d7dc0682f5
(1) The virtio-1.2 specification <http://docs.oasis-open.org/virtio/virtio/v1.2/virtio-v1.2.html> writes: > 3 General Initialization And Device Operation > 3.1 Device Initialization > 3.1.1 Driver Requirements: Device Initialization > > [...] > > 7. Perform device-specific setup, including discovery of virtqueues for > the device, optional per-bus setup, reading and possibly writing the > device’s virtio configuration space, and population of virtqueues. > > 8. Set the DRIVER_OK status bit. At this point the device is “live”. and > 4 Virtio Transport Options > 4.1 Virtio Over PCI Bus > 4.1.4 Virtio Structure PCI Capabilities > 4.1.4.3 Common configuration structure layout > 4.1.4.3.2 Driver Requirements: Common configuration structure layout > > [...] > > The driver MUST configure the other virtqueue fields before enabling the > virtqueue with queue_enable. > > [...] (The same statements are present in virtio-1.0 identically, at <http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.html>.) These together mean that the following sub-sequence of steps is valid for a virtio-1.0 guest driver: (1.1) set "queue_enable" for the needed queues as the final part of device initialization step (7), (1.2) set DRIVER_OK in step (8), (1.3) immediately start sending virtio requests to the device. (2) When vhost-user is enabled, and the VHOST_USER_F_PROTOCOL_FEATURES special virtio feature is negotiated, then virtio rings start in disabled state, according to <https://qemu-project.gitlab.io/qemu/interop/vhost-user.html#ring-states>. In this case, explicit VHOST_USER_SET_VRING_ENABLE messages are needed for enabling vrings. Therefore setting "queue_enable" from the guest (1.1) -- which is technically "buffered" on the QEMU side until the guest sets DRIVER_OK (1.2) -- is a *control plane* operation, which -- after (1.2) -- travels from the guest through QEMU to the vhost-user backend, using a unix domain socket. Whereas sending a virtio request (1.3) is a *data plane* operation, which evades QEMU -- it travels from guest to the vhost-user backend via eventfd. This means that operations ((1.1) + (1.2)) and (1.3) travel through different channels, and their relative order can be reversed, as perceived by the vhost-user backend. That's exactly what happens when OVMF's virtiofs driver (VirtioFsDxe) runs against the Rust-language virtiofsd version 1.7.2. (Which uses version 0.10.1 of the vhost-user-backend crate, and version 0.8.1 of the vhost crate.) Namely, when VirtioFsDxe binds a virtiofs device, it goes through the device initialization steps (i.e., control plane operations), and immediately sends a FUSE_INIT request too (i.e., performs a data plane operation). In the Rust-language virtiofsd, this creates a race between two components that run *concurrently*, i.e., in different threads or processes: - Control plane, handling vhost-user protocol messages: The "VhostUserSlaveReqHandlerMut::set_vring_enable" method [crates/vhost-user-backend/src/handler.rs] handles VHOST_USER_SET_VRING_ENABLE messages, and updates each vring's "enabled" flag according to the message processed. - Data plane, handling virtio / FUSE requests: The "VringEpollHandler::handle_event" method [crates/vhost-user-backend/src/event_loop.rs] handles the incoming virtio / FUSE request, consuming the virtio kick at the same time. If the vring's "enabled" flag is set, the virtio / FUSE request is processed genuinely. If the vring's "enabled" flag is clear, then the virtio / FUSE request is discarded. Note that OVMF enables the queue *first*, and sends FUSE_INIT *second*. However, if the data plane processor in virtiofsd wins the race, then it sees the FUSE_INIT *before* the control plane processor took notice of VHOST_USER_SET_VRING_ENABLE and green-lit the queue for the data plane processor. Therefore the latter drops FUSE_INIT on the floor, and goes back to waiting for further virtio / FUSE requests with epoll_wait. Meanwhile OVMF is stuck waiting for the FUSET_INIT response -- a deadlock. The deadlock is not deterministic. OVMF hangs infrequently during first boot. However, OVMF hangs almost certainly during reboots from the UEFI shell. The race can be "reliably masked" by inserting a very small delay -- a single debug message -- at the top of "VringEpollHandler::handle_event", i.e., just before the data plane processor checks the "enabled" field of the vring. That delay suffices for the control plane processor to act upon VHOST_USER_SET_VRING_ENABLE. We can deterministically prevent the race in QEMU, by blocking OVMF inside step (1.2) -- i.e., in the write to the device status register that "unleashes" queue enablement -- until VHOST_USER_SET_VRING_ENABLE actually *completes*. That way OVMF's VCPU cannot advance to the FUSE_INIT submission before virtiofsd's control plane processor takes notice of the queue being enabled. Wait for VHOST_USER_SET_VRING_ENABLE completion by: - setting the NEED_REPLY flag on VHOST_USER_SET_VRING_ENABLE, and waiting for the reply, if the VHOST_USER_PROTOCOL_F_REPLY_ACK vhost-user feature has been negotiated, or - performing a separate VHOST_USER_GET_FEATURES *exchange*, which requires a backend response regardless of VHOST_USER_PROTOCOL_F_REPLY_ACK. Cc: "Michael S. Tsirkin" <mst@redhat.com> (supporter:vhost) Cc: Eugenio Perez Martin <eperezma@redhat.com> Cc: German Maglione <gmaglione@redhat.com> Cc: Liu Jiang <gerry@linux.alibaba.com> Cc: Sergio Lopez Pascual <slp@redhat.com> Cc: Stefano Garzarella <sgarzare@redhat.com> Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Tested-by: Albert Esteve <aesteve@redhat.com> [lersek@redhat.com: work Eugenio's explanation into the commit message, about QEMU containing step (1.1) until step (1.2)] Reviewed-by: Eugenio Pérez <eperezma@redhat.com> Message-Id: <20231002203221.17241-8-lersek@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> |
||
---|---|---|
.. | ||
Kconfig | ||
meson.build | ||
trace-events | ||
trace.h | ||
vdpa-dev-pci.c | ||
vdpa-dev.c | ||
vhost-backend.c | ||
vhost-iova-tree.c | ||
vhost-iova-tree.h | ||
vhost-scsi-pci.c | ||
vhost-shadow-virtqueue.c | ||
vhost-shadow-virtqueue.h | ||
vhost-stub.c | ||
vhost-user-blk-pci.c | ||
vhost-user-device-pci.c | ||
vhost-user-device.c | ||
vhost-user-fs-pci.c | ||
vhost-user-fs.c | ||
vhost-user-gpio-pci.c | ||
vhost-user-gpio.c | ||
vhost-user-i2c-pci.c | ||
vhost-user-i2c.c | ||
vhost-user-input-pci.c | ||
vhost-user-rng-pci.c | ||
vhost-user-rng.c | ||
vhost-user-scmi-pci.c | ||
vhost-user-scmi.c | ||
vhost-user-scsi-pci.c | ||
vhost-user-vsock-pci.c | ||
vhost-user-vsock.c | ||
vhost-user.c | ||
vhost-vdpa.c | ||
vhost-vsock-common.c | ||
vhost-vsock-pci.c | ||
vhost-vsock.c | ||
vhost.c | ||
virtio-9p-pci.c | ||
virtio-balloon-pci.c | ||
virtio-balloon.c | ||
virtio-blk-pci.c | ||
virtio-bus.c | ||
virtio-config-io.c | ||
virtio-crypto-pci.c | ||
virtio-crypto.c | ||
virtio-hmp-cmds.c | ||
virtio-input-host-pci.c | ||
virtio-input-pci.c | ||
virtio-iommu-pci.c | ||
virtio-iommu.c | ||
virtio-md-pci.c | ||
virtio-mem-pci.c | ||
virtio-mem-pci.h | ||
virtio-mem.c | ||
virtio-mmio.c | ||
virtio-net-pci.c | ||
virtio-pci.c | ||
virtio-pmem-pci.c | ||
virtio-pmem-pci.h | ||
virtio-pmem.c | ||
virtio-qmp.c | ||
virtio-qmp.h | ||
virtio-rng-pci.c | ||
virtio-rng.c | ||
virtio-scsi-pci.c | ||
virtio-serial-pci.c | ||
virtio-stub.c | ||
virtio.c |