qemu/hw/char/parallel.c
Andreas Färber db895a1e6a isa: Use realizefn for ISADevice
Drop ISADeviceClass::init and the resulting no-op initfn and let
children implement their own realizefn. Adapt error handling.
Split off an instance_init where sensible.

Signed-off-by: Andreas Färber <afaerber@suse.de>
2013-06-07 12:14:45 +02:00

625 lines
18 KiB
C

/*
* QEMU Parallel PORT emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2007 Marko Kohtala
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "sysemu/char.h"
#include "hw/isa/isa.h"
#include "hw/i386/pc.h"
#include "sysemu/sysemu.h"
//#define DEBUG_PARALLEL
#ifdef DEBUG_PARALLEL
#define pdebug(fmt, ...) printf("pp: " fmt, ## __VA_ARGS__)
#else
#define pdebug(fmt, ...) ((void)0)
#endif
#define PARA_REG_DATA 0
#define PARA_REG_STS 1
#define PARA_REG_CTR 2
#define PARA_REG_EPP_ADDR 3
#define PARA_REG_EPP_DATA 4
/*
* These are the definitions for the Printer Status Register
*/
#define PARA_STS_BUSY 0x80 /* Busy complement */
#define PARA_STS_ACK 0x40 /* Acknowledge */
#define PARA_STS_PAPER 0x20 /* Out of paper */
#define PARA_STS_ONLINE 0x10 /* Online */
#define PARA_STS_ERROR 0x08 /* Error complement */
#define PARA_STS_TMOUT 0x01 /* EPP timeout */
/*
* These are the definitions for the Printer Control Register
*/
#define PARA_CTR_DIR 0x20 /* Direction (1=read, 0=write) */
#define PARA_CTR_INTEN 0x10 /* IRQ Enable */
#define PARA_CTR_SELECT 0x08 /* Select In complement */
#define PARA_CTR_INIT 0x04 /* Initialize Printer complement */
#define PARA_CTR_AUTOLF 0x02 /* Auto linefeed complement */
#define PARA_CTR_STROBE 0x01 /* Strobe complement */
#define PARA_CTR_SIGNAL (PARA_CTR_SELECT|PARA_CTR_INIT|PARA_CTR_AUTOLF|PARA_CTR_STROBE)
typedef struct ParallelState {
MemoryRegion iomem;
uint8_t dataw;
uint8_t datar;
uint8_t status;
uint8_t control;
qemu_irq irq;
int irq_pending;
CharDriverState *chr;
int hw_driver;
int epp_timeout;
uint32_t last_read_offset; /* For debugging */
/* Memory-mapped interface */
int it_shift;
} ParallelState;
#define TYPE_ISA_PARALLEL "isa-parallel"
#define ISA_PARALLEL(obj) \
OBJECT_CHECK(ISAParallelState, (obj), TYPE_ISA_PARALLEL)
typedef struct ISAParallelState {
ISADevice parent_obj;
uint32_t index;
uint32_t iobase;
uint32_t isairq;
ParallelState state;
} ISAParallelState;
static void parallel_update_irq(ParallelState *s)
{
if (s->irq_pending)
qemu_irq_raise(s->irq);
else
qemu_irq_lower(s->irq);
}
static void
parallel_ioport_write_sw(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
pdebug("write addr=0x%02x val=0x%02x\n", addr, val);
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
s->dataw = val;
parallel_update_irq(s);
break;
case PARA_REG_CTR:
val |= 0xc0;
if ((val & PARA_CTR_INIT) == 0 ) {
s->status = PARA_STS_BUSY;
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_ONLINE;
s->status |= PARA_STS_ERROR;
}
else if (val & PARA_CTR_SELECT) {
if (val & PARA_CTR_STROBE) {
s->status &= ~PARA_STS_BUSY;
if ((s->control & PARA_CTR_STROBE) == 0)
qemu_chr_fe_write(s->chr, &s->dataw, 1);
} else {
if (s->control & PARA_CTR_INTEN) {
s->irq_pending = 1;
}
}
}
parallel_update_irq(s);
s->control = val;
break;
}
}
static void parallel_ioport_write_hw(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint8_t parm = val;
int dir;
/* Sometimes programs do several writes for timing purposes on old
HW. Take care not to waste time on writes that do nothing. */
s->last_read_offset = ~0U;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
if (s->dataw == val)
return;
pdebug("wd%02x\n", val);
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_WRITE_DATA, &parm);
s->dataw = val;
break;
case PARA_REG_STS:
pdebug("ws%02x\n", val);
if (val & PARA_STS_TMOUT)
s->epp_timeout = 0;
break;
case PARA_REG_CTR:
val |= 0xc0;
if (s->control == val)
return;
pdebug("wc%02x\n", val);
if ((val & PARA_CTR_DIR) != (s->control & PARA_CTR_DIR)) {
if (val & PARA_CTR_DIR) {
dir = 1;
} else {
dir = 0;
}
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_DATA_DIR, &dir);
parm &= ~PARA_CTR_DIR;
}
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_WRITE_CONTROL, &parm);
s->control = val;
break;
case PARA_REG_EPP_ADDR:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
/* Controls not correct for EPP address cycle, so do nothing */
pdebug("wa%02x s\n", val);
else {
struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE_ADDR, &ioarg)) {
s->epp_timeout = 1;
pdebug("wa%02x t\n", val);
}
else
pdebug("wa%02x\n", val);
}
break;
case PARA_REG_EPP_DATA:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT)
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%02x s\n", val);
else {
struct ParallelIOArg ioarg = { .buffer = &parm, .count = 1 };
if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg)) {
s->epp_timeout = 1;
pdebug("we%02x t\n", val);
}
else
pdebug("we%02x\n", val);
}
break;
}
}
static void
parallel_ioport_eppdata_write_hw2(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint16_t eppdata = cpu_to_le16(val);
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%04x s\n", val);
return;
}
err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
if (err) {
s->epp_timeout = 1;
pdebug("we%04x t\n", val);
}
else
pdebug("we%04x\n", val);
}
static void
parallel_ioport_eppdata_write_hw4(void *opaque, uint32_t addr, uint32_t val)
{
ParallelState *s = opaque;
uint32_t eppdata = cpu_to_le32(val);
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != PARA_CTR_INIT) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("we%08x s\n", val);
return;
}
err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_WRITE, &ioarg);
if (err) {
s->epp_timeout = 1;
pdebug("we%08x t\n", val);
}
else
pdebug("we%08x\n", val);
}
static uint32_t parallel_ioport_read_sw(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret = 0xff;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
if (s->control & PARA_CTR_DIR)
ret = s->datar;
else
ret = s->dataw;
break;
case PARA_REG_STS:
ret = s->status;
s->irq_pending = 0;
if ((s->status & PARA_STS_BUSY) == 0 && (s->control & PARA_CTR_STROBE) == 0) {
/* XXX Fixme: wait 5 microseconds */
if (s->status & PARA_STS_ACK)
s->status &= ~PARA_STS_ACK;
else {
/* XXX Fixme: wait 5 microseconds */
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_BUSY;
}
}
parallel_update_irq(s);
break;
case PARA_REG_CTR:
ret = s->control;
break;
}
pdebug("read addr=0x%02x val=0x%02x\n", addr, ret);
return ret;
}
static uint32_t parallel_ioport_read_hw(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint8_t ret = 0xff;
addr &= 7;
switch(addr) {
case PARA_REG_DATA:
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_DATA, &ret);
if (s->last_read_offset != addr || s->datar != ret)
pdebug("rd%02x\n", ret);
s->datar = ret;
break;
case PARA_REG_STS:
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &ret);
ret &= ~PARA_STS_TMOUT;
if (s->epp_timeout)
ret |= PARA_STS_TMOUT;
if (s->last_read_offset != addr || s->status != ret)
pdebug("rs%02x\n", ret);
s->status = ret;
break;
case PARA_REG_CTR:
/* s->control has some bits fixed to 1. It is zero only when
it has not been yet written to. */
if (s->control == 0) {
qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_CONTROL, &ret);
if (s->last_read_offset != addr)
pdebug("rc%02x\n", ret);
s->control = ret;
}
else {
ret = s->control;
if (s->last_read_offset != addr)
pdebug("rc%02x\n", ret);
}
break;
case PARA_REG_EPP_ADDR:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
/* Controls not correct for EPP addr cycle, so do nothing */
pdebug("ra%02x s\n", ret);
else {
struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ_ADDR, &ioarg)) {
s->epp_timeout = 1;
pdebug("ra%02x t\n", ret);
}
else
pdebug("ra%02x\n", ret);
}
break;
case PARA_REG_EPP_DATA:
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT))
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%02x s\n", ret);
else {
struct ParallelIOArg ioarg = { .buffer = &ret, .count = 1 };
if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg)) {
s->epp_timeout = 1;
pdebug("re%02x t\n", ret);
}
else
pdebug("re%02x\n", ret);
}
break;
}
s->last_read_offset = addr;
return ret;
}
static uint32_t
parallel_ioport_eppdata_read_hw2(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret;
uint16_t eppdata = ~0;
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%04x s\n", eppdata);
return eppdata;
}
err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
ret = le16_to_cpu(eppdata);
if (err) {
s->epp_timeout = 1;
pdebug("re%04x t\n", ret);
}
else
pdebug("re%04x\n", ret);
return ret;
}
static uint32_t
parallel_ioport_eppdata_read_hw4(void *opaque, uint32_t addr)
{
ParallelState *s = opaque;
uint32_t ret;
uint32_t eppdata = ~0U;
int err;
struct ParallelIOArg ioarg = {
.buffer = &eppdata, .count = sizeof(eppdata)
};
if ((s->control & (PARA_CTR_DIR|PARA_CTR_SIGNAL)) != (PARA_CTR_DIR|PARA_CTR_INIT)) {
/* Controls not correct for EPP data cycle, so do nothing */
pdebug("re%08x s\n", eppdata);
return eppdata;
}
err = qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_EPP_READ, &ioarg);
ret = le32_to_cpu(eppdata);
if (err) {
s->epp_timeout = 1;
pdebug("re%08x t\n", ret);
}
else
pdebug("re%08x\n", ret);
return ret;
}
static void parallel_ioport_ecp_write(void *opaque, uint32_t addr, uint32_t val)
{
pdebug("wecp%d=%02x\n", addr & 7, val);
}
static uint32_t parallel_ioport_ecp_read(void *opaque, uint32_t addr)
{
uint8_t ret = 0xff;
pdebug("recp%d:%02x\n", addr & 7, ret);
return ret;
}
static void parallel_reset(void *opaque)
{
ParallelState *s = opaque;
s->datar = ~0;
s->dataw = ~0;
s->status = PARA_STS_BUSY;
s->status |= PARA_STS_ACK;
s->status |= PARA_STS_ONLINE;
s->status |= PARA_STS_ERROR;
s->status |= PARA_STS_TMOUT;
s->control = PARA_CTR_SELECT;
s->control |= PARA_CTR_INIT;
s->control |= 0xc0;
s->irq_pending = 0;
s->hw_driver = 0;
s->epp_timeout = 0;
s->last_read_offset = ~0U;
}
static const int isa_parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
static const MemoryRegionPortio isa_parallel_portio_hw_list[] = {
{ 0, 8, 1,
.read = parallel_ioport_read_hw,
.write = parallel_ioport_write_hw },
{ 4, 1, 2,
.read = parallel_ioport_eppdata_read_hw2,
.write = parallel_ioport_eppdata_write_hw2 },
{ 4, 1, 4,
.read = parallel_ioport_eppdata_read_hw4,
.write = parallel_ioport_eppdata_write_hw4 },
{ 0x400, 8, 1,
.read = parallel_ioport_ecp_read,
.write = parallel_ioport_ecp_write },
PORTIO_END_OF_LIST(),
};
static const MemoryRegionPortio isa_parallel_portio_sw_list[] = {
{ 0, 8, 1,
.read = parallel_ioport_read_sw,
.write = parallel_ioport_write_sw },
PORTIO_END_OF_LIST(),
};
static void parallel_isa_realizefn(DeviceState *dev, Error **errp)
{
static int index;
ISADevice *isadev = ISA_DEVICE(dev);
ISAParallelState *isa = ISA_PARALLEL(dev);
ParallelState *s = &isa->state;
int base;
uint8_t dummy;
if (!s->chr) {
error_setg(errp, "Can't create parallel device, empty char device");
return;
}
if (isa->index == -1) {
isa->index = index;
}
if (isa->index >= MAX_PARALLEL_PORTS) {
error_setg(errp, "Max. supported number of parallel ports is %d.",
MAX_PARALLEL_PORTS);
return;
}
if (isa->iobase == -1) {
isa->iobase = isa_parallel_io[isa->index];
}
index++;
base = isa->iobase;
isa_init_irq(isadev, &s->irq, isa->isairq);
qemu_register_reset(parallel_reset, s);
if (qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_PP_READ_STATUS, &dummy) == 0) {
s->hw_driver = 1;
s->status = dummy;
}
isa_register_portio_list(isadev, base,
(s->hw_driver
? &isa_parallel_portio_hw_list[0]
: &isa_parallel_portio_sw_list[0]),
s, "parallel");
}
/* Memory mapped interface */
static uint32_t parallel_mm_readb (void *opaque, hwaddr addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFF;
}
static void parallel_mm_writeb (void *opaque,
hwaddr addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFF);
}
static uint32_t parallel_mm_readw (void *opaque, hwaddr addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift) & 0xFFFF;
}
static void parallel_mm_writew (void *opaque,
hwaddr addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value & 0xFFFF);
}
static uint32_t parallel_mm_readl (void *opaque, hwaddr addr)
{
ParallelState *s = opaque;
return parallel_ioport_read_sw(s, addr >> s->it_shift);
}
static void parallel_mm_writel (void *opaque,
hwaddr addr, uint32_t value)
{
ParallelState *s = opaque;
parallel_ioport_write_sw(s, addr >> s->it_shift, value);
}
static const MemoryRegionOps parallel_mm_ops = {
.old_mmio = {
.read = { parallel_mm_readb, parallel_mm_readw, parallel_mm_readl },
.write = { parallel_mm_writeb, parallel_mm_writew, parallel_mm_writel },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
/* If fd is zero, it means that the parallel device uses the console */
bool parallel_mm_init(MemoryRegion *address_space,
hwaddr base, int it_shift, qemu_irq irq,
CharDriverState *chr)
{
ParallelState *s;
s = g_malloc0(sizeof(ParallelState));
s->irq = irq;
s->chr = chr;
s->it_shift = it_shift;
qemu_register_reset(parallel_reset, s);
memory_region_init_io(&s->iomem, &parallel_mm_ops, s,
"parallel", 8 << it_shift);
memory_region_add_subregion(address_space, base, &s->iomem);
return true;
}
static Property parallel_isa_properties[] = {
DEFINE_PROP_UINT32("index", ISAParallelState, index, -1),
DEFINE_PROP_HEX32("iobase", ISAParallelState, iobase, -1),
DEFINE_PROP_UINT32("irq", ISAParallelState, isairq, 7),
DEFINE_PROP_CHR("chardev", ISAParallelState, state.chr),
DEFINE_PROP_END_OF_LIST(),
};
static void parallel_isa_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = parallel_isa_realizefn;
dc->props = parallel_isa_properties;
}
static const TypeInfo parallel_isa_info = {
.name = TYPE_ISA_PARALLEL,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(ISAParallelState),
.class_init = parallel_isa_class_initfn,
};
static void parallel_register_types(void)
{
type_register_static(&parallel_isa_info);
}
type_init(parallel_register_types)