SPR_IMISS];
|
|
} else {
|
|
CMP = env->spr[SPR_DCMP];
|
|
EPN = env->spr[SPR_DMISS];
|
|
}
|
|
way = (env->spr[SPR_SRR1] >> 17) & 1;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
|
|
" PTE1 " ADDRX " way %d\n",
|
|
__func__, T0, EPN, CMP, RPN, way);
|
|
}
|
|
#endif
|
|
/* Store this TLB */
|
|
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
|
|
way, is_code, CMP, RPN);
|
|
}
|
|
|
|
void do_load_74xx_tlb (int is_code)
|
|
{
|
|
target_ulong RPN, CMP, EPN;
|
|
int way;
|
|
|
|
RPN = env->spr[SPR_PTELO];
|
|
CMP = env->spr[SPR_PTEHI];
|
|
EPN = env->spr[SPR_TLBMISS] & ~0x3;
|
|
way = env->spr[SPR_TLBMISS] & 0x3;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
|
|
" PTE1 " ADDRX " way %d\n",
|
|
__func__, T0, EPN, CMP, RPN, way);
|
|
}
|
|
#endif
|
|
/* Store this TLB */
|
|
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
|
|
way, is_code, CMP, RPN);
|
|
}
|
|
|
|
static always_inline target_ulong booke_tlb_to_page_size (int size)
|
|
{
|
|
return 1024 << (2 * size);
|
|
}
|
|
|
|
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
|
|
{
|
|
int size;
|
|
|
|
switch (page_size) {
|
|
case 0x00000400UL:
|
|
size = 0x0;
|
|
break;
|
|
case 0x00001000UL:
|
|
size = 0x1;
|
|
break;
|
|
case 0x00004000UL:
|
|
size = 0x2;
|
|
break;
|
|
case 0x00010000UL:
|
|
size = 0x3;
|
|
break;
|
|
case 0x00040000UL:
|
|
size = 0x4;
|
|
break;
|
|
case 0x00100000UL:
|
|
size = 0x5;
|
|
break;
|
|
case 0x00400000UL:
|
|
size = 0x6;
|
|
break;
|
|
case 0x01000000UL:
|
|
size = 0x7;
|
|
break;
|
|
case 0x04000000UL:
|
|
size = 0x8;
|
|
break;
|
|
case 0x10000000UL:
|
|
size = 0x9;
|
|
break;
|
|
case 0x40000000UL:
|
|
size = 0xA;
|
|
break;
|
|
#if defined (TARGET_PPC64)
|
|
case 0x000100000000ULL:
|
|
size = 0xB;
|
|
break;
|
|
case 0x000400000000ULL:
|
|
size = 0xC;
|
|
break;
|
|
case 0x001000000000ULL:
|
|
size = 0xD;
|
|
break;
|
|
case 0x004000000000ULL:
|
|
size = 0xE;
|
|
break;
|
|
case 0x010000000000ULL:
|
|
size = 0xF;
|
|
break;
|
|
#endif
|
|
default:
|
|
size = -1;
|
|
break;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/* Helpers for 4xx TLB management */
|
|
void do_4xx_tlbre_lo (void)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
int size;
|
|
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
T0 = tlb->EPN;
|
|
if (tlb->prot & PAGE_VALID)
|
|
T0 |= 0x400;
|
|
size = booke_page_size_to_tlb(tlb->size);
|
|
if (size < 0 || size > 0x7)
|
|
size = 1;
|
|
T0 |= size << 7;
|
|
env->spr[SPR_40x_PID] = tlb->PID;
|
|
}
|
|
|
|
void do_4xx_tlbre_hi (void)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
T0 = tlb->RPN;
|
|
if (tlb->prot & PAGE_EXEC)
|
|
T0 |= 0x200;
|
|
if (tlb->prot & PAGE_WRITE)
|
|
T0 |= 0x100;
|
|
}
|
|
|
|
void do_4xx_tlbwe_hi (void)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong page, end;
|
|
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
|
|
}
|
|
#endif
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
/* Invalidate previous TLB (if it's valid) */
|
|
if (tlb->prot & PAGE_VALID) {
|
|
end = tlb->EPN + tlb->size;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
|
|
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
|
|
}
|
|
#endif
|
|
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
|
|
tlb_flush_page(env, page);
|
|
}
|
|
tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
|
|
/* We cannot handle TLB size < TARGET_PAGE_SIZE.
|
|
* If this ever occurs, one should use the ppcemb target instead
|
|
* of the ppc or ppc64 one
|
|
*/
|
|
if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
|
|
cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
|
|
"are not supported (%d)\n",
|
|
tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
|
|
}
|
|
tlb->EPN = T1 & ~(tlb->size - 1);
|
|
if (T1 & 0x40)
|
|
tlb->prot |= PAGE_VALID;
|
|
else
|
|
tlb->prot &= ~PAGE_VALID;
|
|
if (T1 & 0x20) {
|
|
/* XXX: TO BE FIXED */
|
|
cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
|
|
}
|
|
tlb->PID = env->spr[SPR_40x_PID]; /* PID */
|
|
tlb->attr = T1 & 0xFF;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
|
|
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
|
|
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
|
|
tlb->prot & PAGE_READ ? 'r' : '-',
|
|
tlb->prot & PAGE_WRITE ? 'w' : '-',
|
|
tlb->prot & PAGE_EXEC ? 'x' : '-',
|
|
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
|
|
}
|
|
#endif
|
|
/* Invalidate new TLB (if valid) */
|
|
if (tlb->prot & PAGE_VALID) {
|
|
end = tlb->EPN + tlb->size;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
|
|
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
|
|
}
|
|
#endif
|
|
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
|
|
tlb_flush_page(env, page);
|
|
}
|
|
}
|
|
|
|
void do_4xx_tlbwe_lo (void)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
|
|
}
|
|
#endif
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
tlb->RPN = T1 & 0xFFFFFC00;
|
|
tlb->prot = PAGE_READ;
|
|
if (T1 & 0x200)
|
|
tlb->prot |= PAGE_EXEC;
|
|
if (T1 & 0x100)
|
|
tlb->prot |= PAGE_WRITE;
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
|
|
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
|
|
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
|
|
tlb->prot & PAGE_READ ? 'r' : '-',
|
|
tlb->prot & PAGE_WRITE ? 'w' : '-',
|
|
tlb->prot & PAGE_EXEC ? 'x' : '-',
|
|
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* PowerPC 440 TLB management */
|
|
void do_440_tlbwe (int word)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
target_ulong EPN, RPN, size;
|
|
int do_flush_tlbs;
|
|
|
|
#if defined (DEBUG_SOFTWARE_TLB)
|
|
if (loglevel != 0) {
|
|
fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
|
|
__func__, word, T0, T1);
|
|
}
|
|
#endif
|
|
do_flush_tlbs = 0;
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
switch (word) {
|
|
default:
|
|
/* Just here to please gcc */
|
|
case 0:
|
|
EPN = T1 & 0xFFFFFC00;
|
|
if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
|
|
do_flush_tlbs = 1;
|
|
tlb->EPN = EPN;
|
|
size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
|
|
if ((tlb->prot & PAGE_VALID) && tlb->size < size)
|
|
do_flush_tlbs = 1;
|
|
tlb->size = size;
|
|
tlb->attr &= ~0x1;
|
|
tlb->attr |= (T1 >> 8) & 1;
|
|
if (T1 & 0x200) {
|
|
tlb->prot |= PAGE_VALID;
|
|
} else {
|
|
if (tlb->prot & PAGE_VALID) {
|
|
tlb->prot &= ~PAGE_VALID;
|
|
do_flush_tlbs = 1;
|
|
}
|
|
}
|
|
tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
|
|
if (do_flush_tlbs)
|
|
tlb_flush(env, 1);
|
|
break;
|
|
case 1:
|
|
RPN = T1 & 0xFFFFFC0F;
|
|
if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
|
|
tlb_flush(env, 1);
|
|
tlb->RPN = RPN;
|
|
break;
|
|
case 2:
|
|
tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
|
|
tlb->prot = tlb->prot & PAGE_VALID;
|
|
if (T1 & 0x1)
|
|
tlb->prot |= PAGE_READ << 4;
|
|
if (T1 & 0x2)
|
|
tlb->prot |= PAGE_WRITE << 4;
|
|
if (T1 & 0x4)
|
|
tlb->prot |= PAGE_EXEC << 4;
|
|
if (T1 & 0x8)
|
|
tlb->prot |= PAGE_READ;
|
|
if (T1 & 0x10)
|
|
tlb->prot |= PAGE_WRITE;
|
|
if (T1 & 0x20)
|
|
tlb->prot |= PAGE_EXEC;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void do_440_tlbre (int word)
|
|
{
|
|
ppcemb_tlb_t *tlb;
|
|
int size;
|
|
|
|
T0 &= 0x3F;
|
|
tlb = &env->tlb[T0].tlbe;
|
|
switch (word) {
|
|
default:
|
|
/* Just here to please gcc */
|
|
case 0:
|
|
T0 = tlb->EPN;
|
|
size = booke_page_size_to_tlb(tlb->size);
|
|
if (size < 0 || size > 0xF)
|
|
size = 1;
|
|
T0 |= size << 4;
|
|
if (tlb->attr & 0x1)
|
|
T0 |= 0x100;
|
|
if (tlb->prot & PAGE_VALID)
|
|
T0 |= 0x200;
|
|
env->spr[SPR_440_MMUCR] &= ~0x000000FF;
|
|
env->spr[SPR_440_MMUCR] |= tlb->PID;
|
|
break;
|
|
case 1:
|
|
T0 = tlb->RPN;
|
|
break;
|
|
case 2:
|
|
T0 = tlb->attr & ~0x1;
|
|
if (tlb->prot & (PAGE_READ << 4))
|
|
T0 |= 0x1;
|
|
if (tlb->prot & (PAGE_WRITE << 4))
|
|
T0 |= 0x2;
|
|
if (tlb->prot & (PAGE_EXEC << 4))
|
|
T0 |= 0x4;
|
|
if (tlb->prot & PAGE_READ)
|
|
T0 |= 0x8;
|
|
if (tlb->prot & PAGE_WRITE)
|
|
T0 |= 0x10;
|
|
if (tlb->prot & PAGE_EXEC)
|
|
T0 |= 0x20;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|