qemu/replay/replay-internal.c
Alex Bennée d759c951f3 replay: push replay_mutex_lock up the call tree
Now instead of using the replay_lock to guard the output of the log we
now use it to protect the whole execution section. This replaces what
the BQL used to do when it was held during TCG execution.

We also introduce some rules for locking order - mainly that you
cannot take the replay_mutex while holding the BQL. This leads to some
slight sophistry during start-up and extending the
replay_mutex_destroy function to unlock the mutex without checking
for the BQL condition so it can be cleanly dropped in the non-replay
case.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Pavel Dovgalyuk <pavel.dovgaluk@ispras.ru>
Tested-by: Pavel Dovgalyuk <pavel.dovgaluk@ispras.ru>
Message-Id: <20180227095248.1060.40374.stgit@pasha-VirtualBox>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
2018-03-12 17:10:36 +01:00

224 lines
5.0 KiB
C

/*
* replay-internal.c
*
* Copyright (c) 2010-2015 Institute for System Programming
* of the Russian Academy of Sciences.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "sysemu/replay.h"
#include "replay-internal.h"
#include "qemu/error-report.h"
#include "sysemu/sysemu.h"
/* Mutex to protect reading and writing events to the log.
data_kind and has_unread_data are also protected
by this mutex.
It also protects replay events queue which stores events to be
written or read to the log. */
static QemuMutex lock;
/* File for replay writing */
FILE *replay_file;
void replay_put_byte(uint8_t byte)
{
if (replay_file) {
putc(byte, replay_file);
}
}
void replay_put_event(uint8_t event)
{
assert(event < EVENT_COUNT);
replay_put_byte(event);
}
void replay_put_word(uint16_t word)
{
replay_put_byte(word >> 8);
replay_put_byte(word);
}
void replay_put_dword(uint32_t dword)
{
replay_put_word(dword >> 16);
replay_put_word(dword);
}
void replay_put_qword(int64_t qword)
{
replay_put_dword(qword >> 32);
replay_put_dword(qword);
}
void replay_put_array(const uint8_t *buf, size_t size)
{
if (replay_file) {
replay_put_dword(size);
fwrite(buf, 1, size, replay_file);
}
}
uint8_t replay_get_byte(void)
{
uint8_t byte = 0;
if (replay_file) {
byte = getc(replay_file);
}
return byte;
}
uint16_t replay_get_word(void)
{
uint16_t word = 0;
if (replay_file) {
word = replay_get_byte();
word = (word << 8) + replay_get_byte();
}
return word;
}
uint32_t replay_get_dword(void)
{
uint32_t dword = 0;
if (replay_file) {
dword = replay_get_word();
dword = (dword << 16) + replay_get_word();
}
return dword;
}
int64_t replay_get_qword(void)
{
int64_t qword = 0;
if (replay_file) {
qword = replay_get_dword();
qword = (qword << 32) + replay_get_dword();
}
return qword;
}
void replay_get_array(uint8_t *buf, size_t *size)
{
if (replay_file) {
*size = replay_get_dword();
if (fread(buf, 1, *size, replay_file) != *size) {
error_report("replay read error");
}
}
}
void replay_get_array_alloc(uint8_t **buf, size_t *size)
{
if (replay_file) {
*size = replay_get_dword();
*buf = g_malloc(*size);
if (fread(*buf, 1, *size, replay_file) != *size) {
error_report("replay read error");
}
}
}
void replay_check_error(void)
{
if (replay_file) {
if (feof(replay_file)) {
error_report("replay file is over");
qemu_system_vmstop_request_prepare();
qemu_system_vmstop_request(RUN_STATE_PAUSED);
} else if (ferror(replay_file)) {
error_report("replay file is over or something goes wrong");
qemu_system_vmstop_request_prepare();
qemu_system_vmstop_request(RUN_STATE_INTERNAL_ERROR);
}
}
}
void replay_fetch_data_kind(void)
{
if (replay_file) {
if (!replay_state.has_unread_data) {
replay_state.data_kind = replay_get_byte();
if (replay_state.data_kind == EVENT_INSTRUCTION) {
replay_state.instructions_count = replay_get_dword();
}
replay_check_error();
replay_state.has_unread_data = 1;
if (replay_state.data_kind >= EVENT_COUNT) {
error_report("Replay: unknown event kind %d",
replay_state.data_kind);
exit(1);
}
}
}
}
void replay_finish_event(void)
{
replay_state.has_unread_data = 0;
replay_fetch_data_kind();
}
static __thread bool replay_locked;
void replay_mutex_init(void)
{
qemu_mutex_init(&lock);
/* Hold the mutex while we start-up */
qemu_mutex_lock(&lock);
replay_locked = true;
}
bool replay_mutex_locked(void)
{
return replay_locked;
}
/* Ordering constraints, replay_lock must be taken before BQL */
void replay_mutex_lock(void)
{
if (replay_mode != REPLAY_MODE_NONE) {
g_assert(!qemu_mutex_iothread_locked());
g_assert(!replay_mutex_locked());
qemu_mutex_lock(&lock);
replay_locked = true;
}
}
void replay_mutex_unlock(void)
{
if (replay_mode != REPLAY_MODE_NONE) {
g_assert(replay_mutex_locked());
replay_locked = false;
qemu_mutex_unlock(&lock);
}
}
/*! Saves cached instructions. */
void replay_save_instructions(void)
{
if (replay_file && replay_mode == REPLAY_MODE_RECORD) {
g_assert(replay_mutex_locked());
int diff = (int)(replay_get_current_step() - replay_state.current_step);
/* Time can only go forward */
assert(diff >= 0);
if (diff > 0) {
replay_put_event(EVENT_INSTRUCTION);
replay_put_dword(diff);
replay_state.current_step += diff;
}
}
}