![Daniel P. Berrange](/assets/img/avatar_default.png)
This extends the migration_set_incoming_channel and migration_set_outgoing_channel methods so that they will automatically wrap the QIOChannel in a QIOChannelTLS instance if TLS credentials are configured in the migration parameters. This allows TLS to work for tcp, unix, fd and exec migration protocols. It does not (currently) work for RDMA since it does not use these APIs, but it is unlikely that TLS would be desired with RDMA anyway since it would degrade the performance to that seen with TCP defeating the purpose of using RDMA. On the target host, QEMU would be launched with a set of TLS credentials for a server endpoint $ qemu-system-x86_64 -monitor stdio -incoming defer \ -object tls-creds-x509,dir=/home/berrange/security/qemutls,endpoint=server,id=tls0 \ ...other args... To enable incoming TLS migration 2 monitor commands are then used (qemu) migrate_set_str_parameter tls-creds tls0 (qemu) migrate_incoming tcp:myhostname:9000 On the source host, QEMU is launched in a similar manner but using client endpoint credentials $ qemu-system-x86_64 -monitor stdio \ -object tls-creds-x509,dir=/home/berrange/security/qemutls,endpoint=client,id=tls0 \ ...other args... To enable outgoing TLS migration 2 monitor commands are then used (qemu) migrate_set_str_parameter tls-creds tls0 (qemu) migrate tcp:otherhostname:9000 Thanks to earlier improvements to error reporting, TLS errors can be seen 'info migrate' when doing a detached migration. For example: (qemu) info migrate capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off compress: off events: off x-postcopy-ram: off Migration status: failed total time: 0 milliseconds error description: TLS handshake failed: The TLS connection was non-properly terminated. Or (qemu) info migrate capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off compress: off events: off x-postcopy-ram: off Migration status: failed total time: 0 milliseconds error description: Certificate does not match the hostname localhost Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: Daniel P. Berrange <berrange@redhat.com> Message-Id: <1461751518-12128-27-git-send-email-berrange@redhat.com> Signed-off-by: Amit Shah <amit.shah@redhat.com>
…
…
…
…
…
…
…
…
…
QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: mkdir build cd build ../configure make Complete details of the process for building and configuring QEMU for all supported host platforms can be found in the qemu-tech.html file. Additional information can also be found online via the QEMU website: http://qemu-project.org/Hosts/Linux http://qemu-project.org/Hosts/W32 Submitting patches ================== The QEMU source code is maintained under the GIT version control system. git clone git://git.qemu-project.org/qemu.git When submitting patches, the preferred approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the HACKING and CODING_STYLE files. Additional information on submitting patches can be found online via the QEMU website http://qemu-project.org/Contribute/SubmitAPatch http://qemu-project.org/Contribute/TrivialPatches Bug reporting ============= The QEMU project uses Launchpad as its primary upstream bug tracker. Bugs found when running code built from QEMU git or upstream released sources should be reported via: https://bugs.launchpad.net/qemu/ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via launchpad. For additional information on bug reporting consult: http://qemu-project.org/Contribute/ReportABug Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC - qemu-devel@nongnu.org http://lists.nongnu.org/mailman/listinfo/qemu-devel - #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: http://qemu-project.org/Contribute/StartHere -- End
Description
Languages
C
82.6%
C++
6.5%
Python
3.4%
Dylan
2.9%
Shell
1.6%
Other
2.8%