qemu/vl.c
bellard 38e205a25b win32: do not use all cpu time
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@709 c046a42c-6fe2-441c-8c8c-71466251a162
2004-04-06 19:29:17 +00:00

2153 lines
54 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include <getopt.h>
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <malloc.h>
#include <errno.h>
#include <sys/time.h>
#ifndef _WIN32
#include <sys/times.h>
#include <sys/wait.h>
#include <pty.h>
#include <termios.h>
#include <sys/poll.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#endif
#ifdef _WIN32
#include <sys/timeb.h>
#include <windows.h>
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
#ifdef CONFIG_SDL
/* SDL use the pthreads and they modify sigaction. We don't
want that. */
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 2)
extern void __libc_sigaction();
#define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
#else
extern void __sigaction();
#define sigaction(sig, act, oact) __sigaction(sig, act, oact)
#endif
#endif /* CONFIG_SDL */
#include "disas.h"
#include "exec-all.h"
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
//#define DEBUG_UNUSED_IOPORT
#if !defined(CONFIG_SOFTMMU)
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
#else
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
#endif
/* in ms */
#define GUI_REFRESH_INTERVAL 30
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
char phys_ram_file[1024];
CPUState *global_env;
CPUState *cpu_single_env;
void *ioport_opaque[MAX_IOPORTS];
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
int vga_ram_size;
static DisplayState display_state;
int nographic;
int64_t ticks_per_sec;
int boot_device = 'c';
static int ram_size;
static char network_script[1024];
int pit_min_timer_count = 0;
int nb_nics;
NetDriverState nd_table[MAX_NICS];
SerialState *serial_console;
QEMUTimer *gui_timer;
int vm_running;
/***********************************************************/
/* x86 io ports */
uint32_t default_ioport_readb(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
return 0xff;
}
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/* default is to make two byte accesses */
uint32_t default_ioport_readw(void *opaque, uint32_t address)
{
uint32_t data;
data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](opaque, address);
data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1) << 8;
return data;
}
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
{
ioport_write_table[0][address & (MAX_IOPORTS - 1)](opaque, address, data & 0xff);
ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](opaque, address + 1, (data >> 8) & 0xff);
}
uint32_t default_ioport_readl(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inl: port=0x%04x\n", address);
#endif
return 0xffffffff;
}
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}
void init_ioports(void)
{
int i;
for(i = 0; i < MAX_IOPORTS; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_write_table[1][i] = default_ioport_writew;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[2][i] = default_ioport_writel;
}
}
/* size is the word size in byte */
int register_ioport_read(int start, int length, int size,
IOPortReadFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_read: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_read_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
/* size is the word size in byte */
int register_ioport_write(int start, int length, int size,
IOPortWriteFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_write: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_write_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
int len;
len = strlen(buf);
if (len < buf_size)
pstrcpy(buf + len, buf_size - len, s);
return buf;
}
/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
int fd, size;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
lseek(fd, 0, SEEK_SET);
if (read(fd, addr, size) != size) {
close(fd);
return -1;
}
close(fd);
return size;
}
void cpu_outb(CPUState *env, int addr, int val)
{
addr &= (MAX_IOPORTS - 1);
ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
}
void cpu_outw(CPUState *env, int addr, int val)
{
addr &= (MAX_IOPORTS - 1);
ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
}
void cpu_outl(CPUState *env, int addr, int val)
{
addr &= (MAX_IOPORTS - 1);
ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
}
int cpu_inb(CPUState *env, int addr)
{
addr &= (MAX_IOPORTS - 1);
return ioport_read_table[0][addr](ioport_opaque[addr], addr);
}
int cpu_inw(CPUState *env, int addr)
{
addr &= (MAX_IOPORTS - 1);
return ioport_read_table[1][addr](ioport_opaque[addr], addr);
}
int cpu_inl(CPUState *env, int addr)
{
addr &= (MAX_IOPORTS - 1);
return ioport_read_table[2][addr](ioport_opaque[addr], addr);
}
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
cpu_dump_state(global_env, stderr, 0);
#endif
va_end(ap);
abort();
}
/***********************************************************/
/* timers */
#if defined(__powerpc__)
static inline uint32_t get_tbl(void)
{
uint32_t tbl;
asm volatile("mftb %0" : "=r" (tbl));
return tbl;
}
static inline uint32_t get_tbu(void)
{
uint32_t tbl;
asm volatile("mftbu %0" : "=r" (tbl));
return tbl;
}
int64_t cpu_get_real_ticks(void)
{
uint32_t l, h, h1;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu();
l = get_tbl();
h1 = get_tbu();
} while (h != h1);
return ((int64_t)h << 32) | l;
}
#elif defined(__i386__)
int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("rdtsc" : "=A" (val));
return val;
}
#else
#error unsupported CPU
#endif
static int64_t cpu_ticks_offset;
static int cpu_ticks_enabled;
static inline int64_t cpu_get_ticks(void)
{
if (!cpu_ticks_enabled) {
return cpu_ticks_offset;
} else {
return cpu_get_real_ticks() + cpu_ticks_offset;
}
}
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
if (!cpu_ticks_enabled) {
cpu_ticks_offset -= cpu_get_real_ticks();
cpu_ticks_enabled = 1;
}
}
/* disable cpu_get_ticks() : the clock is stopped. You must not call
cpu_get_ticks() after that. */
void cpu_disable_ticks(void)
{
if (cpu_ticks_enabled) {
cpu_ticks_offset = cpu_get_ticks();
cpu_ticks_enabled = 0;
}
}
static int64_t get_clock(void)
{
#ifdef _WIN32
struct _timeb tb;
_ftime(&tb);
return ((int64_t)tb.time * 1000 + (int64_t)tb.millitm) * 1000;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000LL + tv.tv_usec;
#endif
}
void cpu_calibrate_ticks(void)
{
int64_t usec, ticks;
usec = get_clock();
ticks = cpu_get_real_ticks();
#ifdef _WIN32
Sleep(50);
#else
usleep(50 * 1000);
#endif
usec = get_clock() - usec;
ticks = cpu_get_real_ticks() - ticks;
ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
#define QEMU_TIMER_REALTIME 0
#define QEMU_TIMER_VIRTUAL 1
struct QEMUClock {
int type;
/* XXX: add frequency */
};
struct QEMUTimer {
QEMUClock *clock;
int64_t expire_time;
QEMUTimerCB *cb;
void *opaque;
struct QEMUTimer *next;
};
QEMUClock *rt_clock;
QEMUClock *vm_clock;
static QEMUTimer *active_timers[2];
#ifdef _WIN32
static MMRESULT timerID;
#else
/* frequency of the times() clock tick */
static int timer_freq;
#endif
QEMUClock *qemu_new_clock(int type)
{
QEMUClock *clock;
clock = qemu_mallocz(sizeof(QEMUClock));
if (!clock)
return NULL;
clock->type = type;
return clock;
}
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
QEMUTimer *ts;
ts = qemu_mallocz(sizeof(QEMUTimer));
ts->clock = clock;
ts->cb = cb;
ts->opaque = opaque;
return ts;
}
void qemu_free_timer(QEMUTimer *ts)
{
qemu_free(ts);
}
/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
QEMUTimer **pt, *t;
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t == ts) {
*pt = t->next;
break;
}
pt = &t->next;
}
}
/* modify the current timer so that it will be fired when current_time
>= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
QEMUTimer **pt, *t;
qemu_del_timer(ts);
/* add the timer in the sorted list */
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t->expire_time > expire_time)
break;
pt = &t->next;
}
ts->expire_time = expire_time;
ts->next = *pt;
*pt = ts;
}
int qemu_timer_pending(QEMUTimer *ts)
{
QEMUTimer *t;
for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
if (t == ts)
return 1;
}
return 0;
}
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
if (!timer_head)
return 0;
return (timer_head->expire_time <= current_time);
}
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
QEMUTimer *ts;
for(;;) {
ts = *ptimer_head;
if (ts->expire_time > current_time)
break;
/* remove timer from the list before calling the callback */
*ptimer_head = ts->next;
ts->next = NULL;
/* run the callback (the timer list can be modified) */
ts->cb(ts->opaque);
}
}
int64_t qemu_get_clock(QEMUClock *clock)
{
switch(clock->type) {
case QEMU_TIMER_REALTIME:
#ifdef _WIN32
return GetTickCount();
#else
/* XXX: portability among Linux hosts */
if (timer_freq == 100) {
return times(NULL) * 10;
} else {
return ((int64_t)times(NULL) * 1000) / timer_freq;
}
#endif
default:
case QEMU_TIMER_VIRTUAL:
return cpu_get_ticks();
}
}
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
if (qemu_timer_pending(ts)) {
expire_time = ts->expire_time;
} else {
expire_time = -1;
}
qemu_put_be64(f, expire_time);
}
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_get_be64(f);
if (expire_time != -1) {
qemu_mod_timer(ts, expire_time);
} else {
qemu_del_timer(ts);
}
}
static void timer_save(QEMUFile *f, void *opaque)
{
if (cpu_ticks_enabled) {
hw_error("cannot save state if virtual timers are running");
}
qemu_put_be64s(f, &cpu_ticks_offset);
qemu_put_be64s(f, &ticks_per_sec);
}
static int timer_load(QEMUFile *f, void *opaque, int version_id)
{
if (version_id != 1)
return -EINVAL;
if (cpu_ticks_enabled) {
return -EINVAL;
}
qemu_get_be64s(f, &cpu_ticks_offset);
qemu_get_be64s(f, &ticks_per_sec);
return 0;
}
#ifdef _WIN32
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
#else
static void host_alarm_handler(int host_signum)
#endif
{
if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock)) ||
qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock))) {
/* stop the cpu because a timer occured */
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
}
}
static void init_timers(void)
{
rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
#ifdef _WIN32
{
int count=0;
timerID = timeSetEvent(10, // interval (ms)
0, // resolution
host_alarm_handler, // function
(DWORD)&count, // user parameter
TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
if( !timerID ) {
perror("failed timer alarm");
exit(1);
}
}
pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
#else
{
struct sigaction act;
struct itimerval itv;
/* get times() syscall frequency */
timer_freq = sysconf(_SC_CLK_TCK);
/* timer signal */
sigfillset(&act.sa_mask);
act.sa_flags = 0;
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
act.sa_flags |= SA_ONSTACK;
#endif
act.sa_handler = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 10 * 1000;
setitimer(ITIMER_REAL, &itv, NULL);
/* we probe the tick duration of the kernel to inform the user if
the emulated kernel requested a too high timer frequency */
getitimer(ITIMER_REAL, &itv);
pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) /
1000000;
}
#endif
}
void quit_timers(void)
{
#ifdef _WIN32
timeKillEvent(timerID);
#endif
}
/***********************************************************/
/* serial device */
#ifdef _WIN32
int serial_open_device(void)
{
return -1;
}
#else
int serial_open_device(void)
{
char slave_name[1024];
int master_fd, slave_fd;
if (serial_console == NULL && nographic) {
/* use console for serial port */
return 0;
} else {
if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
fprintf(stderr, "warning: could not create pseudo terminal for serial port\n");
return -1;
}
fprintf(stderr, "Serial port redirected to %s\n", slave_name);
return master_fd;
}
}
#endif
/***********************************************************/
/* Linux network device redirector */
#ifdef _WIN32
static int net_init(void)
{
return 0;
}
void net_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
}
#else
static int tun_open(char *ifname, int ifname_size)
{
struct ifreq ifr;
int fd, ret;
fd = open("/dev/net/tun", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret != 0) {
fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
close(fd);
return -1;
}
printf("Connected to host network interface: %s\n", ifr.ifr_name);
pstrcpy(ifname, ifname_size, ifr.ifr_name);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
static int net_init(void)
{
int pid, status, launch_script, i;
NetDriverState *nd;
char *args[MAX_NICS + 2];
char **parg;
launch_script = 0;
for(i = 0; i < nb_nics; i++) {
nd = &nd_table[i];
if (nd->fd < 0) {
nd->fd = tun_open(nd->ifname, sizeof(nd->ifname));
if (nd->fd >= 0)
launch_script = 1;
}
}
if (launch_script) {
/* try to launch network init script */
pid = fork();
if (pid >= 0) {
if (pid == 0) {
parg = args;
*parg++ = network_script;
for(i = 0; i < nb_nics; i++) {
nd = &nd_table[i];
if (nd->fd >= 0) {
*parg++ = nd->ifname;
}
}
*parg++ = NULL;
execv(network_script, args);
exit(1);
}
while (waitpid(pid, &status, 0) != pid);
if (!WIFEXITED(status) ||
WEXITSTATUS(status) != 0) {
fprintf(stderr, "%s: could not launch network script\n",
network_script);
}
}
}
return 0;
}
void net_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
#ifdef DEBUG_NE2000
printf("NE2000: sending packet size=%d\n", size);
#endif
write(nd->fd, buf, size);
}
#endif
/***********************************************************/
/* dumb display */
#ifdef _WIN32
static void term_exit(void)
{
}
static void term_init(void)
{
}
#else
/* init terminal so that we can grab keys */
static struct termios oldtty;
static void term_exit(void)
{
tcsetattr (0, TCSANOW, &oldtty);
}
static void term_init(void)
{
struct termios tty;
tcgetattr (0, &tty);
oldtty = tty;
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
tty.c_oflag |= OPOST;
tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
/* if graphical mode, we allow Ctrl-C handling */
if (nographic)
tty.c_lflag &= ~ISIG;
tty.c_cflag &= ~(CSIZE|PARENB);
tty.c_cflag |= CS8;
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
tcsetattr (0, TCSANOW, &tty);
atexit(term_exit);
fcntl(0, F_SETFL, O_NONBLOCK);
}
#endif
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
{
}
static void dumb_resize(DisplayState *ds, int w, int h)
{
}
static void dumb_refresh(DisplayState *ds)
{
vga_update_display();
}
void dumb_display_init(DisplayState *ds)
{
ds->data = NULL;
ds->linesize = 0;
ds->depth = 0;
ds->dpy_update = dumb_update;
ds->dpy_resize = dumb_resize;
ds->dpy_refresh = dumb_refresh;
}
#if !defined(CONFIG_SOFTMMU)
/***********************************************************/
/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info,
void *puc)
{
if (cpu_signal_handler(host_signum, info, puc))
return;
term_exit();
abort();
}
#endif
/***********************************************************/
/* I/O handling */
#define MAX_IO_HANDLERS 64
typedef struct IOHandlerRecord {
int fd;
IOCanRWHandler *fd_can_read;
IOReadHandler *fd_read;
void *opaque;
/* temporary data */
struct pollfd *ufd;
int max_size;
struct IOHandlerRecord *next;
} IOHandlerRecord;
static IOHandlerRecord *first_io_handler;
int qemu_add_fd_read_handler(int fd, IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
IOHandlerRecord *ioh;
ioh = qemu_mallocz(sizeof(IOHandlerRecord));
if (!ioh)
return -1;
ioh->fd = fd;
ioh->fd_can_read = fd_can_read;
ioh->fd_read = fd_read;
ioh->opaque = opaque;
ioh->next = first_io_handler;
first_io_handler = ioh;
return 0;
}
void qemu_del_fd_read_handler(int fd)
{
IOHandlerRecord **pioh, *ioh;
pioh = &first_io_handler;
for(;;) {
ioh = *pioh;
if (ioh == NULL)
break;
if (ioh->fd == fd) {
*pioh = ioh->next;
break;
}
pioh = &ioh->next;
}
}
/***********************************************************/
/* savevm/loadvm support */
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
{
fwrite(buf, 1, size, f);
}
void qemu_put_byte(QEMUFile *f, int v)
{
fputc(v, f);
}
void qemu_put_be16(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be32(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 24);
qemu_put_byte(f, v >> 16);
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be64(QEMUFile *f, uint64_t v)
{
qemu_put_be32(f, v >> 32);
qemu_put_be32(f, v);
}
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
{
return fread(buf, 1, size, f);
}
int qemu_get_byte(QEMUFile *f)
{
int v;
v = fgetc(f);
if (v == EOF)
return 0;
else
return v;
}
unsigned int qemu_get_be16(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
unsigned int qemu_get_be32(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 24;
v |= qemu_get_byte(f) << 16;
v |= qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
uint64_t qemu_get_be64(QEMUFile *f)
{
uint64_t v;
v = (uint64_t)qemu_get_be32(f) << 32;
v |= qemu_get_be32(f);
return v;
}
int64_t qemu_ftell(QEMUFile *f)
{
return ftell(f);
}
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
{
if (fseek(f, pos, whence) < 0)
return -1;
return ftell(f);
}
typedef struct SaveStateEntry {
char idstr[256];
int instance_id;
int version_id;
SaveStateHandler *save_state;
LoadStateHandler *load_state;
void *opaque;
struct SaveStateEntry *next;
} SaveStateEntry;
static SaveStateEntry *first_se;
int register_savevm(const char *idstr,
int instance_id,
int version_id,
SaveStateHandler *save_state,
LoadStateHandler *load_state,
void *opaque)
{
SaveStateEntry *se, **pse;
se = qemu_malloc(sizeof(SaveStateEntry));
if (!se)
return -1;
pstrcpy(se->idstr, sizeof(se->idstr), idstr);
se->instance_id = instance_id;
se->version_id = version_id;
se->save_state = save_state;
se->load_state = load_state;
se->opaque = opaque;
se->next = NULL;
/* add at the end of list */
pse = &first_se;
while (*pse != NULL)
pse = &(*pse)->next;
*pse = se;
return 0;
}
#define QEMU_VM_FILE_MAGIC 0x5145564d
#define QEMU_VM_FILE_VERSION 0x00000001
int qemu_savevm(const char *filename)
{
SaveStateEntry *se;
QEMUFile *f;
int len, len_pos, cur_pos, saved_vm_running, ret;
saved_vm_running = vm_running;
vm_stop(0);
f = fopen(filename, "wb");
if (!f) {
ret = -1;
goto the_end;
}
qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
qemu_put_be32(f, QEMU_VM_FILE_VERSION);
for(se = first_se; se != NULL; se = se->next) {
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
/* record size: filled later */
len_pos = ftell(f);
qemu_put_be32(f, 0);
se->save_state(f, se->opaque);
/* fill record size */
cur_pos = ftell(f);
len = ftell(f) - len_pos - 4;
fseek(f, len_pos, SEEK_SET);
qemu_put_be32(f, len);
fseek(f, cur_pos, SEEK_SET);
}
fclose(f);
ret = 0;
the_end:
if (saved_vm_running)
vm_start();
return ret;
}
static SaveStateEntry *find_se(const char *idstr, int instance_id)
{
SaveStateEntry *se;
for(se = first_se; se != NULL; se = se->next) {
if (!strcmp(se->idstr, idstr) &&
instance_id == se->instance_id)
return se;
}
return NULL;
}
int qemu_loadvm(const char *filename)
{
SaveStateEntry *se;
QEMUFile *f;
int len, cur_pos, ret, instance_id, record_len, version_id;
int saved_vm_running;
unsigned int v;
char idstr[256];
saved_vm_running = vm_running;
vm_stop(0);
f = fopen(filename, "rb");
if (!f) {
ret = -1;
goto the_end;
}
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_MAGIC)
goto fail;
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_VERSION) {
fail:
fclose(f);
ret = -1;
goto the_end;
}
for(;;) {
len = qemu_get_byte(f);
if (feof(f))
break;
qemu_get_buffer(f, idstr, len);
idstr[len] = '\0';
instance_id = qemu_get_be32(f);
version_id = qemu_get_be32(f);
record_len = qemu_get_be32(f);
#if 0
printf("idstr=%s instance=0x%x version=%d len=%d\n",
idstr, instance_id, version_id, record_len);
#endif
cur_pos = ftell(f);
se = find_se(idstr, instance_id);
if (!se) {
fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
instance_id, idstr);
} else {
ret = se->load_state(f, se->opaque, version_id);
if (ret < 0) {
fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
instance_id, idstr);
}
}
/* always seek to exact end of record */
qemu_fseek(f, cur_pos + record_len, SEEK_SET);
}
fclose(f);
ret = 0;
the_end:
if (saved_vm_running)
vm_start();
return ret;
}
/***********************************************************/
/* cpu save/restore */
#if defined(TARGET_I386)
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
{
qemu_put_be32(f, (uint32_t)dt->base);
qemu_put_be32(f, dt->limit);
qemu_put_be32(f, dt->flags);
}
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
{
dt->base = (uint8_t *)qemu_get_be32(f);
dt->limit = qemu_get_be32(f);
dt->flags = qemu_get_be32(f);
}
void cpu_save(QEMUFile *f, void *opaque)
{
CPUState *env = opaque;
uint16_t fptag, fpus, fpuc;
uint32_t hflags;
int i;
for(i = 0; i < 8; i++)
qemu_put_be32s(f, &env->regs[i]);
qemu_put_be32s(f, &env->eip);
qemu_put_be32s(f, &env->eflags);
qemu_put_be32s(f, &env->eflags);
hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
qemu_put_be32s(f, &hflags);
/* FPU */
fpuc = env->fpuc;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
}
}
qemu_put_be16s(f, &fpuc);
qemu_put_be16s(f, &fpus);
qemu_put_be16s(f, &fptag);
for(i = 0; i < 8; i++) {
uint64_t mant;
uint16_t exp;
cpu_get_fp80(&mant, &exp, env->fpregs[i]);
qemu_put_be64(f, mant);
qemu_put_be16(f, exp);
}
for(i = 0; i < 6; i++)
cpu_put_seg(f, &env->segs[i]);
cpu_put_seg(f, &env->ldt);
cpu_put_seg(f, &env->tr);
cpu_put_seg(f, &env->gdt);
cpu_put_seg(f, &env->idt);
qemu_put_be32s(f, &env->sysenter_cs);
qemu_put_be32s(f, &env->sysenter_esp);
qemu_put_be32s(f, &env->sysenter_eip);
qemu_put_be32s(f, &env->cr[0]);
qemu_put_be32s(f, &env->cr[2]);
qemu_put_be32s(f, &env->cr[3]);
qemu_put_be32s(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_put_be32s(f, &env->dr[i]);
/* MMU */
qemu_put_be32s(f, &env->a20_mask);
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
CPUState *env = opaque;
int i;
uint32_t hflags;
uint16_t fpus, fpuc, fptag;
if (version_id != 1)
return -EINVAL;
for(i = 0; i < 8; i++)
qemu_get_be32s(f, &env->regs[i]);
qemu_get_be32s(f, &env->eip);
qemu_get_be32s(f, &env->eflags);
qemu_get_be32s(f, &env->eflags);
qemu_get_be32s(f, &hflags);
qemu_get_be16s(f, &fpuc);
qemu_get_be16s(f, &fpus);
qemu_get_be16s(f, &fptag);
for(i = 0; i < 8; i++) {
uint64_t mant;
uint16_t exp;
mant = qemu_get_be64(f);
exp = qemu_get_be16(f);
env->fpregs[i] = cpu_set_fp80(mant, exp);
}
env->fpuc = fpuc;
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
for(i = 0; i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
for(i = 0; i < 6; i++)
cpu_get_seg(f, &env->segs[i]);
cpu_get_seg(f, &env->ldt);
cpu_get_seg(f, &env->tr);
cpu_get_seg(f, &env->gdt);
cpu_get_seg(f, &env->idt);
qemu_get_be32s(f, &env->sysenter_cs);
qemu_get_be32s(f, &env->sysenter_esp);
qemu_get_be32s(f, &env->sysenter_eip);
qemu_get_be32s(f, &env->cr[0]);
qemu_get_be32s(f, &env->cr[2]);
qemu_get_be32s(f, &env->cr[3]);
qemu_get_be32s(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_get_be32s(f, &env->dr[i]);
/* MMU */
qemu_get_be32s(f, &env->a20_mask);
/* XXX: compute hflags from scratch, except for CPL and IIF */
env->hflags = hflags;
tlb_flush(env, 1);
return 0;
}
#else
#warning No CPU save/restore functions
#endif
/***********************************************************/
/* ram save/restore */
/* we just avoid storing empty pages */
static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
{
int i, v;
v = buf[0];
for(i = 1; i < len; i++) {
if (buf[i] != v)
goto normal_save;
}
qemu_put_byte(f, 1);
qemu_put_byte(f, v);
return;
normal_save:
qemu_put_byte(f, 0);
qemu_put_buffer(f, buf, len);
}
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
{
int v;
v = qemu_get_byte(f);
switch(v) {
case 0:
if (qemu_get_buffer(f, buf, len) != len)
return -EIO;
break;
case 1:
v = qemu_get_byte(f);
memset(buf, v, len);
break;
default:
return -EINVAL;
}
return 0;
}
static void ram_save(QEMUFile *f, void *opaque)
{
int i;
qemu_put_be32(f, phys_ram_size);
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
}
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
int i, ret;
if (version_id != 1)
return -EINVAL;
if (qemu_get_be32(f) != phys_ram_size)
return -EINVAL;
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
if (ret)
return ret;
}
return 0;
}
/***********************************************************/
/* main execution loop */
void gui_update(void *opaque)
{
display_state.dpy_refresh(&display_state);
qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
}
/* XXX: support several handlers */
VMStopHandler *vm_stop_cb;
VMStopHandler *vm_stop_opaque;
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = cb;
vm_stop_opaque = opaque;
return 0;
}
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = NULL;
}
void vm_start(void)
{
if (!vm_running) {
cpu_enable_ticks();
vm_running = 1;
}
}
void vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
if (reason != 0) {
if (vm_stop_cb) {
vm_stop_cb(vm_stop_opaque, reason);
}
}
}
}
int main_loop(void)
{
#ifndef _WIN32
struct pollfd ufds[MAX_IO_HANDLERS + 1], *pf;
IOHandlerRecord *ioh, *ioh_next;
uint8_t buf[4096];
int n, max_size;
#endif
int ret, timeout;
CPUState *env = global_env;
for(;;) {
if (vm_running) {
ret = cpu_exec(env);
if (reset_requested) {
ret = EXCP_INTERRUPT;
break;
}
if (ret == EXCP_DEBUG) {
vm_stop(EXCP_DEBUG);
}
/* if hlt instruction, we wait until the next IRQ */
/* XXX: use timeout computed from timers */
if (ret == EXCP_HLT)
timeout = 10;
else
timeout = 0;
} else {
timeout = 10;
}
#ifdef _WIN32
if (timeout > 0)
Sleep(timeout);
#else
/* poll any events */
/* XXX: separate device handlers from system ones */
pf = ufds;
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (!ioh->fd_can_read) {
max_size = 0;
pf->fd = ioh->fd;
pf->events = POLLIN;
ioh->ufd = pf;
pf++;
} else {
max_size = ioh->fd_can_read(ioh->opaque);
if (max_size > 0) {
if (max_size > sizeof(buf))
max_size = sizeof(buf);
pf->fd = ioh->fd;
pf->events = POLLIN;
ioh->ufd = pf;
pf++;
} else {
ioh->ufd = NULL;
}
}
ioh->max_size = max_size;
}
ret = poll(ufds, pf - ufds, timeout);
if (ret > 0) {
/* XXX: better handling of removal */
for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
ioh_next = ioh->next;
pf = ioh->ufd;
if (pf) {
if (pf->revents & POLLIN) {
if (ioh->max_size == 0) {
/* just a read event */
ioh->fd_read(ioh->opaque, NULL, 0);
} else {
n = read(ioh->fd, buf, ioh->max_size);
if (n >= 0) {
ioh->fd_read(ioh->opaque, buf, n);
} else if (errno != -EAGAIN) {
ioh->fd_read(ioh->opaque, NULL, -errno);
}
}
}
}
}
}
#endif
if (vm_running) {
qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock));
/* XXX: add explicit timer */
SB16_run();
/* run dma transfers, if any */
DMA_run();
}
/* real time timers */
qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock));
}
cpu_disable_ticks();
return ret;
}
void help(void)
{
printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
"usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
"Standard options:\n"
"-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
"-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
"-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
"-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
"-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
"-snapshot write to temporary files instead of disk image files\n"
"-m megs set virtual RAM size to megs MB\n"
"-nographic disable graphical output and redirect serial I/Os to console\n"
"\n"
"Network options:\n"
"-n script set network init script [default=%s]\n"
"-nics n simulate 'n' network interfaces [default=1]\n"
"-macaddr addr set the mac address of the first interface\n"
"-tun-fd fd0[,...] use these fds as already opened tap/tun interfaces\n"
"\n"
"Linux boot specific:\n"
"-kernel bzImage use 'bzImage' as kernel image\n"
"-append cmdline use 'cmdline' as kernel command line\n"
"-initrd file use 'file' as initial ram disk\n"
"\n"
"Debug/Expert options:\n"
"-s wait gdb connection to port %d\n"
"-p port change gdb connection port\n"
"-d item1,... output log to %s (use -d ? for a list of log items)\n"
"-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
"-L path set the directory for the BIOS and VGA BIOS\n"
#ifdef USE_CODE_COPY
"-no-code-copy disable code copy acceleration\n"
#endif
"\n"
"During emulation, use C-a h to get terminal commands:\n",
#ifdef CONFIG_SOFTMMU
"qemu",
#else
"qemu-fast",
#endif
DEFAULT_NETWORK_SCRIPT,
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
term_print_help();
#ifndef CONFIG_SOFTMMU
printf("\n"
"NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
"work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
"PC emulation.\n");
#endif
exit(1);
}
struct option long_options[] = {
{ "initrd", 1, NULL, 0, },
{ "hda", 1, NULL, 0, },
{ "hdb", 1, NULL, 0, },
{ "snapshot", 0, NULL, 0, },
{ "hdachs", 1, NULL, 0, },
{ "nographic", 0, NULL, 0, },
{ "kernel", 1, NULL, 0, },
{ "append", 1, NULL, 0, },
{ "tun-fd", 1, NULL, 0, },
{ "hdc", 1, NULL, 0, },
{ "hdd", 1, NULL, 0, },
{ "cdrom", 1, NULL, 0, },
{ "boot", 1, NULL, 0, },
{ "fda", 1, NULL, 0, },
{ "fdb", 1, NULL, 0, },
{ "no-code-copy", 0, NULL, 0 },
{ "nics", 1, NULL, 0 },
{ "macaddr", 1, NULL, 0 },
{ NULL, 0, NULL, 0 },
};
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
/* this stack is only used during signal handling */
#define SIGNAL_STACK_SIZE 32768
static uint8_t *signal_stack;
#endif
int main(int argc, char **argv)
{
#ifdef CONFIG_GDBSTUB
int use_gdbstub, gdbstub_port;
#endif
int c, i, long_index, has_cdrom;
int snapshot, linux_boot;
CPUState *env;
const char *initrd_filename;
const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
const char *kernel_filename, *kernel_cmdline;
DisplayState *ds = &display_state;
int cyls, heads, secs;
uint8_t macaddr[6];
#if !defined(CONFIG_SOFTMMU)
/* we never want that malloc() uses mmap() */
mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
#endif
initrd_filename = NULL;
for(i = 0; i < MAX_FD; i++)
fd_filename[i] = NULL;
for(i = 0; i < MAX_DISKS; i++)
hd_filename[i] = NULL;
ram_size = 32 * 1024 * 1024;
vga_ram_size = VGA_RAM_SIZE;
pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
#ifdef CONFIG_GDBSTUB
use_gdbstub = 0;
gdbstub_port = DEFAULT_GDBSTUB_PORT;
#endif
snapshot = 0;
nographic = 0;
kernel_filename = NULL;
kernel_cmdline = "";
has_cdrom = 1;
cyls = heads = secs = 0;
nb_nics = 1;
/* default mac address of the first network interface */
macaddr[0] = 0x52;
macaddr[1] = 0x54;
macaddr[2] = 0x00;
macaddr[3] = 0x12;
macaddr[4] = 0x34;
macaddr[5] = 0x56;
for(i = 0; i < MAX_NICS; i++)
nd_table[i].fd = -1;
for(;;) {
c = getopt_long_only(argc, argv, "hm:d:n:sp:L:", long_options, &long_index);
if (c == -1)
break;
switch(c) {
case 0:
switch(long_index) {
case 0:
initrd_filename = optarg;
break;
case 1:
hd_filename[0] = optarg;
break;
case 2:
hd_filename[1] = optarg;
break;
case 3:
snapshot = 1;
break;
case 4:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (*p != '\0') {
chs_fail:
cyls = 0;
}
}
break;
case 5:
nographic = 1;
break;
case 6:
kernel_filename = optarg;
break;
case 7:
kernel_cmdline = optarg;
break;
case 8:
{
const char *p;
int fd;
p = optarg;
nb_nics = 0;
for(;;) {
fd = strtol(p, (char **)&p, 0);
nd_table[nb_nics].fd = fd;
snprintf(nd_table[nb_nics].ifname,
sizeof(nd_table[nb_nics].ifname),
"fd%d", nb_nics);
nb_nics++;
if (*p == ',') {
p++;
} else if (*p != '\0') {
fprintf(stderr, "qemu: invalid fd for network interface %d\n", nb_nics);
exit(1);
} else {
break;
}
}
}
break;
case 9:
hd_filename[2] = optarg;
has_cdrom = 0;
break;
case 10:
hd_filename[3] = optarg;
break;
case 11:
hd_filename[2] = optarg;
has_cdrom = 1;
break;
case 12:
boot_device = optarg[0];
if (boot_device != 'a' && boot_device != 'b' &&
boot_device != 'c' && boot_device != 'd') {
fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
exit(1);
}
break;
case 13:
fd_filename[0] = optarg;
break;
case 14:
fd_filename[1] = optarg;
break;
case 15:
code_copy_enabled = 0;
break;
case 16:
nb_nics = atoi(optarg);
if (nb_nics < 1 || nb_nics > MAX_NICS) {
fprintf(stderr, "qemu: invalid number of network interfaces\n");
exit(1);
}
break;
case 17:
{
const char *p;
int i;
p = optarg;
for(i = 0; i < 6; i++) {
macaddr[i] = strtol(p, (char **)&p, 16);
if (i == 5) {
if (*p != '\0')
goto macaddr_error;
} else {
if (*p != ':') {
macaddr_error:
fprintf(stderr, "qemu: invalid syntax for ethernet address\n");
exit(1);
}
p++;
}
}
}
break;
}
break;
case 'h':
help();
break;
case 'm':
ram_size = atoi(optarg) * 1024 * 1024;
if (ram_size <= 0)
help();
if (ram_size > PHYS_RAM_MAX_SIZE) {
fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
PHYS_RAM_MAX_SIZE / (1024 * 1024));
exit(1);
}
break;
case 'd':
{
int mask;
CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for(item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
break;
case 'n':
pstrcpy(network_script, sizeof(network_script), optarg);
break;
#ifdef CONFIG_GDBSTUB
case 's':
use_gdbstub = 1;
break;
case 'p':
gdbstub_port = atoi(optarg);
break;
#endif
case 'L':
bios_dir = optarg;
break;
}
}
if (optind < argc) {
hd_filename[0] = argv[optind++];
}
linux_boot = (kernel_filename != NULL);
if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
fd_filename[0] == '\0')
help();
/* boot to cd by default if no hard disk */
if (hd_filename[0] == '\0' && boot_device == 'c') {
if (fd_filename[0] != '\0')
boot_device = 'a';
else
boot_device = 'd';
}
#if !defined(CONFIG_SOFTMMU)
/* must avoid mmap() usage of glibc by setting a buffer "by hand" */
{
static uint8_t stdout_buf[4096];
setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
}
#else
setvbuf(stdout, NULL, _IOLBF, 0);
#endif
/* init host network redirectors */
for(i = 0; i < MAX_NICS; i++) {
NetDriverState *nd = &nd_table[i];
/* init virtual mac address */
nd->macaddr[0] = macaddr[0];
nd->macaddr[1] = macaddr[1];
nd->macaddr[2] = macaddr[2];
nd->macaddr[3] = macaddr[3];
nd->macaddr[4] = macaddr[4];
nd->macaddr[5] = macaddr[5] + i;
}
net_init();
/* init the memory */
phys_ram_size = ram_size + vga_ram_size;
#ifdef CONFIG_SOFTMMU
phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
exit(1);
}
#else
/* as we must map the same page at several addresses, we must use
a fd */
{
const char *tmpdir;
tmpdir = getenv("QEMU_TMPDIR");
if (!tmpdir)
tmpdir = "/tmp";
snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
if (mkstemp(phys_ram_file) < 0) {
fprintf(stderr, "Could not create temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
if (phys_ram_fd < 0) {
fprintf(stderr, "Could not open temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
ftruncate(phys_ram_fd, phys_ram_size);
unlink(phys_ram_file);
phys_ram_base = mmap(get_mmap_addr(phys_ram_size),
phys_ram_size,
PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
phys_ram_fd, 0);
if (phys_ram_base == MAP_FAILED) {
fprintf(stderr, "Could not map physical memory\n");
exit(1);
}
}
#endif
/* we always create the cdrom drive, even if no disk is there */
if (has_cdrom) {
bs_table[2] = bdrv_new("cdrom");
bdrv_set_type_hint(bs_table[2], BDRV_TYPE_CDROM);
}
/* open the virtual block devices */
for(i = 0; i < MAX_DISKS; i++) {
if (hd_filename[i]) {
if (!bs_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "hd%c", i + 'a');
bs_table[i] = bdrv_new(buf);
}
if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) {
fprintf(stderr, "qemu: could not open hard disk image '%s\n",
hd_filename[i]);
exit(1);
}
if (i == 0 && cyls != 0)
bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
}
}
/* we always create at least one floppy disk */
fd_table[0] = bdrv_new("fda");
bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
for(i = 0; i < MAX_FD; i++) {
if (fd_filename[i]) {
if (!fd_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "fd%c", i + 'a');
fd_table[i] = bdrv_new(buf);
bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
}
if (fd_filename[i] != '\0') {
if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) {
fprintf(stderr, "qemu: could not open floppy disk image '%s\n",
fd_filename[i]);
exit(1);
}
}
}
}
/* init CPU state */
env = cpu_init();
global_env = env;
cpu_single_env = env;
register_savevm("timer", 0, 1, timer_save, timer_load, env);
register_savevm("cpu", 0, 1, cpu_save, cpu_load, env);
register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
init_ioports();
cpu_calibrate_ticks();
/* terminal init */
if (nographic) {
dumb_display_init(ds);
} else {
#ifdef CONFIG_SDL
sdl_display_init(ds);
#else
dumb_display_init(ds);
#endif
}
/* setup cpu signal handlers for MMU / self modifying code handling */
#if !defined(CONFIG_SOFTMMU)
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
{
stack_t stk;
signal_stack = memalign(16, SIGNAL_STACK_SIZE);
stk.ss_sp = signal_stack;
stk.ss_size = SIGNAL_STACK_SIZE;
stk.ss_flags = 0;
if (sigaltstack(&stk, NULL) < 0) {
perror("sigaltstack");
exit(1);
}
}
#endif
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
act.sa_flags |= SA_ONSTACK;
#endif
act.sa_sigaction = host_segv_handler;
sigaction(SIGSEGV, &act, NULL);
sigaction(SIGBUS, &act, NULL);
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
sigaction(SIGFPE, &act, NULL);
#endif
}
#endif
#ifndef _WIN32
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, NULL);
}
#endif
init_timers();
#if defined(TARGET_I386)
pc_init(ram_size, vga_ram_size, boot_device,
ds, fd_filename, snapshot,
kernel_filename, kernel_cmdline, initrd_filename);
#elif defined(TARGET_PPC)
ppc_init();
#endif
/* launched after the device init so that it can display or not a
banner */
monitor_init();
gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
#ifdef CONFIG_GDBSTUB
if (use_gdbstub) {
if (gdbserver_start(gdbstub_port) < 0) {
fprintf(stderr, "Could not open gdbserver socket on port %d\n",
gdbstub_port);
exit(1);
} else {
printf("Waiting gdb connection on port %d\n", gdbstub_port);
}
} else
#endif
{
vm_start();
}
term_init();
main_loop();
quit_timers();
return 0;
}