qemu/hw/omap_gpmc.c
Paolo Bonzini 83c9f4ca79 hw: include hw header files with full paths
Done with this script:

cd hw
for i in `find . -name '*.h' | sed 's/^..//'`; do
  echo '\,^#.*include.*["<]'$i'[">], s,'$i',hw/&,'
done | sed -i -f - `find . -type f`

This is so that paths remain valid as files are moved.

Instead, files in hw/dataplane are referenced with the relative path.
We know they are not going to move to include/, and they are the only
include files that are in subdirectories _and_ move.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-03-01 15:01:17 +01:00

895 lines
28 KiB
C

/*
* TI OMAP general purpose memory controller emulation.
*
* Copyright (C) 2007-2009 Nokia Corporation
* Original code written by Andrzej Zaborowski <andrew@openedhand.com>
* Enhancements for OMAP3 and NAND support written by Juha Riihimäki
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) any later version of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/hw.h"
#include "hw/flash.h"
#include "hw/omap.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
/* General-Purpose Memory Controller */
struct omap_gpmc_s {
qemu_irq irq;
qemu_irq drq;
MemoryRegion iomem;
int accept_256;
uint8_t revision;
uint8_t sysconfig;
uint16_t irqst;
uint16_t irqen;
uint16_t lastirq;
uint16_t timeout;
uint16_t config;
struct omap_gpmc_cs_file_s {
uint32_t config[7];
MemoryRegion *iomem;
MemoryRegion container;
MemoryRegion nandiomem;
DeviceState *dev;
} cs_file[8];
int ecc_cs;
int ecc_ptr;
uint32_t ecc_cfg;
ECCState ecc[9];
struct prefetch {
uint32_t config1; /* GPMC_PREFETCH_CONFIG1 */
uint32_t transfercount; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
int startengine; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
int fifopointer; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
int count; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
MemoryRegion iomem;
uint8_t fifo[64];
} prefetch;
};
#define OMAP_GPMC_8BIT 0
#define OMAP_GPMC_16BIT 1
#define OMAP_GPMC_NOR 0
#define OMAP_GPMC_NAND 2
static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s *f)
{
return (f->config[0] >> 10) & 3;
}
static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s *f)
{
/* devsize field is really 2 bits but we ignore the high
* bit to ensure consistent behaviour if the guest sets
* it (values 2 and 3 are reserved in the TRM)
*/
return (f->config[0] >> 12) & 1;
}
/* Extract the chip-select value from the prefetch config1 register */
static int prefetch_cs(uint32_t config1)
{
return (config1 >> 24) & 7;
}
static int prefetch_threshold(uint32_t config1)
{
return (config1 >> 8) & 0x7f;
}
static void omap_gpmc_int_update(struct omap_gpmc_s *s)
{
/* The TRM is a bit unclear, but it seems to say that
* the TERMINALCOUNTSTATUS bit is set only on the
* transition when the prefetch engine goes from
* active to inactive, whereas the FIFOEVENTSTATUS
* bit is held high as long as the fifo has at
* least THRESHOLD bytes available.
* So we do the latter here, but TERMINALCOUNTSTATUS
* is set elsewhere.
*/
if (s->prefetch.fifopointer >= prefetch_threshold(s->prefetch.config1)) {
s->irqst |= 1;
}
if ((s->irqen & s->irqst) != s->lastirq) {
s->lastirq = s->irqen & s->irqst;
qemu_set_irq(s->irq, s->lastirq);
}
}
static void omap_gpmc_dma_update(struct omap_gpmc_s *s, int value)
{
if (s->prefetch.config1 & 4) {
qemu_set_irq(s->drq, value);
}
}
/* Access functions for when a NAND-like device is mapped into memory:
* all addresses in the region behave like accesses to the relevant
* GPMC_NAND_DATA_i register (which is actually implemented to call these)
*/
static uint64_t omap_nand_read(void *opaque, hwaddr addr,
unsigned size)
{
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
uint64_t v;
nand_setpins(f->dev, 0, 0, 0, 1, 0);
switch (omap_gpmc_devsize(f)) {
case OMAP_GPMC_8BIT:
v = nand_getio(f->dev);
if (size == 1) {
return v;
}
v |= (nand_getio(f->dev) << 8);
if (size == 2) {
return v;
}
v |= (nand_getio(f->dev) << 16);
v |= (nand_getio(f->dev) << 24);
return v;
case OMAP_GPMC_16BIT:
v = nand_getio(f->dev);
if (size == 1) {
/* 8 bit read from 16 bit device : probably a guest bug */
return v & 0xff;
}
if (size == 2) {
return v;
}
v |= (nand_getio(f->dev) << 16);
return v;
default:
abort();
}
}
static void omap_nand_setio(DeviceState *dev, uint64_t value,
int nandsize, int size)
{
/* Write the specified value to the NAND device, respecting
* both size of the NAND device and size of the write access.
*/
switch (nandsize) {
case OMAP_GPMC_8BIT:
switch (size) {
case 1:
nand_setio(dev, value & 0xff);
break;
case 2:
nand_setio(dev, value & 0xff);
nand_setio(dev, (value >> 8) & 0xff);
break;
case 4:
default:
nand_setio(dev, value & 0xff);
nand_setio(dev, (value >> 8) & 0xff);
nand_setio(dev, (value >> 16) & 0xff);
nand_setio(dev, (value >> 24) & 0xff);
break;
}
break;
case OMAP_GPMC_16BIT:
switch (size) {
case 1:
/* writing to a 16bit device with 8bit access is probably a guest
* bug; pass the value through anyway.
*/
case 2:
nand_setio(dev, value & 0xffff);
break;
case 4:
default:
nand_setio(dev, value & 0xffff);
nand_setio(dev, (value >> 16) & 0xffff);
break;
}
break;
}
}
static void omap_nand_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
struct omap_gpmc_cs_file_s *f = (struct omap_gpmc_cs_file_s *)opaque;
nand_setpins(f->dev, 0, 0, 0, 1, 0);
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
static const MemoryRegionOps omap_nand_ops = {
.read = omap_nand_read,
.write = omap_nand_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void fill_prefetch_fifo(struct omap_gpmc_s *s)
{
/* Fill the prefetch FIFO by reading data from NAND.
* We do this synchronously, unlike the hardware which
* will do this asynchronously. We refill when the
* FIFO has THRESHOLD bytes free, and we always refill
* as much data as possible starting at the top end
* of the FIFO.
* (We have to refill at THRESHOLD rather than waiting
* for the FIFO to empty to allow for the case where
* the FIFO size isn't an exact multiple of THRESHOLD
* and we're doing DMA transfers.)
* This means we never need to handle wrap-around in
* the fifo-reading code, and the next byte of data
* to read is always fifo[63 - fifopointer].
*/
int fptr;
int cs = prefetch_cs(s->prefetch.config1);
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
int bytes;
/* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
* and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
* Instead believe the bit that says it is always a byte count.
*/
bytes = 64 - s->prefetch.fifopointer;
if (bytes > s->prefetch.count) {
bytes = s->prefetch.count;
}
s->prefetch.count -= bytes;
s->prefetch.fifopointer += bytes;
fptr = 64 - s->prefetch.fifopointer;
/* Move the existing data in the FIFO so it sits just
* before what we're about to read in
*/
while (fptr < (64 - bytes)) {
s->prefetch.fifo[fptr] = s->prefetch.fifo[fptr + bytes];
fptr++;
}
while (fptr < 64) {
if (is16bit) {
uint32_t v = omap_nand_read(&s->cs_file[cs], 0, 2);
s->prefetch.fifo[fptr++] = v & 0xff;
s->prefetch.fifo[fptr++] = (v >> 8) & 0xff;
} else {
s->prefetch.fifo[fptr++] = omap_nand_read(&s->cs_file[cs], 0, 1);
}
}
if (s->prefetch.startengine && (s->prefetch.count == 0)) {
/* This was the final transfer: raise TERMINALCOUNTSTATUS */
s->irqst |= 2;
s->prefetch.startengine = 0;
}
/* If there are any bytes in the FIFO at this point then
* we must raise a DMA request (either this is a final part
* transfer, or we filled the FIFO in which case we certainly
* have THRESHOLD bytes available)
*/
if (s->prefetch.fifopointer != 0) {
omap_gpmc_dma_update(s, 1);
}
omap_gpmc_int_update(s);
}
/* Access functions for a NAND-like device when the prefetch/postwrite
* engine is enabled -- all addresses in the region behave alike:
* data is read or written to the FIFO.
*/
static uint64_t omap_gpmc_prefetch_read(void *opaque, hwaddr addr,
unsigned size)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
uint32_t data;
if (s->prefetch.config1 & 1) {
/* The TRM doesn't define the behaviour if you read from the
* FIFO when the prefetch engine is in write mode. We choose
* to always return zero.
*/
return 0;
}
/* Note that trying to read an empty fifo repeats the last byte */
if (s->prefetch.fifopointer) {
s->prefetch.fifopointer--;
}
data = s->prefetch.fifo[63 - s->prefetch.fifopointer];
if (s->prefetch.fifopointer ==
(64 - prefetch_threshold(s->prefetch.config1))) {
/* We've drained THRESHOLD bytes now. So deassert the
* DMA request, then refill the FIFO (which will probably
* assert it again.)
*/
omap_gpmc_dma_update(s, 0);
fill_prefetch_fifo(s);
}
omap_gpmc_int_update(s);
return data;
}
static void omap_gpmc_prefetch_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
int cs = prefetch_cs(s->prefetch.config1);
if ((s->prefetch.config1 & 1) == 0) {
/* The TRM doesn't define the behaviour of writing to the
* FIFO when the prefetch engine is in read mode. We
* choose to ignore the write.
*/
return;
}
if (s->prefetch.count == 0) {
/* The TRM doesn't define the behaviour of writing to the
* FIFO if the transfer is complete. We choose to ignore.
*/
return;
}
/* The only reason we do any data buffering in postwrite
* mode is if we are talking to a 16 bit NAND device, in
* which case we need to buffer the first byte of the
* 16 bit word until the other byte arrives.
*/
int is16bit = (((s->cs_file[cs].config[0] >> 12) & 3) != 0);
if (is16bit) {
/* fifopointer alternates between 64 (waiting for first
* byte of word) and 63 (waiting for second byte)
*/
if (s->prefetch.fifopointer == 64) {
s->prefetch.fifo[0] = value;
s->prefetch.fifopointer--;
} else {
value = (value << 8) | s->prefetch.fifo[0];
omap_nand_write(&s->cs_file[cs], 0, value, 2);
s->prefetch.count--;
s->prefetch.fifopointer = 64;
}
} else {
/* Just write the byte : fifopointer remains 64 at all times */
omap_nand_write(&s->cs_file[cs], 0, value, 1);
s->prefetch.count--;
}
if (s->prefetch.count == 0) {
/* Final transfer: raise TERMINALCOUNTSTATUS */
s->irqst |= 2;
s->prefetch.startengine = 0;
}
omap_gpmc_int_update(s);
}
static const MemoryRegionOps omap_prefetch_ops = {
.read = omap_gpmc_prefetch_read,
.write = omap_gpmc_prefetch_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl.min_access_size = 1,
.impl.max_access_size = 1,
};
static MemoryRegion *omap_gpmc_cs_memregion(struct omap_gpmc_s *s, int cs)
{
/* Return the MemoryRegion* to map/unmap for this chipselect */
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
if (omap_gpmc_devtype(f) == OMAP_GPMC_NOR) {
return f->iomem;
}
if ((s->prefetch.config1 & 0x80) &&
(prefetch_cs(s->prefetch.config1) == cs)) {
/* The prefetch engine is enabled for this CS: map the FIFO */
return &s->prefetch.iomem;
}
return &f->nandiomem;
}
static void omap_gpmc_cs_map(struct omap_gpmc_s *s, int cs)
{
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
uint32_t mask = (f->config[6] >> 8) & 0xf;
uint32_t base = f->config[6] & 0x3f;
uint32_t size;
if (!f->iomem && !f->dev) {
return;
}
if (!(f->config[6] & (1 << 6))) {
/* Do nothing unless CSVALID */
return;
}
/* TODO: check for overlapping regions and report access errors */
if (mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf
&& !(s->accept_256 && !mask)) {
fprintf(stderr, "%s: invalid chip-select mask address (0x%x)\n",
__func__, mask);
}
base <<= 24;
size = (0x0fffffff & ~(mask << 24)) + 1;
/* TODO: rather than setting the size of the mapping (which should be
* constant), the mask should cause wrapping of the address space, so
* that the same memory becomes accessible at every <i>size</i> bytes
* starting from <i>base</i>. */
memory_region_init(&f->container, "omap-gpmc-file", size);
memory_region_add_subregion(&f->container, 0,
omap_gpmc_cs_memregion(s, cs));
memory_region_add_subregion(get_system_memory(), base,
&f->container);
}
static void omap_gpmc_cs_unmap(struct omap_gpmc_s *s, int cs)
{
struct omap_gpmc_cs_file_s *f = &s->cs_file[cs];
if (!(f->config[6] & (1 << 6))) {
/* Do nothing unless CSVALID */
return;
}
if (!f->iomem && !f->dev) {
return;
}
memory_region_del_subregion(get_system_memory(), &f->container);
memory_region_del_subregion(&f->container, omap_gpmc_cs_memregion(s, cs));
memory_region_destroy(&f->container);
}
void omap_gpmc_reset(struct omap_gpmc_s *s)
{
int i;
s->sysconfig = 0;
s->irqst = 0;
s->irqen = 0;
omap_gpmc_int_update(s);
for (i = 0; i < 8; i++) {
/* This has to happen before we change any of the config
* used to determine which memory regions are mapped or unmapped.
*/
omap_gpmc_cs_unmap(s, i);
}
s->timeout = 0;
s->config = 0xa00;
s->prefetch.config1 = 0x00004000;
s->prefetch.transfercount = 0x00000000;
s->prefetch.startengine = 0;
s->prefetch.fifopointer = 0;
s->prefetch.count = 0;
for (i = 0; i < 8; i ++) {
s->cs_file[i].config[1] = 0x101001;
s->cs_file[i].config[2] = 0x020201;
s->cs_file[i].config[3] = 0x10031003;
s->cs_file[i].config[4] = 0x10f1111;
s->cs_file[i].config[5] = 0;
s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6);
s->cs_file[i].config[6] = 0xf00;
/* In theory we could probe attached devices for some CFG1
* bits here, but we just retain them across resets as they
* were set initially by omap_gpmc_attach().
*/
if (i == 0) {
s->cs_file[i].config[0] &= 0x00433e00;
s->cs_file[i].config[6] |= 1 << 6; /* CSVALID */
omap_gpmc_cs_map(s, i);
} else {
s->cs_file[i].config[0] &= 0x00403c00;
}
}
s->ecc_cs = 0;
s->ecc_ptr = 0;
s->ecc_cfg = 0x3fcff000;
for (i = 0; i < 9; i ++)
ecc_reset(&s->ecc[i]);
}
static int gpmc_wordaccess_only(hwaddr addr)
{
/* Return true if the register offset is to a register that
* only permits word width accesses.
* Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
* for any chipselect.
*/
if (addr >= 0x60 && addr <= 0x1d4) {
int cs = (addr - 0x60) / 0x30;
addr -= cs * 0x30;
if (addr >= 0x7c && addr < 0x88) {
/* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
return 0;
}
}
return 1;
}
static uint64_t omap_gpmc_read(void *opaque, hwaddr addr,
unsigned size)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
int cs;
struct omap_gpmc_cs_file_s *f;
if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_read32(opaque, addr);
}
switch (addr) {
case 0x000: /* GPMC_REVISION */
return s->revision;
case 0x010: /* GPMC_SYSCONFIG */
return s->sysconfig;
case 0x014: /* GPMC_SYSSTATUS */
return 1; /* RESETDONE */
case 0x018: /* GPMC_IRQSTATUS */
return s->irqst;
case 0x01c: /* GPMC_IRQENABLE */
return s->irqen;
case 0x040: /* GPMC_TIMEOUT_CONTROL */
return s->timeout;
case 0x044: /* GPMC_ERR_ADDRESS */
case 0x048: /* GPMC_ERR_TYPE */
return 0;
case 0x050: /* GPMC_CONFIG */
return s->config;
case 0x054: /* GPMC_STATUS */
return 0x001;
case 0x060 ... 0x1d4:
cs = (addr - 0x060) / 0x30;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
case 0x60: /* GPMC_CONFIG1 */
return f->config[0];
case 0x64: /* GPMC_CONFIG2 */
return f->config[1];
case 0x68: /* GPMC_CONFIG3 */
return f->config[2];
case 0x6c: /* GPMC_CONFIG4 */
return f->config[3];
case 0x70: /* GPMC_CONFIG5 */
return f->config[4];
case 0x74: /* GPMC_CONFIG6 */
return f->config[5];
case 0x78: /* GPMC_CONFIG7 */
return f->config[6];
case 0x84 ... 0x87: /* GPMC_NAND_DATA */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
return omap_nand_read(f, 0, size);
}
return 0;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
return s->prefetch.config1;
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
return s->prefetch.transfercount;
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
return s->prefetch.startengine;
case 0x1f0: /* GPMC_PREFETCH_STATUS */
/* NB: The OMAP3 TRM is inconsistent about whether the GPMC
* FIFOTHRESHOLDSTATUS bit should be set when
* FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
* Apparently the underlying functional spec from which the TRM was
* created states that the behaviour is ">=", and this also
* makes more conceptual sense.
*/
return (s->prefetch.fifopointer << 24) |
((s->prefetch.fifopointer >=
((s->prefetch.config1 >> 8) & 0x7f) ? 1 : 0) << 16) |
s->prefetch.count;
case 0x1f4: /* GPMC_ECC_CONFIG */
return s->ecc_cs;
case 0x1f8: /* GPMC_ECC_CONTROL */
return s->ecc_ptr;
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
return s->ecc_cfg;
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
cs = (addr & 0x1f) >> 2;
/* TODO: check correctness */
return
((s->ecc[cs].cp & 0x07) << 0) |
((s->ecc[cs].cp & 0x38) << 13) |
((s->ecc[cs].lp[0] & 0x1ff) << 3) |
((s->ecc[cs].lp[1] & 0x1ff) << 19);
case 0x230: /* GPMC_TESTMODE_CTRL */
return 0;
case 0x234: /* GPMC_PSA_LSB */
case 0x238: /* GPMC_PSA_MSB */
return 0x00000000;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpmc_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque;
int cs;
struct omap_gpmc_cs_file_s *f;
if (size != 4 && gpmc_wordaccess_only(addr)) {
return omap_badwidth_write32(opaque, addr, value);
}
switch (addr) {
case 0x000: /* GPMC_REVISION */
case 0x014: /* GPMC_SYSSTATUS */
case 0x054: /* GPMC_STATUS */
case 0x1f0: /* GPMC_PREFETCH_STATUS */
case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
case 0x234: /* GPMC_PSA_LSB */
case 0x238: /* GPMC_PSA_MSB */
OMAP_RO_REG(addr);
break;
case 0x010: /* GPMC_SYSCONFIG */
if ((value >> 3) == 0x3)
fprintf(stderr, "%s: bad SDRAM idle mode %"PRIi64"\n",
__FUNCTION__, value >> 3);
if (value & 2)
omap_gpmc_reset(s);
s->sysconfig = value & 0x19;
break;
case 0x018: /* GPMC_IRQSTATUS */
s->irqst &= ~value;
omap_gpmc_int_update(s);
break;
case 0x01c: /* GPMC_IRQENABLE */
s->irqen = value & 0xf03;
omap_gpmc_int_update(s);
break;
case 0x040: /* GPMC_TIMEOUT_CONTROL */
s->timeout = value & 0x1ff1;
break;
case 0x044: /* GPMC_ERR_ADDRESS */
case 0x048: /* GPMC_ERR_TYPE */
break;
case 0x050: /* GPMC_CONFIG */
s->config = value & 0xf13;
break;
case 0x060 ... 0x1d4:
cs = (addr - 0x060) / 0x30;
addr -= cs * 0x30;
f = s->cs_file + cs;
switch (addr) {
case 0x60: /* GPMC_CONFIG1 */
f->config[0] = value & 0xffef3e13;
break;
case 0x64: /* GPMC_CONFIG2 */
f->config[1] = value & 0x001f1f8f;
break;
case 0x68: /* GPMC_CONFIG3 */
f->config[2] = value & 0x001f1f8f;
break;
case 0x6c: /* GPMC_CONFIG4 */
f->config[3] = value & 0x1f8f1f8f;
break;
case 0x70: /* GPMC_CONFIG5 */
f->config[4] = value & 0x0f1f1f1f;
break;
case 0x74: /* GPMC_CONFIG6 */
f->config[5] = value & 0x00000fcf;
break;
case 0x78: /* GPMC_CONFIG7 */
if ((f->config[6] ^ value) & 0xf7f) {
omap_gpmc_cs_unmap(s, cs);
f->config[6] = value & 0x00000f7f;
omap_gpmc_cs_map(s, cs);
}
break;
case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
nand_setpins(f->dev, 1, 0, 0, 1, 0); /* CLE */
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
break;
case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
nand_setpins(f->dev, 0, 1, 0, 1, 0); /* ALE */
omap_nand_setio(f->dev, value, omap_gpmc_devsize(f), size);
}
break;
case 0x84 ... 0x87: /* GPMC_NAND_DATA */
if (omap_gpmc_devtype(f) == OMAP_GPMC_NAND) {
omap_nand_write(f, 0, value, size);
}
break;
default:
goto bad_reg;
}
break;
case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
if (!s->prefetch.startengine) {
uint32_t newconfig1 = value & 0x7f8f7fbf;
uint32_t changed;
changed = newconfig1 ^ s->prefetch.config1;
if (changed & (0x80 | 0x7000000)) {
/* Turning the engine on or off, or mapping it somewhere else.
* cs_map() and cs_unmap() check the prefetch config and
* overall CSVALID bits, so it is sufficient to unmap-and-map
* both the old cs and the new one. Note that we adhere to
* the "unmap/change config/map" order (and not unmap twice
* if newcs == oldcs), otherwise we'll try to delete the wrong
* memory region.
*/
int oldcs = prefetch_cs(s->prefetch.config1);
int newcs = prefetch_cs(newconfig1);
omap_gpmc_cs_unmap(s, oldcs);
if (oldcs != newcs) {
omap_gpmc_cs_unmap(s, newcs);
}
s->prefetch.config1 = newconfig1;
omap_gpmc_cs_map(s, oldcs);
if (oldcs != newcs) {
omap_gpmc_cs_map(s, newcs);
}
} else {
s->prefetch.config1 = newconfig1;
}
}
break;
case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
if (!s->prefetch.startengine) {
s->prefetch.transfercount = value & 0x3fff;
}
break;
case 0x1ec: /* GPMC_PREFETCH_CONTROL */
if (s->prefetch.startengine != (value & 1)) {
s->prefetch.startengine = value & 1;
if (s->prefetch.startengine) {
/* Prefetch engine start */
s->prefetch.count = s->prefetch.transfercount;
if (s->prefetch.config1 & 1) {
/* Write */
s->prefetch.fifopointer = 64;
} else {
/* Read */
s->prefetch.fifopointer = 0;
fill_prefetch_fifo(s);
}
} else {
/* Prefetch engine forcibly stopped. The TRM
* doesn't define the behaviour if you do this.
* We clear the prefetch count, which means that
* we permit no more writes, and don't read any
* more data from NAND. The CPU can still drain
* the FIFO of unread data.
*/
s->prefetch.count = 0;
}
omap_gpmc_int_update(s);
}
break;
case 0x1f4: /* GPMC_ECC_CONFIG */
s->ecc_cs = 0x8f;
break;
case 0x1f8: /* GPMC_ECC_CONTROL */
if (value & (1 << 8))
for (cs = 0; cs < 9; cs ++)
ecc_reset(&s->ecc[cs]);
s->ecc_ptr = value & 0xf;
if (s->ecc_ptr == 0 || s->ecc_ptr > 9) {
s->ecc_ptr = 0;
s->ecc_cs &= ~1;
}
break;
case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
s->ecc_cfg = value & 0x3fcff1ff;
break;
case 0x230: /* GPMC_TESTMODE_CTRL */
if (value & 7)
fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__);
break;
default:
bad_reg:
OMAP_BAD_REG(addr);
return;
}
}
static const MemoryRegionOps omap_gpmc_ops = {
.read = omap_gpmc_read,
.write = omap_gpmc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
struct omap_gpmc_s *omap_gpmc_init(struct omap_mpu_state_s *mpu,
hwaddr base,
qemu_irq irq, qemu_irq drq)
{
int cs;
struct omap_gpmc_s *s = (struct omap_gpmc_s *)
g_malloc0(sizeof(struct omap_gpmc_s));
memory_region_init_io(&s->iomem, &omap_gpmc_ops, s, "omap-gpmc", 0x1000);
memory_region_add_subregion(get_system_memory(), base, &s->iomem);
s->irq = irq;
s->drq = drq;
s->accept_256 = cpu_is_omap3630(mpu);
s->revision = cpu_class_omap3(mpu) ? 0x50 : 0x20;
s->lastirq = 0;
omap_gpmc_reset(s);
/* We have to register a different IO memory handler for each
* chip select region in case a NAND device is mapped there. We
* make the region the worst-case size of 256MB and rely on the
* container memory region in cs_map to chop it down to the actual
* guest-requested size.
*/
for (cs = 0; cs < 8; cs++) {
memory_region_init_io(&s->cs_file[cs].nandiomem,
&omap_nand_ops,
&s->cs_file[cs],
"omap-nand",
256 * 1024 * 1024);
}
memory_region_init_io(&s->prefetch.iomem, &omap_prefetch_ops, s,
"omap-gpmc-prefetch", 256 * 1024 * 1024);
return s;
}
void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, MemoryRegion *iomem)
{
struct omap_gpmc_cs_file_s *f;
assert(iomem);
if (cs < 0 || cs >= 8) {
fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs);
exit(-1);
}
f = &s->cs_file[cs];
omap_gpmc_cs_unmap(s, cs);
f->config[0] &= ~(0xf << 10);
f->iomem = iomem;
omap_gpmc_cs_map(s, cs);
}
void omap_gpmc_attach_nand(struct omap_gpmc_s *s, int cs, DeviceState *nand)
{
struct omap_gpmc_cs_file_s *f;
assert(nand);
if (cs < 0 || cs >= 8) {
fprintf(stderr, "%s: bad chip-select %i\n", __func__, cs);
exit(-1);
}
f = &s->cs_file[cs];
omap_gpmc_cs_unmap(s, cs);
f->config[0] &= ~(0xf << 10);
f->config[0] |= (OMAP_GPMC_NAND << 10);
f->dev = nand;
if (nand_getbuswidth(f->dev) == 16) {
f->config[0] |= OMAP_GPMC_16BIT << 12;
}
omap_gpmc_cs_map(s, cs);
}