qemu/target/riscv/csr.c
Frédéric Pétrot 457c360f9c target/riscv: actual functions to realize crs 128-bit insns
The csrs are accessed through function pointers: we add 128-bit read
operations in the table for three csrs (writes fallback to the
64-bit version as the upper 64-bit information is handled elsewhere):
- misa, as mxl is needed for proper operation,
- mstatus and sstatus, to return sd
In addition, we also add read and write accesses to the machine and
supervisor scratch registers.

Signed-off-by: Frédéric Pétrot <frederic.petrot@univ-grenoble-alpes.fr>
Co-authored-by: Fabien Portas <fabien.portas@grenoble-inp.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20220106210108.138226-19-frederic.petrot@univ-grenoble-alpes.fr
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2022-01-08 15:46:10 +10:00

2282 lines
74 KiB
C

/*
* RISC-V Control and Status Registers.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017-2018 SiFive, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "qemu/main-loop.h"
#include "exec/exec-all.h"
/* CSR function table public API */
void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops)
{
*ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)];
}
void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops)
{
csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops;
}
/* Predicates */
static RISCVException fs(CPURISCVState *env, int csrno)
{
#if !defined(CONFIG_USER_ONLY)
if (!env->debugger && !riscv_cpu_fp_enabled(env)) {
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
return RISCV_EXCP_NONE;
}
static RISCVException vs(CPURISCVState *env, int csrno)
{
if (env->misa_ext & RVV) {
#if !defined(CONFIG_USER_ONLY)
if (!env->debugger && !riscv_cpu_vector_enabled(env)) {
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException ctr(CPURISCVState *env, int csrno)
{
#if !defined(CONFIG_USER_ONLY)
CPUState *cs = env_cpu(env);
RISCVCPU *cpu = RISCV_CPU(cs);
if (!cpu->cfg.ext_counters) {
/* The Counters extensions is not enabled */
return RISCV_EXCP_ILLEGAL_INST;
}
if (riscv_cpu_virt_enabled(env)) {
switch (csrno) {
case CSR_CYCLE:
if (!get_field(env->hcounteren, COUNTEREN_CY) &&
get_field(env->mcounteren, COUNTEREN_CY)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_TIME:
if (!get_field(env->hcounteren, COUNTEREN_TM) &&
get_field(env->mcounteren, COUNTEREN_TM)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_INSTRET:
if (!get_field(env->hcounteren, COUNTEREN_IR) &&
get_field(env->mcounteren, COUNTEREN_IR)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_HPMCOUNTER3...CSR_HPMCOUNTER31:
if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3)) &&
get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3))) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
switch (csrno) {
case CSR_CYCLEH:
if (!get_field(env->hcounteren, COUNTEREN_CY) &&
get_field(env->mcounteren, COUNTEREN_CY)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_TIMEH:
if (!get_field(env->hcounteren, COUNTEREN_TM) &&
get_field(env->mcounteren, COUNTEREN_TM)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_INSTRETH:
if (!get_field(env->hcounteren, COUNTEREN_IR) &&
get_field(env->mcounteren, COUNTEREN_IR)) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
case CSR_HPMCOUNTER3H...CSR_HPMCOUNTER31H:
if (!get_field(env->hcounteren, 1 << (csrno - CSR_HPMCOUNTER3H)) &&
get_field(env->mcounteren, 1 << (csrno - CSR_HPMCOUNTER3H))) {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
break;
}
}
}
#endif
return RISCV_EXCP_NONE;
}
static RISCVException ctr32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return ctr(env, csrno);
}
#if !defined(CONFIG_USER_ONLY)
static RISCVException any(CPURISCVState *env, int csrno)
{
return RISCV_EXCP_NONE;
}
static RISCVException any32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
return RISCV_EXCP_ILLEGAL_INST;
}
return any(env, csrno);
}
static RISCVException smode(CPURISCVState *env, int csrno)
{
if (riscv_has_ext(env, RVS)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException hmode(CPURISCVState *env, int csrno)
{
if (riscv_has_ext(env, RVS) &&
riscv_has_ext(env, RVH)) {
/* Hypervisor extension is supported */
if ((env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) ||
env->priv == PRV_M) {
return RISCV_EXCP_NONE;
} else {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException hmode32(CPURISCVState *env, int csrno)
{
if (riscv_cpu_mxl(env) != MXL_RV32) {
if (riscv_cpu_virt_enabled(env)) {
return RISCV_EXCP_ILLEGAL_INST;
} else {
return RISCV_EXCP_VIRT_INSTRUCTION_FAULT;
}
}
return hmode(env, csrno);
}
/* Checks if PointerMasking registers could be accessed */
static RISCVException pointer_masking(CPURISCVState *env, int csrno)
{
/* Check if j-ext is present */
if (riscv_has_ext(env, RVJ)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException pmp(CPURISCVState *env, int csrno)
{
if (riscv_feature(env, RISCV_FEATURE_PMP)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
static RISCVException epmp(CPURISCVState *env, int csrno)
{
if (env->priv == PRV_M && riscv_feature(env, RISCV_FEATURE_EPMP)) {
return RISCV_EXCP_NONE;
}
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
/* User Floating-Point CSRs */
static RISCVException read_fflags(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = riscv_cpu_get_fflags(env);
return RISCV_EXCP_NONE;
}
static RISCVException write_fflags(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_FS;
#endif
riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT));
return RISCV_EXCP_NONE;
}
static RISCVException read_frm(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->frm;
return RISCV_EXCP_NONE;
}
static RISCVException write_frm(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_FS;
#endif
env->frm = val & (FSR_RD >> FSR_RD_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException read_fcsr(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT)
| (env->frm << FSR_RD_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException write_fcsr(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_FS;
#endif
env->frm = (val & FSR_RD) >> FSR_RD_SHIFT;
riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT);
return RISCV_EXCP_NONE;
}
static RISCVException read_vtype(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vtype;
return RISCV_EXCP_NONE;
}
static RISCVException read_vl(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vl;
return RISCV_EXCP_NONE;
}
static int read_vlenb(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = env_archcpu(env)->cfg.vlen >> 3;
return RISCV_EXCP_NONE;
}
static RISCVException read_vxrm(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vxrm;
return RISCV_EXCP_NONE;
}
static RISCVException write_vxrm(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxrm = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vxsat(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vxsat;
return RISCV_EXCP_NONE;
}
static RISCVException write_vxsat(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxsat = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstart(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstart;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstart(CPURISCVState *env, int csrno,
target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
/*
* The vstart CSR is defined to have only enough writable bits
* to hold the largest element index, i.e. lg2(VLEN) bits.
*/
env->vstart = val & ~(~0ULL << ctzl(env_archcpu(env)->cfg.vlen));
return RISCV_EXCP_NONE;
}
static int read_vcsr(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT);
return RISCV_EXCP_NONE;
}
static int write_vcsr(CPURISCVState *env, int csrno, target_ulong val)
{
#if !defined(CONFIG_USER_ONLY)
env->mstatus |= MSTATUS_VS;
#endif
env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT;
env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT;
return RISCV_EXCP_NONE;
}
/* User Timers and Counters */
static RISCVException read_instret(CPURISCVState *env, int csrno,
target_ulong *val)
{
#if !defined(CONFIG_USER_ONLY)
if (icount_enabled()) {
*val = icount_get();
} else {
*val = cpu_get_host_ticks();
}
#else
*val = cpu_get_host_ticks();
#endif
return RISCV_EXCP_NONE;
}
static RISCVException read_instreth(CPURISCVState *env, int csrno,
target_ulong *val)
{
#if !defined(CONFIG_USER_ONLY)
if (icount_enabled()) {
*val = icount_get() >> 32;
} else {
*val = cpu_get_host_ticks() >> 32;
}
#else
*val = cpu_get_host_ticks() >> 32;
#endif
return RISCV_EXCP_NONE;
}
#if defined(CONFIG_USER_ONLY)
static RISCVException read_time(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = cpu_get_host_ticks();
return RISCV_EXCP_NONE;
}
static RISCVException read_timeh(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = cpu_get_host_ticks() >> 32;
return RISCV_EXCP_NONE;
}
#else /* CONFIG_USER_ONLY */
static RISCVException read_time(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->rdtime_fn(env->rdtime_fn_arg) + delta;
return RISCV_EXCP_NONE;
}
static RISCVException read_timeh(CPURISCVState *env, int csrno,
target_ulong *val)
{
uint64_t delta = riscv_cpu_virt_enabled(env) ? env->htimedelta : 0;
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32;
return RISCV_EXCP_NONE;
}
/* Machine constants */
#define M_MODE_INTERRUPTS (MIP_MSIP | MIP_MTIP | MIP_MEIP)
#define S_MODE_INTERRUPTS (MIP_SSIP | MIP_STIP | MIP_SEIP)
#define VS_MODE_INTERRUPTS (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP)
static const target_ulong delegable_ints = S_MODE_INTERRUPTS |
VS_MODE_INTERRUPTS;
static const target_ulong vs_delegable_ints = VS_MODE_INTERRUPTS;
static const target_ulong all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS |
VS_MODE_INTERRUPTS;
#define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \
(1ULL << (RISCV_EXCP_BREAKPOINT)) | \
(1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \
(1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_U_ECALL)) | \
(1ULL << (RISCV_EXCP_S_ECALL)) | \
(1ULL << (RISCV_EXCP_VS_ECALL)) | \
(1ULL << (RISCV_EXCP_M_ECALL)) | \
(1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \
(1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \
(1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \
(1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)))
static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS &
~((1ULL << (RISCV_EXCP_S_ECALL)) |
(1ULL << (RISCV_EXCP_VS_ECALL)) |
(1ULL << (RISCV_EXCP_M_ECALL)) |
(1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) |
(1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) |
(1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) |
(1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT)));
static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE |
SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS |
SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS | (target_ulong)SSTATUS64_UXL;
static const target_ulong sip_writable_mask = SIP_SSIP | MIP_USIP | MIP_UEIP;
static const target_ulong hip_writable_mask = MIP_VSSIP;
static const target_ulong hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | MIP_VSEIP;
static const target_ulong vsip_writable_mask = MIP_VSSIP;
static const char valid_vm_1_10_32[16] = {
[VM_1_10_MBARE] = 1,
[VM_1_10_SV32] = 1
};
static const char valid_vm_1_10_64[16] = {
[VM_1_10_MBARE] = 1,
[VM_1_10_SV39] = 1,
[VM_1_10_SV48] = 1,
[VM_1_10_SV57] = 1
};
/* Machine Information Registers */
static RISCVException read_zero(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = 0;
return RISCV_EXCP_NONE;
}
static RISCVException read_mhartid(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mhartid;
return RISCV_EXCP_NONE;
}
/* Machine Trap Setup */
/* We do not store SD explicitly, only compute it on demand. */
static uint64_t add_status_sd(RISCVMXL xl, uint64_t status)
{
if ((status & MSTATUS_FS) == MSTATUS_FS ||
(status & MSTATUS_VS) == MSTATUS_VS ||
(status & MSTATUS_XS) == MSTATUS_XS) {
switch (xl) {
case MXL_RV32:
return status | MSTATUS32_SD;
case MXL_RV64:
return status | MSTATUS64_SD;
case MXL_RV128:
return MSTATUSH128_SD;
default:
g_assert_not_reached();
}
}
return status;
}
static RISCVException read_mstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = add_status_sd(riscv_cpu_mxl(env), env->mstatus);
return RISCV_EXCP_NONE;
}
static int validate_vm(CPURISCVState *env, target_ulong vm)
{
if (riscv_cpu_mxl(env) == MXL_RV32) {
return valid_vm_1_10_32[vm & 0xf];
} else {
return valid_vm_1_10_64[vm & 0xf];
}
}
static RISCVException write_mstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus = env->mstatus;
uint64_t mask = 0;
/* flush tlb on mstatus fields that affect VM */
if ((val ^ mstatus) & (MSTATUS_MXR | MSTATUS_MPP | MSTATUS_MPV |
MSTATUS_MPRV | MSTATUS_SUM)) {
tlb_flush(env_cpu(env));
}
mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE |
MSTATUS_SPP | MSTATUS_FS | MSTATUS_MPRV | MSTATUS_SUM |
MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR |
MSTATUS_TW | MSTATUS_VS;
if (riscv_cpu_mxl(env) != MXL_RV32) {
/*
* RV32: MPV and GVA are not in mstatus. The current plan is to
* add them to mstatush. For now, we just don't support it.
*/
mask |= MSTATUS_MPV | MSTATUS_GVA;
}
mstatus = (mstatus & ~mask) | (val & mask);
RISCVMXL xl = riscv_cpu_mxl(env);
if (xl > MXL_RV32) {
/* SXL and UXL fields are for now read only */
mstatus = set_field(mstatus, MSTATUS64_SXL, xl);
mstatus = set_field(mstatus, MSTATUS64_UXL, xl);
}
env->mstatus = mstatus;
return RISCV_EXCP_NONE;
}
static RISCVException read_mstatush(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mstatus >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_mstatush(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t valh = (uint64_t)val << 32;
uint64_t mask = MSTATUS_MPV | MSTATUS_GVA;
if ((valh ^ env->mstatus) & (MSTATUS_MPV)) {
tlb_flush(env_cpu(env));
}
env->mstatus = (env->mstatus & ~mask) | (valh & mask);
return RISCV_EXCP_NONE;
}
static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, env->mstatus));
return RISCV_EXCP_NONE;
}
static RISCVException read_misa_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62);
return RISCV_EXCP_NONE;
}
static RISCVException read_misa(CPURISCVState *env, int csrno,
target_ulong *val)
{
target_ulong misa;
switch (env->misa_mxl) {
case MXL_RV32:
misa = (target_ulong)MXL_RV32 << 30;
break;
#ifdef TARGET_RISCV64
case MXL_RV64:
misa = (target_ulong)MXL_RV64 << 62;
break;
#endif
default:
g_assert_not_reached();
}
*val = misa | env->misa_ext;
return RISCV_EXCP_NONE;
}
static RISCVException write_misa(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!riscv_feature(env, RISCV_FEATURE_MISA)) {
/* drop write to misa */
return RISCV_EXCP_NONE;
}
/* 'I' or 'E' must be present */
if (!(val & (RVI | RVE))) {
/* It is not, drop write to misa */
return RISCV_EXCP_NONE;
}
/* 'E' excludes all other extensions */
if (val & RVE) {
/* when we support 'E' we can do "val = RVE;" however
* for now we just drop writes if 'E' is present.
*/
return RISCV_EXCP_NONE;
}
/*
* misa.MXL writes are not supported by QEMU.
* Drop writes to those bits.
*/
/* Mask extensions that are not supported by this hart */
val &= env->misa_ext_mask;
/* Mask extensions that are not supported by QEMU */
val &= (RVI | RVE | RVM | RVA | RVF | RVD | RVC | RVS | RVU | RVV);
/* 'D' depends on 'F', so clear 'D' if 'F' is not present */
if ((val & RVD) && !(val & RVF)) {
val &= ~RVD;
}
/* Suppress 'C' if next instruction is not aligned
* TODO: this should check next_pc
*/
if ((val & RVC) && (GETPC() & ~3) != 0) {
val &= ~RVC;
}
/* If nothing changed, do nothing. */
if (val == env->misa_ext) {
return RISCV_EXCP_NONE;
}
/* flush translation cache */
tb_flush(env_cpu(env));
env->misa_ext = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_medeleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->medeleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_medeleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS);
return RISCV_EXCP_NONE;
}
static RISCVException read_mideleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mideleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_mideleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mideleg = (env->mideleg & ~delegable_ints) | (val & delegable_ints);
if (riscv_has_ext(env, RVH)) {
env->mideleg |= VS_MODE_INTERRUPTS;
}
return RISCV_EXCP_NONE;
}
static RISCVException read_mie(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mie;
return RISCV_EXCP_NONE;
}
static RISCVException write_mie(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mie = (env->mie & ~all_ints) | (val & all_ints);
return RISCV_EXCP_NONE;
}
static RISCVException read_mtvec(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtvec(CPURISCVState *env, int csrno,
target_ulong val)
{
/* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
if ((val & 3) < 2) {
env->mtvec = val;
} else {
qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_mcounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mcounteren = val;
return RISCV_EXCP_NONE;
}
/* Machine Trap Handling */
static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->mscratch, env->mscratchh);
return RISCV_EXCP_NONE;
}
static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno,
Int128 val)
{
env->mscratch = int128_getlo(val);
env->mscratchh = int128_gethi(val);
return RISCV_EXCP_NONE;
}
static RISCVException read_mscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_mscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_mepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mcause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mcause;
return RISCV_EXCP_NONE;
}
static RISCVException write_mcause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mcause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtval;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtval = val;
return RISCV_EXCP_NONE;
}
static RISCVException rmw_mip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
RISCVCPU *cpu = env_archcpu(env);
/* Allow software control of delegable interrupts not claimed by hardware */
target_ulong mask = write_mask & delegable_ints & ~env->miclaim;
uint32_t old_mip;
if (mask) {
old_mip = riscv_cpu_update_mip(cpu, mask, (new_value & mask));
} else {
old_mip = env->mip;
}
if (ret_value) {
*ret_value = old_mip;
}
return RISCV_EXCP_NONE;
}
/* Supervisor Trap Setup */
static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
uint64_t mask = sstatus_v1_10_mask;
uint64_t sstatus = env->mstatus & mask;
*val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus));
return RISCV_EXCP_NONE;
}
static RISCVException read_sstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
target_ulong mask = (sstatus_v1_10_mask);
/* TODO: Use SXL not MXL. */
*val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask);
return RISCV_EXCP_NONE;
}
static RISCVException write_sstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong mask = (sstatus_v1_10_mask);
target_ulong newval = (env->mstatus & ~mask) | (val & mask);
return write_mstatus(env, CSR_MSTATUS, newval);
}
static RISCVException read_vsie(CPURISCVState *env, int csrno,
target_ulong *val)
{
/* Shift the VS bits to their S bit location in vsie */
*val = (env->mie & env->hideleg & VS_MODE_INTERRUPTS) >> 1;
return RISCV_EXCP_NONE;
}
static RISCVException read_sie(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (riscv_cpu_virt_enabled(env)) {
read_vsie(env, CSR_VSIE, val);
} else {
*val = env->mie & env->mideleg;
}
return RISCV_EXCP_NONE;
}
static RISCVException write_vsie(CPURISCVState *env, int csrno,
target_ulong val)
{
/* Shift the S bits to their VS bit location in mie */
target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) |
((val << 1) & env->hideleg & VS_MODE_INTERRUPTS);
return write_mie(env, CSR_MIE, newval);
}
static int write_sie(CPURISCVState *env, int csrno, target_ulong val)
{
if (riscv_cpu_virt_enabled(env)) {
write_vsie(env, CSR_VSIE, val);
} else {
target_ulong newval = (env->mie & ~S_MODE_INTERRUPTS) |
(val & S_MODE_INTERRUPTS);
write_mie(env, CSR_MIE, newval);
}
return RISCV_EXCP_NONE;
}
static RISCVException read_stvec(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->stvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_stvec(CPURISCVState *env, int csrno,
target_ulong val)
{
/* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */
if ((val & 3) < 2) {
env->stvec = val;
} else {
qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_scounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->scounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_scounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
env->scounteren = val;
return RISCV_EXCP_NONE;
}
/* Supervisor Trap Handling */
static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno,
Int128 *val)
{
*val = int128_make128(env->sscratch, env->sscratchh);
return RISCV_EXCP_NONE;
}
static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno,
Int128 val)
{
env->sscratch = int128_getlo(val);
env->sscratchh = int128_gethi(val);
return RISCV_EXCP_NONE;
}
static RISCVException read_sscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->sscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_sscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->sscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_sepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->sepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_sepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->sepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_scause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->scause;
return RISCV_EXCP_NONE;
}
static RISCVException write_scause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->scause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_stval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->stval;
return RISCV_EXCP_NONE;
}
static RISCVException write_stval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->stval = val;
return RISCV_EXCP_NONE;
}
static RISCVException rmw_vsip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
/* Shift the S bits to their VS bit location in mip */
int ret = rmw_mip(env, 0, ret_value, new_value << 1,
(write_mask << 1) & vsip_writable_mask & env->hideleg);
if (ret_value) {
*ret_value &= VS_MODE_INTERRUPTS;
/* Shift the VS bits to their S bit location in vsip */
*ret_value >>= 1;
}
return ret;
}
static RISCVException rmw_sip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
int ret;
if (riscv_cpu_virt_enabled(env)) {
ret = rmw_vsip(env, CSR_VSIP, ret_value, new_value, write_mask);
} else {
ret = rmw_mip(env, CSR_MSTATUS, ret_value, new_value,
write_mask & env->mideleg & sip_writable_mask);
}
if (ret_value) {
*ret_value &= env->mideleg;
}
return ret;
}
/* Supervisor Protection and Translation */
static RISCVException read_satp(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
*val = 0;
return RISCV_EXCP_NONE;
}
if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
return RISCV_EXCP_ILLEGAL_INST;
} else {
*val = env->satp;
}
return RISCV_EXCP_NONE;
}
static RISCVException write_satp(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong vm, mask, asid;
if (!riscv_feature(env, RISCV_FEATURE_MMU)) {
return RISCV_EXCP_NONE;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
vm = validate_vm(env, get_field(val, SATP32_MODE));
mask = (val ^ env->satp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN);
asid = (val ^ env->satp) & SATP32_ASID;
} else {
vm = validate_vm(env, get_field(val, SATP64_MODE));
mask = (val ^ env->satp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN);
asid = (val ^ env->satp) & SATP64_ASID;
}
if (vm && mask) {
if (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_TVM)) {
return RISCV_EXCP_ILLEGAL_INST;
} else {
if (asid) {
tlb_flush(env_cpu(env));
}
env->satp = val;
}
}
return RISCV_EXCP_NONE;
}
/* Hypervisor Extensions */
static RISCVException read_hstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hstatus;
if (riscv_cpu_mxl(env) != MXL_RV32) {
/* We only support 64-bit VSXL */
*val = set_field(*val, HSTATUS_VSXL, 2);
}
/* We only support little endian */
*val = set_field(*val, HSTATUS_VSBE, 0);
return RISCV_EXCP_NONE;
}
static RISCVException write_hstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hstatus = val;
if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) {
qemu_log_mask(LOG_UNIMP, "QEMU does not support mixed HSXLEN options.");
}
if (get_field(val, HSTATUS_VSBE) != 0) {
qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests.");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_hedeleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hedeleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_hedeleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hedeleg = val & vs_delegable_excps;
return RISCV_EXCP_NONE;
}
static RISCVException read_hideleg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hideleg;
return RISCV_EXCP_NONE;
}
static RISCVException write_hideleg(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hideleg = val & vs_delegable_ints;
return RISCV_EXCP_NONE;
}
static RISCVException rmw_hvip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
int ret = rmw_mip(env, 0, ret_value, new_value,
write_mask & hvip_writable_mask);
if (ret_value) {
*ret_value &= hvip_writable_mask;
}
return ret;
}
static RISCVException rmw_hip(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
int ret = rmw_mip(env, 0, ret_value, new_value,
write_mask & hip_writable_mask);
if (ret_value) {
*ret_value &= hip_writable_mask;
}
return ret;
}
static RISCVException read_hie(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mie & VS_MODE_INTERRUPTS;
return RISCV_EXCP_NONE;
}
static RISCVException write_hie(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong newval = (env->mie & ~VS_MODE_INTERRUPTS) | (val & VS_MODE_INTERRUPTS);
return write_mie(env, CSR_MIE, newval);
}
static RISCVException read_hcounteren(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hcounteren;
return RISCV_EXCP_NONE;
}
static RISCVException write_hcounteren(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hcounteren = val;
return RISCV_EXCP_NONE;
}
static RISCVException write_hgeie(CPURISCVState *env, int csrno,
target_ulong val)
{
if (val) {
qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_htval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->htval;
return RISCV_EXCP_NONE;
}
static RISCVException write_htval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->htval = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_htinst(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->htinst;
return RISCV_EXCP_NONE;
}
static RISCVException write_htinst(CPURISCVState *env, int csrno,
target_ulong val)
{
return RISCV_EXCP_NONE;
}
static RISCVException write_hgeip(CPURISCVState *env, int csrno,
target_ulong val)
{
if (val) {
qemu_log_mask(LOG_UNIMP, "No support for a non-zero GEILEN.");
}
return RISCV_EXCP_NONE;
}
static RISCVException read_hgatp(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->hgatp;
return RISCV_EXCP_NONE;
}
static RISCVException write_hgatp(CPURISCVState *env, int csrno,
target_ulong val)
{
env->hgatp = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_htimedelta(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->htimedelta;
return RISCV_EXCP_NONE;
}
static RISCVException write_htimedelta(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
if (riscv_cpu_mxl(env) == MXL_RV32) {
env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val);
} else {
env->htimedelta = val;
}
return RISCV_EXCP_NONE;
}
static RISCVException read_htimedeltah(CPURISCVState *env, int csrno,
target_ulong *val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
*val = env->htimedelta >> 32;
return RISCV_EXCP_NONE;
}
static RISCVException write_htimedeltah(CPURISCVState *env, int csrno,
target_ulong val)
{
if (!env->rdtime_fn) {
return RISCV_EXCP_ILLEGAL_INST;
}
env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val);
return RISCV_EXCP_NONE;
}
/* Virtual CSR Registers */
static RISCVException read_vsstatus(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsstatus;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsstatus(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mask = (target_ulong)-1;
env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val;
return RISCV_EXCP_NONE;
}
static int read_vstvec(CPURISCVState *env, int csrno, target_ulong *val)
{
*val = env->vstvec;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstvec(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vstvec = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsscratch(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsscratch;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsscratch(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsscratch = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsepc(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsepc;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsepc(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsepc = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vscause(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vscause;
return RISCV_EXCP_NONE;
}
static RISCVException write_vscause(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vscause = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vstval(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vstval;
return RISCV_EXCP_NONE;
}
static RISCVException write_vstval(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vstval = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_vsatp(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->vsatp;
return RISCV_EXCP_NONE;
}
static RISCVException write_vsatp(CPURISCVState *env, int csrno,
target_ulong val)
{
env->vsatp = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtval2(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtval2;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtval2(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtval2 = val;
return RISCV_EXCP_NONE;
}
static RISCVException read_mtinst(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mtinst;
return RISCV_EXCP_NONE;
}
static RISCVException write_mtinst(CPURISCVState *env, int csrno,
target_ulong val)
{
env->mtinst = val;
return RISCV_EXCP_NONE;
}
/* Physical Memory Protection */
static RISCVException read_mseccfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = mseccfg_csr_read(env);
return RISCV_EXCP_NONE;
}
static RISCVException write_mseccfg(CPURISCVState *env, int csrno,
target_ulong val)
{
mseccfg_csr_write(env, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_pmpcfg(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = pmpcfg_csr_read(env, csrno - CSR_PMPCFG0);
return RISCV_EXCP_NONE;
}
static RISCVException write_pmpcfg(CPURISCVState *env, int csrno,
target_ulong val)
{
pmpcfg_csr_write(env, csrno - CSR_PMPCFG0, val);
return RISCV_EXCP_NONE;
}
static RISCVException read_pmpaddr(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0);
return RISCV_EXCP_NONE;
}
static RISCVException write_pmpaddr(CPURISCVState *env, int csrno,
target_ulong val)
{
pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val);
return RISCV_EXCP_NONE;
}
/*
* Functions to access Pointer Masking feature registers
* We have to check if current priv lvl could modify
* csr in given mode
*/
static bool check_pm_current_disabled(CPURISCVState *env, int csrno)
{
int csr_priv = get_field(csrno, 0x300);
int pm_current;
/*
* If priv lvls differ that means we're accessing csr from higher priv lvl,
* so allow the access
*/
if (env->priv != csr_priv) {
return false;
}
switch (env->priv) {
case PRV_M:
pm_current = get_field(env->mmte, M_PM_CURRENT);
break;
case PRV_S:
pm_current = get_field(env->mmte, S_PM_CURRENT);
break;
case PRV_U:
pm_current = get_field(env->mmte, U_PM_CURRENT);
break;
default:
g_assert_not_reached();
}
/* It's same priv lvl, so we allow to modify csr only if pm.current==1 */
return !pm_current;
}
static RISCVException read_mmte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & MMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_mmte(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
target_ulong wpri_val = val & MMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
"MMTE: WPRI violation written 0x", val,
"vs expected 0x", wpri_val);
}
/* for machine mode pm.current is hardwired to 1 */
wpri_val |= MMTE_M_PM_CURRENT;
/* hardwiring pm.instruction bit to 0, since it's not supported yet */
wpri_val &= ~(MMTE_M_PM_INSN | MMTE_S_PM_INSN | MMTE_U_PM_INSN);
env->mmte = wpri_val | PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_smte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & SMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_smte(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong wpri_val = val & SMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
"SMTE: WPRI violation written 0x", val,
"vs expected 0x", wpri_val);
}
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
wpri_val |= (env->mmte & ~SMTE_MASK);
write_mmte(env, csrno, wpri_val);
return RISCV_EXCP_NONE;
}
static RISCVException read_umte(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mmte & UMTE_MASK;
return RISCV_EXCP_NONE;
}
static RISCVException write_umte(CPURISCVState *env, int csrno,
target_ulong val)
{
target_ulong wpri_val = val & UMTE_MASK;
if (val != wpri_val) {
qemu_log_mask(LOG_GUEST_ERROR, "%s" TARGET_FMT_lx " %s" TARGET_FMT_lx "\n",
"UMTE: WPRI violation written 0x", val,
"vs expected 0x", wpri_val);
}
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
wpri_val |= (env->mmte & ~UMTE_MASK);
write_mmte(env, csrno, wpri_val);
return RISCV_EXCP_NONE;
}
static RISCVException read_mpmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mpmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_mpmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
env->mpmmask = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_spmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->spmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_spmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->spmmask = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_upmmask(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->upmmask;
return RISCV_EXCP_NONE;
}
static RISCVException write_upmmask(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->upmmask = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_mpmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->mpmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_mpmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
env->mpmbase = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_spmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->spmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_spmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->spmbase = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
static RISCVException read_upmbase(CPURISCVState *env, int csrno,
target_ulong *val)
{
*val = env->upmbase;
return RISCV_EXCP_NONE;
}
static RISCVException write_upmbase(CPURISCVState *env, int csrno,
target_ulong val)
{
uint64_t mstatus;
/* if pm.current==0 we can't modify current PM CSRs */
if (check_pm_current_disabled(env, csrno)) {
return RISCV_EXCP_NONE;
}
env->upmbase = val;
env->mmte |= PM_EXT_DIRTY;
/* Set XS and SD bits, since PM CSRs are dirty */
mstatus = env->mstatus | MSTATUS_XS;
write_mstatus(env, csrno, mstatus);
return RISCV_EXCP_NONE;
}
#endif
/*
* riscv_csrrw - read and/or update control and status register
*
* csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0);
* csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1);
* csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value);
* csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value);
*/
static inline RISCVException riscv_csrrw_check(CPURISCVState *env,
int csrno,
bool write_mask,
RISCVCPU *cpu)
{
/* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */
int read_only = get_field(csrno, 0xC00) == 3;
#if !defined(CONFIG_USER_ONLY)
int effective_priv = env->priv;
if (riscv_has_ext(env, RVH) &&
env->priv == PRV_S &&
!riscv_cpu_virt_enabled(env)) {
/*
* We are in S mode without virtualisation, therefore we are in HS Mode.
* Add 1 to the effective privledge level to allow us to access the
* Hypervisor CSRs.
*/
effective_priv++;
}
if (!env->debugger && (effective_priv < get_field(csrno, 0x300))) {
return RISCV_EXCP_ILLEGAL_INST;
}
#endif
if (write_mask && read_only) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* ensure the CSR extension is enabled. */
if (!cpu->cfg.ext_icsr) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* check predicate */
if (!csr_ops[csrno].predicate) {
return RISCV_EXCP_ILLEGAL_INST;
}
return csr_ops[csrno].predicate(env, csrno);
}
static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value,
target_ulong write_mask)
{
RISCVException ret;
target_ulong old_value;
/* execute combined read/write operation if it exists */
if (csr_ops[csrno].op) {
return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask);
}
/* if no accessor exists then return failure */
if (!csr_ops[csrno].read) {
return RISCV_EXCP_ILLEGAL_INST;
}
/* read old value */
ret = csr_ops[csrno].read(env, csrno, &old_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
/* write value if writable and write mask set, otherwise drop writes */
if (write_mask) {
new_value = (old_value & ~write_mask) | (new_value & write_mask);
if (csr_ops[csrno].write) {
ret = csr_ops[csrno].write(env, csrno, new_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
}
}
/* return old value */
if (ret_value) {
*ret_value = old_value;
}
return RISCV_EXCP_NONE;
}
RISCVException riscv_csrrw(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value, target_ulong write_mask)
{
RISCVCPU *cpu = env_archcpu(env);
RISCVException ret = riscv_csrrw_check(env, csrno, write_mask, cpu);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask);
}
static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno,
Int128 *ret_value,
Int128 new_value,
Int128 write_mask)
{
RISCVException ret;
Int128 old_value;
/* read old value */
ret = csr_ops[csrno].read128(env, csrno, &old_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
/* write value if writable and write mask set, otherwise drop writes */
if (int128_nz(write_mask)) {
new_value = int128_or(int128_and(old_value, int128_not(write_mask)),
int128_and(new_value, write_mask));
if (csr_ops[csrno].write128) {
ret = csr_ops[csrno].write128(env, csrno, new_value);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
} else if (csr_ops[csrno].write) {
/* avoids having to write wrappers for all registers */
ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value));
if (ret != RISCV_EXCP_NONE) {
return ret;
}
}
}
/* return old value */
if (ret_value) {
*ret_value = old_value;
}
return RISCV_EXCP_NONE;
}
RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno,
Int128 *ret_value,
Int128 new_value, Int128 write_mask)
{
RISCVException ret;
RISCVCPU *cpu = env_archcpu(env);
ret = riscv_csrrw_check(env, csrno, int128_nz(write_mask), cpu);
if (ret != RISCV_EXCP_NONE) {
return ret;
}
if (csr_ops[csrno].read128) {
return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask);
}
/*
* Fall back to 64-bit version for now, if the 128-bit alternative isn't
* at all defined.
* Note, some CSRs don't need to extend to MXLEN (64 upper bits non
* significant), for those, this fallback is correctly handling the accesses
*/
target_ulong old_value;
ret = riscv_csrrw_do64(env, csrno, &old_value,
int128_getlo(new_value),
int128_getlo(write_mask));
if (ret == RISCV_EXCP_NONE && ret_value) {
*ret_value = int128_make64(old_value);
}
return ret;
}
/*
* Debugger support. If not in user mode, set env->debugger before the
* riscv_csrrw call and clear it after the call.
*/
RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno,
target_ulong *ret_value,
target_ulong new_value,
target_ulong write_mask)
{
RISCVException ret;
#if !defined(CONFIG_USER_ONLY)
env->debugger = true;
#endif
ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask);
#if !defined(CONFIG_USER_ONLY)
env->debugger = false;
#endif
return ret;
}
/* Control and Status Register function table */
riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
/* User Floating-Point CSRs */
[CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags },
[CSR_FRM] = { "frm", fs, read_frm, write_frm },
[CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr },
/* Vector CSRs */
[CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart },
[CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat },
[CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm },
[CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr },
[CSR_VL] = { "vl", vs, read_vl },
[CSR_VTYPE] = { "vtype", vs, read_vtype },
[CSR_VLENB] = { "vlenb", vs, read_vlenb },
/* User Timers and Counters */
[CSR_CYCLE] = { "cycle", ctr, read_instret },
[CSR_INSTRET] = { "instret", ctr, read_instret },
[CSR_CYCLEH] = { "cycleh", ctr32, read_instreth },
[CSR_INSTRETH] = { "instreth", ctr32, read_instreth },
/*
* In privileged mode, the monitor will have to emulate TIME CSRs only if
* rdtime callback is not provided by machine/platform emulation.
*/
[CSR_TIME] = { "time", ctr, read_time },
[CSR_TIMEH] = { "timeh", ctr32, read_timeh },
#if !defined(CONFIG_USER_ONLY)
/* Machine Timers and Counters */
[CSR_MCYCLE] = { "mcycle", any, read_instret },
[CSR_MINSTRET] = { "minstret", any, read_instret },
[CSR_MCYCLEH] = { "mcycleh", any32, read_instreth },
[CSR_MINSTRETH] = { "minstreth", any32, read_instreth },
/* Machine Information Registers */
[CSR_MVENDORID] = { "mvendorid", any, read_zero },
[CSR_MARCHID] = { "marchid", any, read_zero },
[CSR_MIMPID] = { "mimpid", any, read_zero },
[CSR_MHARTID] = { "mhartid", any, read_mhartid },
/* Machine Trap Setup */
[CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, NULL,
read_mstatus_i128 },
[CSR_MISA] = { "misa", any, read_misa, write_misa, NULL,
read_misa_i128 },
[CSR_MIDELEG] = { "mideleg", any, read_mideleg, write_mideleg },
[CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg },
[CSR_MIE] = { "mie", any, read_mie, write_mie },
[CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec },
[CSR_MCOUNTEREN] = { "mcounteren", any, read_mcounteren, write_mcounteren },
[CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, write_mstatush },
/* Machine Trap Handling */
[CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, NULL,
read_mscratch_i128, write_mscratch_i128 },
[CSR_MEPC] = { "mepc", any, read_mepc, write_mepc },
[CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause },
[CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval },
[CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip },
/* Supervisor Trap Setup */
[CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, NULL,
read_sstatus_i128 },
[CSR_SIE] = { "sie", smode, read_sie, write_sie },
[CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec },
[CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, write_scounteren },
/* Supervisor Trap Handling */
[CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, NULL,
read_sscratch_i128, write_sscratch_i128 },
[CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc },
[CSR_SCAUSE] = { "scause", smode, read_scause, write_scause },
[CSR_STVAL] = { "stval", smode, read_stval, write_stval },
[CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip },
/* Supervisor Protection and Translation */
[CSR_SATP] = { "satp", smode, read_satp, write_satp },
[CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus },
[CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg },
[CSR_HIDELEG] = { "hideleg", hmode, read_hideleg, write_hideleg },
[CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip },
[CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip },
[CSR_HIE] = { "hie", hmode, read_hie, write_hie },
[CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, write_hcounteren },
[CSR_HGEIE] = { "hgeie", hmode, read_zero, write_hgeie },
[CSR_HTVAL] = { "htval", hmode, read_htval, write_htval },
[CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst },
[CSR_HGEIP] = { "hgeip", hmode, read_zero, write_hgeip },
[CSR_HGATP] = { "hgatp", hmode, read_hgatp, write_hgatp },
[CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, write_htimedelta },
[CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, write_htimedeltah },
[CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, write_vsstatus },
[CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip },
[CSR_VSIE] = { "vsie", hmode, read_vsie, write_vsie },
[CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec },
[CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, write_vsscratch },
[CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc },
[CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause },
[CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval },
[CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp },
[CSR_MTVAL2] = { "mtval2", hmode, read_mtval2, write_mtval2 },
[CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst },
/* Physical Memory Protection */
[CSR_MSECCFG] = { "mseccfg", epmp, read_mseccfg, write_mseccfg },
[CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg },
[CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr },
[CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr },
/* User Pointer Masking */
[CSR_UMTE] = { "umte", pointer_masking, read_umte, write_umte },
[CSR_UPMMASK] = { "upmmask", pointer_masking, read_upmmask, write_upmmask },
[CSR_UPMBASE] = { "upmbase", pointer_masking, read_upmbase, write_upmbase },
/* Machine Pointer Masking */
[CSR_MMTE] = { "mmte", pointer_masking, read_mmte, write_mmte },
[CSR_MPMMASK] = { "mpmmask", pointer_masking, read_mpmmask, write_mpmmask },
[CSR_MPMBASE] = { "mpmbase", pointer_masking, read_mpmbase, write_mpmbase },
/* Supervisor Pointer Masking */
[CSR_SMTE] = { "smte", pointer_masking, read_smte, write_smte },
[CSR_SPMMASK] = { "spmmask", pointer_masking, read_spmmask, write_spmmask },
[CSR_SPMBASE] = { "spmbase", pointer_masking, read_spmbase, write_spmbase },
/* Performance Counters */
[CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_zero },
[CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_zero },
[CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_zero },
[CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_zero },
[CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_zero },
[CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_zero },
[CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_zero },
[CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_zero },
[CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_zero },
[CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_zero },
[CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_zero },
[CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_zero },
[CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_zero },
[CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_zero },
[CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_zero },
[CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_zero },
[CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_zero },
[CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_zero },
[CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_zero },
[CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_zero },
[CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_zero },
[CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_zero },
[CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_zero },
[CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_zero },
[CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_zero },
[CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_zero },
[CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_zero },
[CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_zero },
[CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_zero },
[CSR_MHPMCOUNTER3] = { "mhpmcounter3", any, read_zero },
[CSR_MHPMCOUNTER4] = { "mhpmcounter4", any, read_zero },
[CSR_MHPMCOUNTER5] = { "mhpmcounter5", any, read_zero },
[CSR_MHPMCOUNTER6] = { "mhpmcounter6", any, read_zero },
[CSR_MHPMCOUNTER7] = { "mhpmcounter7", any, read_zero },
[CSR_MHPMCOUNTER8] = { "mhpmcounter8", any, read_zero },
[CSR_MHPMCOUNTER9] = { "mhpmcounter9", any, read_zero },
[CSR_MHPMCOUNTER10] = { "mhpmcounter10", any, read_zero },
[CSR_MHPMCOUNTER11] = { "mhpmcounter11", any, read_zero },
[CSR_MHPMCOUNTER12] = { "mhpmcounter12", any, read_zero },
[CSR_MHPMCOUNTER13] = { "mhpmcounter13", any, read_zero },
[CSR_MHPMCOUNTER14] = { "mhpmcounter14", any, read_zero },
[CSR_MHPMCOUNTER15] = { "mhpmcounter15", any, read_zero },
[CSR_MHPMCOUNTER16] = { "mhpmcounter16", any, read_zero },
[CSR_MHPMCOUNTER17] = { "mhpmcounter17", any, read_zero },
[CSR_MHPMCOUNTER18] = { "mhpmcounter18", any, read_zero },
[CSR_MHPMCOUNTER19] = { "mhpmcounter19", any, read_zero },
[CSR_MHPMCOUNTER20] = { "mhpmcounter20", any, read_zero },
[CSR_MHPMCOUNTER21] = { "mhpmcounter21", any, read_zero },
[CSR_MHPMCOUNTER22] = { "mhpmcounter22", any, read_zero },
[CSR_MHPMCOUNTER23] = { "mhpmcounter23", any, read_zero },
[CSR_MHPMCOUNTER24] = { "mhpmcounter24", any, read_zero },
[CSR_MHPMCOUNTER25] = { "mhpmcounter25", any, read_zero },
[CSR_MHPMCOUNTER26] = { "mhpmcounter26", any, read_zero },
[CSR_MHPMCOUNTER27] = { "mhpmcounter27", any, read_zero },
[CSR_MHPMCOUNTER28] = { "mhpmcounter28", any, read_zero },
[CSR_MHPMCOUNTER29] = { "mhpmcounter29", any, read_zero },
[CSR_MHPMCOUNTER30] = { "mhpmcounter30", any, read_zero },
[CSR_MHPMCOUNTER31] = { "mhpmcounter31", any, read_zero },
[CSR_MHPMEVENT3] = { "mhpmevent3", any, read_zero },
[CSR_MHPMEVENT4] = { "mhpmevent4", any, read_zero },
[CSR_MHPMEVENT5] = { "mhpmevent5", any, read_zero },
[CSR_MHPMEVENT6] = { "mhpmevent6", any, read_zero },
[CSR_MHPMEVENT7] = { "mhpmevent7", any, read_zero },
[CSR_MHPMEVENT8] = { "mhpmevent8", any, read_zero },
[CSR_MHPMEVENT9] = { "mhpmevent9", any, read_zero },
[CSR_MHPMEVENT10] = { "mhpmevent10", any, read_zero },
[CSR_MHPMEVENT11] = { "mhpmevent11", any, read_zero },
[CSR_MHPMEVENT12] = { "mhpmevent12", any, read_zero },
[CSR_MHPMEVENT13] = { "mhpmevent13", any, read_zero },
[CSR_MHPMEVENT14] = { "mhpmevent14", any, read_zero },
[CSR_MHPMEVENT15] = { "mhpmevent15", any, read_zero },
[CSR_MHPMEVENT16] = { "mhpmevent16", any, read_zero },
[CSR_MHPMEVENT17] = { "mhpmevent17", any, read_zero },
[CSR_MHPMEVENT18] = { "mhpmevent18", any, read_zero },
[CSR_MHPMEVENT19] = { "mhpmevent19", any, read_zero },
[CSR_MHPMEVENT20] = { "mhpmevent20", any, read_zero },
[CSR_MHPMEVENT21] = { "mhpmevent21", any, read_zero },
[CSR_MHPMEVENT22] = { "mhpmevent22", any, read_zero },
[CSR_MHPMEVENT23] = { "mhpmevent23", any, read_zero },
[CSR_MHPMEVENT24] = { "mhpmevent24", any, read_zero },
[CSR_MHPMEVENT25] = { "mhpmevent25", any, read_zero },
[CSR_MHPMEVENT26] = { "mhpmevent26", any, read_zero },
[CSR_MHPMEVENT27] = { "mhpmevent27", any, read_zero },
[CSR_MHPMEVENT28] = { "mhpmevent28", any, read_zero },
[CSR_MHPMEVENT29] = { "mhpmevent29", any, read_zero },
[CSR_MHPMEVENT30] = { "mhpmevent30", any, read_zero },
[CSR_MHPMEVENT31] = { "mhpmevent31", any, read_zero },
[CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_zero },
[CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_zero },
[CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_zero },
[CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_zero },
[CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_zero },
[CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_zero },
[CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_zero },
[CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_zero },
[CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_zero },
[CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_zero },
[CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_zero },
[CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_zero },
[CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_zero },
[CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_zero },
[CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_zero },
[CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_zero },
[CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_zero },
[CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_zero },
[CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_zero },
[CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_zero },
[CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_zero },
[CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_zero },
[CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_zero },
[CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_zero },
[CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_zero },
[CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_zero },
[CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_zero },
[CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_zero },
[CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_zero },
[CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", any32, read_zero },
[CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", any32, read_zero },
[CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", any32, read_zero },
[CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", any32, read_zero },
[CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", any32, read_zero },
[CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", any32, read_zero },
[CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", any32, read_zero },
[CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", any32, read_zero },
[CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", any32, read_zero },
[CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", any32, read_zero },
[CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", any32, read_zero },
[CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", any32, read_zero },
[CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", any32, read_zero },
[CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", any32, read_zero },
[CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", any32, read_zero },
[CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", any32, read_zero },
[CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", any32, read_zero },
[CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", any32, read_zero },
[CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", any32, read_zero },
[CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", any32, read_zero },
[CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", any32, read_zero },
[CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", any32, read_zero },
[CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", any32, read_zero },
[CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", any32, read_zero },
[CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", any32, read_zero },
[CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", any32, read_zero },
[CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", any32, read_zero },
[CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", any32, read_zero },
[CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", any32, read_zero },
#endif /* !CONFIG_USER_ONLY */
};