qemu/async.c
Stefan Hajnoczi 82a4118694 aio: self-tune polling time
This patch is based on the algorithm for the kvm.ko halt_poll_ns
parameter in Linux.  The initial polling time is zero.

If the event loop is woken up within the maximum polling time it means
polling could be effective, so grow polling time.

If the event loop is woken up beyond the maximum polling time it means
polling is not effective, so shrink polling time.

If the event loop makes progress within the current polling time then
the sweet spot has been reached.

This algorithm adjusts the polling time so it can adapt to variations in
workloads.  The goal is to reach the sweet spot while also recognizing
when polling would hurt more than help.

Two new trace events, poll_grow and poll_shrink, are added for observing
polling time adjustment.

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20161201192652.9509-13-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2017-01-03 16:38:50 +00:00

418 lines
10 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "block/aio.h"
#include "block/thread-pool.h"
#include "qemu/main-loop.h"
#include "qemu/atomic.h"
#include "block/raw-aio.h"
/***********************************************************/
/* bottom halves (can be seen as timers which expire ASAP) */
struct QEMUBH {
AioContext *ctx;
QEMUBHFunc *cb;
void *opaque;
QEMUBH *next;
bool scheduled;
bool idle;
bool deleted;
};
void aio_bh_schedule_oneshot(AioContext *ctx, QEMUBHFunc *cb, void *opaque)
{
QEMUBH *bh;
bh = g_new(QEMUBH, 1);
*bh = (QEMUBH){
.ctx = ctx,
.cb = cb,
.opaque = opaque,
};
qemu_mutex_lock(&ctx->bh_lock);
bh->next = ctx->first_bh;
bh->scheduled = 1;
bh->deleted = 1;
/* Make sure that the members are ready before putting bh into list */
smp_wmb();
ctx->first_bh = bh;
qemu_mutex_unlock(&ctx->bh_lock);
aio_notify(ctx);
}
QEMUBH *aio_bh_new(AioContext *ctx, QEMUBHFunc *cb, void *opaque)
{
QEMUBH *bh;
bh = g_new(QEMUBH, 1);
*bh = (QEMUBH){
.ctx = ctx,
.cb = cb,
.opaque = opaque,
};
qemu_mutex_lock(&ctx->bh_lock);
bh->next = ctx->first_bh;
/* Make sure that the members are ready before putting bh into list */
smp_wmb();
ctx->first_bh = bh;
qemu_mutex_unlock(&ctx->bh_lock);
return bh;
}
void aio_bh_call(QEMUBH *bh)
{
bh->cb(bh->opaque);
}
/* Multiple occurrences of aio_bh_poll cannot be called concurrently */
int aio_bh_poll(AioContext *ctx)
{
QEMUBH *bh, **bhp, *next;
int ret;
ctx->walking_bh++;
ret = 0;
for (bh = ctx->first_bh; bh; bh = next) {
/* Make sure that fetching bh happens before accessing its members */
smp_read_barrier_depends();
next = bh->next;
/* The atomic_xchg is paired with the one in qemu_bh_schedule. The
* implicit memory barrier ensures that the callback sees all writes
* done by the scheduling thread. It also ensures that the scheduling
* thread sees the zero before bh->cb has run, and thus will call
* aio_notify again if necessary.
*/
if (atomic_xchg(&bh->scheduled, 0)) {
/* Idle BHs don't count as progress */
if (!bh->idle) {
ret = 1;
}
bh->idle = 0;
aio_bh_call(bh);
}
}
ctx->walking_bh--;
/* remove deleted bhs */
if (!ctx->walking_bh) {
qemu_mutex_lock(&ctx->bh_lock);
bhp = &ctx->first_bh;
while (*bhp) {
bh = *bhp;
if (bh->deleted && !bh->scheduled) {
*bhp = bh->next;
g_free(bh);
} else {
bhp = &bh->next;
}
}
qemu_mutex_unlock(&ctx->bh_lock);
}
return ret;
}
void qemu_bh_schedule_idle(QEMUBH *bh)
{
bh->idle = 1;
/* Make sure that idle & any writes needed by the callback are done
* before the locations are read in the aio_bh_poll.
*/
atomic_mb_set(&bh->scheduled, 1);
}
void qemu_bh_schedule(QEMUBH *bh)
{
AioContext *ctx;
ctx = bh->ctx;
bh->idle = 0;
/* The memory barrier implicit in atomic_xchg makes sure that:
* 1. idle & any writes needed by the callback are done before the
* locations are read in the aio_bh_poll.
* 2. ctx is loaded before scheduled is set and the callback has a chance
* to execute.
*/
if (atomic_xchg(&bh->scheduled, 1) == 0) {
aio_notify(ctx);
}
}
/* This func is async.
*/
void qemu_bh_cancel(QEMUBH *bh)
{
bh->scheduled = 0;
}
/* This func is async.The bottom half will do the delete action at the finial
* end.
*/
void qemu_bh_delete(QEMUBH *bh)
{
bh->scheduled = 0;
bh->deleted = 1;
}
int64_t
aio_compute_timeout(AioContext *ctx)
{
int64_t deadline;
int timeout = -1;
QEMUBH *bh;
for (bh = ctx->first_bh; bh; bh = bh->next) {
if (bh->scheduled) {
if (bh->idle) {
/* idle bottom halves will be polled at least
* every 10ms */
timeout = 10000000;
} else {
/* non-idle bottom halves will be executed
* immediately */
return 0;
}
}
}
deadline = timerlistgroup_deadline_ns(&ctx->tlg);
if (deadline == 0) {
return 0;
} else {
return qemu_soonest_timeout(timeout, deadline);
}
}
static gboolean
aio_ctx_prepare(GSource *source, gint *timeout)
{
AioContext *ctx = (AioContext *) source;
atomic_or(&ctx->notify_me, 1);
/* We assume there is no timeout already supplied */
*timeout = qemu_timeout_ns_to_ms(aio_compute_timeout(ctx));
if (aio_prepare(ctx)) {
*timeout = 0;
}
return *timeout == 0;
}
static gboolean
aio_ctx_check(GSource *source)
{
AioContext *ctx = (AioContext *) source;
QEMUBH *bh;
atomic_and(&ctx->notify_me, ~1);
aio_notify_accept(ctx);
for (bh = ctx->first_bh; bh; bh = bh->next) {
if (bh->scheduled) {
return true;
}
}
return aio_pending(ctx) || (timerlistgroup_deadline_ns(&ctx->tlg) == 0);
}
static gboolean
aio_ctx_dispatch(GSource *source,
GSourceFunc callback,
gpointer user_data)
{
AioContext *ctx = (AioContext *) source;
assert(callback == NULL);
aio_dispatch(ctx, true);
return true;
}
static void
aio_ctx_finalize(GSource *source)
{
AioContext *ctx = (AioContext *) source;
thread_pool_free(ctx->thread_pool);
#ifdef CONFIG_LINUX_AIO
if (ctx->linux_aio) {
laio_detach_aio_context(ctx->linux_aio, ctx);
laio_cleanup(ctx->linux_aio);
ctx->linux_aio = NULL;
}
#endif
qemu_mutex_lock(&ctx->bh_lock);
while (ctx->first_bh) {
QEMUBH *next = ctx->first_bh->next;
/* qemu_bh_delete() must have been called on BHs in this AioContext */
assert(ctx->first_bh->deleted);
g_free(ctx->first_bh);
ctx->first_bh = next;
}
qemu_mutex_unlock(&ctx->bh_lock);
aio_set_event_notifier(ctx, &ctx->notifier, false, NULL, NULL);
event_notifier_cleanup(&ctx->notifier);
qemu_rec_mutex_destroy(&ctx->lock);
qemu_mutex_destroy(&ctx->bh_lock);
timerlistgroup_deinit(&ctx->tlg);
}
static GSourceFuncs aio_source_funcs = {
aio_ctx_prepare,
aio_ctx_check,
aio_ctx_dispatch,
aio_ctx_finalize
};
GSource *aio_get_g_source(AioContext *ctx)
{
g_source_ref(&ctx->source);
return &ctx->source;
}
ThreadPool *aio_get_thread_pool(AioContext *ctx)
{
if (!ctx->thread_pool) {
ctx->thread_pool = thread_pool_new(ctx);
}
return ctx->thread_pool;
}
#ifdef CONFIG_LINUX_AIO
LinuxAioState *aio_get_linux_aio(AioContext *ctx)
{
if (!ctx->linux_aio) {
ctx->linux_aio = laio_init();
laio_attach_aio_context(ctx->linux_aio, ctx);
}
return ctx->linux_aio;
}
#endif
void aio_notify(AioContext *ctx)
{
/* Write e.g. bh->scheduled before reading ctx->notify_me. Pairs
* with atomic_or in aio_ctx_prepare or atomic_add in aio_poll.
*/
smp_mb();
if (ctx->notify_me) {
event_notifier_set(&ctx->notifier);
atomic_mb_set(&ctx->notified, true);
}
}
void aio_notify_accept(AioContext *ctx)
{
if (atomic_xchg(&ctx->notified, false)) {
event_notifier_test_and_clear(&ctx->notifier);
}
}
static void aio_timerlist_notify(void *opaque)
{
aio_notify(opaque);
}
static void event_notifier_dummy_cb(EventNotifier *e)
{
}
/* Returns true if aio_notify() was called (e.g. a BH was scheduled) */
static bool event_notifier_poll(void *opaque)
{
EventNotifier *e = opaque;
AioContext *ctx = container_of(e, AioContext, notifier);
return atomic_read(&ctx->notified);
}
AioContext *aio_context_new(Error **errp)
{
int ret;
AioContext *ctx;
ctx = (AioContext *) g_source_new(&aio_source_funcs, sizeof(AioContext));
aio_context_setup(ctx);
ret = event_notifier_init(&ctx->notifier, false);
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to initialize event notifier");
goto fail;
}
g_source_set_can_recurse(&ctx->source, true);
aio_set_event_notifier(ctx, &ctx->notifier,
false,
(EventNotifierHandler *)
event_notifier_dummy_cb,
event_notifier_poll);
#ifdef CONFIG_LINUX_AIO
ctx->linux_aio = NULL;
#endif
ctx->thread_pool = NULL;
qemu_mutex_init(&ctx->bh_lock);
qemu_rec_mutex_init(&ctx->lock);
timerlistgroup_init(&ctx->tlg, aio_timerlist_notify, ctx);
ctx->poll_ns = 0;
ctx->poll_max_ns = 0;
ctx->poll_grow = 0;
ctx->poll_shrink = 0;
return ctx;
fail:
g_source_destroy(&ctx->source);
return NULL;
}
void aio_context_ref(AioContext *ctx)
{
g_source_ref(&ctx->source);
}
void aio_context_unref(AioContext *ctx)
{
g_source_unref(&ctx->source);
}
void aio_context_acquire(AioContext *ctx)
{
qemu_rec_mutex_lock(&ctx->lock);
}
void aio_context_release(AioContext *ctx)
{
qemu_rec_mutex_unlock(&ctx->lock);
}