qemu/include/qemu/coroutine.h
Markus Armbruster 68ba85cecc coroutine: Split qemu/coroutine-core.h off qemu/coroutine.h
qemu/coroutine.h and qemu/lockable.h include each other.

They need each other only in macro expansions, so we could simply drop
both inclusions to break the loop, and add suitable includes to files
that expand the macros.

Instead, move a part of qemu/coroutine.h to new qemu/coroutine-core.h
so that qemu/coroutine-core.h doesn't need qemu/lockable.h, and
qemu/lockable.h only needs qemu/coroutine-core.h.  Result:
qemu/coroutine.h includes qemu/lockable.h includes
qemu/coroutine-core.h.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20221221131435.3851212-5-armbru@redhat.com>
[Semantic rebase conflict with 7c10cb38cc "accel/tcg: Add debuginfo
support" resolved]
2023-01-20 07:21:46 +01:00

312 lines
10 KiB
C

/*
* QEMU coroutine implementation
*
* Copyright IBM, Corp. 2011
*
* Authors:
* Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
* Kevin Wolf <kwolf@redhat.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#ifndef QEMU_COROUTINE_H
#define QEMU_COROUTINE_H
#include "qemu/coroutine-core.h"
#include "qemu/queue.h"
#include "qemu/timer.h"
/**
* Coroutines are a mechanism for stack switching and can be used for
* cooperative userspace threading. These functions provide a simple but
* useful flavor of coroutines that is suitable for writing sequential code,
* rather than callbacks, for operations that need to give up control while
* waiting for events to complete.
*
* These functions are re-entrant and may be used outside the global mutex.
*
* Functions that execute in coroutine context cannot be called
* directly from normal functions. Use @coroutine_fn to mark such
* functions. For example:
*
* static void coroutine_fn foo(void) {
* ....
* }
*
* In the future it would be nice to have the compiler or a static
* checker catch misuse of such functions. This annotation might make
* it possible and in the meantime it serves as documentation.
*/
/**
* Provides a mutex that can be used to synchronise coroutines
*/
struct CoWaitRecord;
struct CoMutex {
/* Count of pending lockers; 0 for a free mutex, 1 for an
* uncontended mutex.
*/
unsigned locked;
/* Context that is holding the lock. Useful to avoid spinning
* when two coroutines on the same AioContext try to get the lock. :)
*/
AioContext *ctx;
/* A queue of waiters. Elements are added atomically in front of
* from_push. to_pop is only populated, and popped from, by whoever
* is in charge of the next wakeup. This can be an unlocker or,
* through the handoff protocol, a locker that is about to go to sleep.
*/
QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
unsigned handoff, sequence;
Coroutine *holder;
};
/**
* Assert that the current coroutine holds @mutex.
*/
static inline coroutine_fn void qemu_co_mutex_assert_locked(CoMutex *mutex)
{
/*
* mutex->holder doesn't need any synchronisation if the assertion holds
* true because the mutex protects it. If it doesn't hold true, we still
* don't mind if another thread takes or releases mutex behind our back,
* because the condition will be false no matter whether we read NULL or
* the pointer for any other coroutine.
*/
assert(qatomic_read(&mutex->locked) &&
mutex->holder == qemu_coroutine_self());
}
/**
* CoQueues are a mechanism to queue coroutines in order to continue executing
* them later. They are similar to condition variables, but they need help
* from an external mutex in order to maintain thread-safety.
*/
typedef struct CoQueue {
QSIMPLEQ_HEAD(, Coroutine) entries;
} CoQueue;
/**
* Initialise a CoQueue. This must be called before any other operation is used
* on the CoQueue.
*/
void qemu_co_queue_init(CoQueue *queue);
typedef enum {
/*
* Enqueue at front instead of back. Use this to re-queue a request when
* its wait condition is not satisfied after being woken up.
*/
CO_QUEUE_WAIT_FRONT = 0x1,
} CoQueueWaitFlags;
/**
* Adds the current coroutine to the CoQueue and transfers control to the
* caller of the coroutine. The mutex is unlocked during the wait and
* locked again afterwards.
*/
#define qemu_co_queue_wait(queue, lock) \
qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), 0)
#define qemu_co_queue_wait_flags(queue, lock, flags) \
qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), (flags))
void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock,
CoQueueWaitFlags flags);
/**
* Removes the next coroutine from the CoQueue, and queue it to run after
* the currently-running coroutine yields.
* Returns true if a coroutine was removed, false if the queue is empty.
* Used from coroutine context, use qemu_co_enter_next outside.
*/
bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
/**
* Empties the CoQueue and queues the coroutine to run after
* the currently-running coroutine yields.
* Used from coroutine context, use qemu_co_enter_all outside.
*/
void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
/**
* Removes the next coroutine from the CoQueue, and wake it up. Unlike
* qemu_co_queue_next, this function releases the lock during aio_co_wake
* because it is meant to be used outside coroutine context; in that case, the
* coroutine is entered immediately, before qemu_co_enter_next returns.
*
* If used in coroutine context, qemu_co_enter_next is equivalent to
* qemu_co_queue_next.
*/
#define qemu_co_enter_next(queue, lock) \
qemu_co_enter_next_impl(queue, QEMU_MAKE_LOCKABLE(lock))
bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock);
/**
* Empties the CoQueue, waking the waiting coroutine one at a time. Unlike
* qemu_co_queue_all, this function releases the lock during aio_co_wake
* because it is meant to be used outside coroutine context; in that case, the
* coroutine is entered immediately, before qemu_co_enter_all returns.
*
* If used in coroutine context, qemu_co_enter_all is equivalent to
* qemu_co_queue_all.
*/
#define qemu_co_enter_all(queue, lock) \
qemu_co_enter_all_impl(queue, QEMU_MAKE_LOCKABLE(lock))
void qemu_co_enter_all_impl(CoQueue *queue, QemuLockable *lock);
/**
* Checks if the CoQueue is empty.
*/
bool qemu_co_queue_empty(CoQueue *queue);
typedef struct CoRwTicket CoRwTicket;
typedef struct CoRwlock {
CoMutex mutex;
/* Number of readers, or -1 if owned for writing. */
int owners;
/* Waiting coroutines. */
QSIMPLEQ_HEAD(, CoRwTicket) tickets;
} CoRwlock;
/**
* Initialises a CoRwlock. This must be called before any other operation
* is used on the CoRwlock
*/
void qemu_co_rwlock_init(CoRwlock *lock);
/**
* Read locks the CoRwlock. If the lock cannot be taken immediately because
* of a parallel writer, control is transferred to the caller of the current
* coroutine.
*/
void coroutine_fn qemu_co_rwlock_rdlock(CoRwlock *lock);
/**
* Write Locks the CoRwlock from a reader. This is a bit more efficient than
* @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
* Note that if the lock cannot be upgraded immediately, control is transferred
* to the caller of the current coroutine; another writer might run while
* @qemu_co_rwlock_upgrade blocks.
*/
void coroutine_fn qemu_co_rwlock_upgrade(CoRwlock *lock);
/**
* Downgrades a write-side critical section to a reader. Downgrading with
* @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
* followed by @qemu_co_rwlock_rdlock. This makes it more efficient, but
* may also sometimes be necessary for correctness.
*/
void coroutine_fn qemu_co_rwlock_downgrade(CoRwlock *lock);
/**
* Write Locks the mutex. If the lock cannot be taken immediately because
* of a parallel reader, control is transferred to the caller of the current
* coroutine.
*/
void coroutine_fn qemu_co_rwlock_wrlock(CoRwlock *lock);
/**
* Unlocks the read/write lock and schedules the next coroutine that was
* waiting for this lock to be run.
*/
void coroutine_fn qemu_co_rwlock_unlock(CoRwlock *lock);
typedef struct QemuCoSleep {
Coroutine *to_wake;
} QemuCoSleep;
/**
* Yield the coroutine for a given duration. Initializes @w so that,
* during this yield, it can be passed to qemu_co_sleep_wake() to
* terminate the sleep.
*/
void coroutine_fn qemu_co_sleep_ns_wakeable(QemuCoSleep *w,
QEMUClockType type, int64_t ns);
/**
* Yield the coroutine until the next call to qemu_co_sleep_wake.
*/
void coroutine_fn qemu_co_sleep(QemuCoSleep *w);
static inline void coroutine_fn qemu_co_sleep_ns(QEMUClockType type, int64_t ns)
{
QemuCoSleep w = { 0 };
qemu_co_sleep_ns_wakeable(&w, type, ns);
}
typedef void CleanupFunc(void *opaque);
/**
* Run entry in a coroutine and start timer. Wait for entry to finish or for
* timer to elapse, what happen first. If entry finished, return 0, if timer
* elapsed earlier, return -ETIMEDOUT.
*
* Be careful, entry execution is not canceled, user should handle it somehow.
* If @clean is provided, it's called after coroutine finish if timeout
* happened.
*/
int coroutine_fn qemu_co_timeout(CoroutineEntry *entry, void *opaque,
uint64_t timeout_ns, CleanupFunc clean);
/**
* Wake a coroutine if it is sleeping in qemu_co_sleep_ns. The timer will be
* deleted. @sleep_state must be the variable whose address was given to
* qemu_co_sleep_ns() and should be checked to be non-NULL before calling
* qemu_co_sleep_wake().
*/
void qemu_co_sleep_wake(QemuCoSleep *w);
/**
* Yield until a file descriptor becomes readable
*
* Note that this function clobbers the handlers for the file descriptor.
*/
void coroutine_fn yield_until_fd_readable(int fd);
/**
* Increase coroutine pool size
*/
void qemu_coroutine_inc_pool_size(unsigned int additional_pool_size);
/**
* Decrease coroutine pool size
*/
void qemu_coroutine_dec_pool_size(unsigned int additional_pool_size);
#include "qemu/lockable.h"
/**
* Sends a (part of) iovec down a socket, yielding when the socket is full, or
* Receives data into a (part of) iovec from a socket,
* yielding when there is no data in the socket.
* The same interface as qemu_sendv_recvv(), with added yielding.
* XXX should mark these as coroutine_fn
*/
ssize_t coroutine_fn qemu_co_sendv_recvv(int sockfd, struct iovec *iov,
unsigned iov_cnt, size_t offset,
size_t bytes, bool do_send);
#define qemu_co_recvv(sockfd, iov, iov_cnt, offset, bytes) \
qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, false)
#define qemu_co_sendv(sockfd, iov, iov_cnt, offset, bytes) \
qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, true)
/**
* The same as above, but with just a single buffer
*/
ssize_t coroutine_fn qemu_co_send_recv(int sockfd, void *buf, size_t bytes,
bool do_send);
#define qemu_co_recv(sockfd, buf, bytes) \
qemu_co_send_recv(sockfd, buf, bytes, false)
#define qemu_co_send(sockfd, buf, bytes) \
qemu_co_send_recv(sockfd, buf, bytes, true)
#endif /* QEMU_COROUTINE_H */