qemu/hw/arm/virt-acpi-build.c
Markus Armbruster 650d103d3e Include hw/hw.h exactly where needed
In my "build everything" tree, changing hw/hw.h triggers a recompile
of some 2600 out of 6600 objects (not counting tests and objects that
don't depend on qemu/osdep.h).

The previous commits have left only the declaration of hw_error() in
hw/hw.h.  This permits dropping most of its inclusions.  Touching it
now recompiles less than 200 objects.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20190812052359.30071-19-armbru@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
2019-08-16 13:31:52 +02:00

926 lines
34 KiB
C

/* Support for generating ACPI tables and passing them to Guests
*
* ARM virt ACPI generation
*
* Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
* Copyright (C) 2006 Fabrice Bellard
* Copyright (C) 2013 Red Hat Inc
*
* Author: Michael S. Tsirkin <mst@redhat.com>
*
* Copyright (c) 2015 HUAWEI TECHNOLOGIES CO.,LTD.
*
* Author: Shannon Zhao <zhaoshenglong@huawei.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/bitmap.h"
#include "trace.h"
#include "qom/cpu.h"
#include "target/arm/cpu.h"
#include "hw/acpi/acpi-defs.h"
#include "hw/acpi/acpi.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/acpi/bios-linker-loader.h"
#include "hw/acpi/aml-build.h"
#include "hw/acpi/utils.h"
#include "hw/acpi/pci.h"
#include "hw/pci/pcie_host.h"
#include "hw/pci/pci.h"
#include "hw/arm/virt.h"
#include "sysemu/numa.h"
#include "sysemu/reset.h"
#include "kvm_arm.h"
#include "migration/vmstate.h"
#define ARM_SPI_BASE 32
#define ACPI_POWER_BUTTON_DEVICE "PWRB"
static void acpi_dsdt_add_cpus(Aml *scope, int smp_cpus)
{
uint16_t i;
for (i = 0; i < smp_cpus; i++) {
Aml *dev = aml_device("C%.03X", i);
aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0007")));
aml_append(dev, aml_name_decl("_UID", aml_int(i)));
aml_append(scope, dev);
}
}
static void acpi_dsdt_add_uart(Aml *scope, const MemMapEntry *uart_memmap,
uint32_t uart_irq)
{
Aml *dev = aml_device("COM0");
aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0011")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(uart_memmap->base,
uart_memmap->size, AML_READ_WRITE));
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &uart_irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
/* The _ADR entry is used to link this device to the UART described
* in the SPCR table, i.e. SPCR.base_address.address == _ADR.
*/
aml_append(dev, aml_name_decl("_ADR", aml_int(uart_memmap->base)));
aml_append(scope, dev);
}
static void acpi_dsdt_add_fw_cfg(Aml *scope, const MemMapEntry *fw_cfg_memmap)
{
Aml *dev = aml_device("FWCF");
aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002")));
/* device present, functioning, decoding, not shown in UI */
aml_append(dev, aml_name_decl("_STA", aml_int(0xB)));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(fw_cfg_memmap->base,
fw_cfg_memmap->size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void acpi_dsdt_add_flash(Aml *scope, const MemMapEntry *flash_memmap)
{
Aml *dev, *crs;
hwaddr base = flash_memmap->base;
hwaddr size = flash_memmap->size / 2;
dev = aml_device("FLS0");
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
dev = aml_device("FLS1");
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0015")));
aml_append(dev, aml_name_decl("_UID", aml_int(1)));
crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base + size, size, AML_READ_WRITE));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
}
static void acpi_dsdt_add_virtio(Aml *scope,
const MemMapEntry *virtio_mmio_memmap,
uint32_t mmio_irq, int num)
{
hwaddr base = virtio_mmio_memmap->base;
hwaddr size = virtio_mmio_memmap->size;
int i;
for (i = 0; i < num; i++) {
uint32_t irq = mmio_irq + i;
Aml *dev = aml_device("VR%02u", i);
aml_append(dev, aml_name_decl("_HID", aml_string("LNRO0005")));
aml_append(dev, aml_name_decl("_UID", aml_int(i)));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(base, size, AML_READ_WRITE));
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
aml_append(scope, dev);
base += size;
}
}
static void acpi_dsdt_add_pci(Aml *scope, const MemMapEntry *memmap,
uint32_t irq, bool use_highmem, bool highmem_ecam)
{
int ecam_id = VIRT_ECAM_ID(highmem_ecam);
Aml *method, *crs, *ifctx, *UUID, *ifctx1, *elsectx, *buf;
int i, bus_no;
hwaddr base_mmio = memmap[VIRT_PCIE_MMIO].base;
hwaddr size_mmio = memmap[VIRT_PCIE_MMIO].size;
hwaddr base_pio = memmap[VIRT_PCIE_PIO].base;
hwaddr size_pio = memmap[VIRT_PCIE_PIO].size;
hwaddr base_ecam = memmap[ecam_id].base;
hwaddr size_ecam = memmap[ecam_id].size;
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
Aml *dev = aml_device("%s", "PCI0");
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A08")));
aml_append(dev, aml_name_decl("_CID", aml_string("PNP0A03")));
aml_append(dev, aml_name_decl("_SEG", aml_int(0)));
aml_append(dev, aml_name_decl("_BBN", aml_int(0)));
aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_string("PCI0")));
aml_append(dev, aml_name_decl("_STR", aml_unicode("PCIe 0 Device")));
aml_append(dev, aml_name_decl("_CCA", aml_int(1)));
/* Declare the PCI Routing Table. */
Aml *rt_pkg = aml_varpackage(nr_pcie_buses * PCI_NUM_PINS);
for (bus_no = 0; bus_no < nr_pcie_buses; bus_no++) {
for (i = 0; i < PCI_NUM_PINS; i++) {
int gsi = (i + bus_no) % PCI_NUM_PINS;
Aml *pkg = aml_package(4);
aml_append(pkg, aml_int((bus_no << 16) | 0xFFFF));
aml_append(pkg, aml_int(i));
aml_append(pkg, aml_name("GSI%d", gsi));
aml_append(pkg, aml_int(0));
aml_append(rt_pkg, pkg);
}
}
aml_append(dev, aml_name_decl("_PRT", rt_pkg));
/* Create GSI link device */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irqs = irq + i;
Aml *dev_gsi = aml_device("GSI%d", i);
aml_append(dev_gsi, aml_name_decl("_HID", aml_string("PNP0C0F")));
aml_append(dev_gsi, aml_name_decl("_UID", aml_int(0)));
crs = aml_resource_template();
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irqs, 1));
aml_append(dev_gsi, aml_name_decl("_PRS", crs));
crs = aml_resource_template();
aml_append(crs,
aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &irqs, 1));
aml_append(dev_gsi, aml_name_decl("_CRS", crs));
method = aml_method("_SRS", 1, AML_NOTSERIALIZED);
aml_append(dev_gsi, method);
aml_append(dev, dev_gsi);
}
method = aml_method("_CBA", 0, AML_NOTSERIALIZED);
aml_append(method, aml_return(aml_int(base_ecam)));
aml_append(dev, method);
method = aml_method("_CRS", 0, AML_NOTSERIALIZED);
Aml *rbuf = aml_resource_template();
aml_append(rbuf,
aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
0x0000, 0x0000, nr_pcie_buses - 1, 0x0000,
nr_pcie_buses));
aml_append(rbuf,
aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_mmio,
base_mmio + size_mmio - 1, 0x0000, size_mmio));
aml_append(rbuf,
aml_dword_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE,
AML_ENTIRE_RANGE, 0x0000, 0x0000, size_pio - 1, base_pio,
size_pio));
if (use_highmem) {
hwaddr base_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].base;
hwaddr size_mmio_high = memmap[VIRT_HIGH_PCIE_MMIO].size;
aml_append(rbuf,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000,
base_mmio_high,
base_mmio_high + size_mmio_high - 1, 0x0000,
size_mmio_high));
}
aml_append(method, aml_name_decl("RBUF", rbuf));
aml_append(method, aml_return(rbuf));
aml_append(dev, method);
/* Declare an _OSC (OS Control Handoff) method */
aml_append(dev, aml_name_decl("SUPP", aml_int(0)));
aml_append(dev, aml_name_decl("CTRL", aml_int(0)));
method = aml_method("_OSC", 4, AML_NOTSERIALIZED);
aml_append(method,
aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1"));
/* PCI Firmware Specification 3.0
* 4.5.1. _OSC Interface for PCI Host Bridge Devices
* The _OSC interface for a PCI/PCI-X/PCI Express hierarchy is
* identified by the Universal Unique IDentifier (UUID)
* 33DB4D5B-1FF7-401C-9657-7441C03DD766
*/
UUID = aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766");
ifctx = aml_if(aml_equal(aml_arg(0), UUID));
aml_append(ifctx,
aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2"));
aml_append(ifctx,
aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3"));
aml_append(ifctx, aml_store(aml_name("CDW2"), aml_name("SUPP")));
aml_append(ifctx, aml_store(aml_name("CDW3"), aml_name("CTRL")));
aml_append(ifctx, aml_store(aml_and(aml_name("CTRL"), aml_int(0x1D), NULL),
aml_name("CTRL")));
ifctx1 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(0x1))));
aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x08), NULL),
aml_name("CDW1")));
aml_append(ifctx, ifctx1);
ifctx1 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), aml_name("CTRL"))));
aml_append(ifctx1, aml_store(aml_or(aml_name("CDW1"), aml_int(0x10), NULL),
aml_name("CDW1")));
aml_append(ifctx, ifctx1);
aml_append(ifctx, aml_store(aml_name("CTRL"), aml_name("CDW3")));
aml_append(ifctx, aml_return(aml_arg(3)));
aml_append(method, ifctx);
elsectx = aml_else();
aml_append(elsectx, aml_store(aml_or(aml_name("CDW1"), aml_int(4), NULL),
aml_name("CDW1")));
aml_append(elsectx, aml_return(aml_arg(3)));
aml_append(method, elsectx);
aml_append(dev, method);
method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
/* PCI Firmware Specification 3.0
* 4.6.1. _DSM for PCI Express Slot Information
* The UUID in _DSM in this context is
* {E5C937D0-3553-4D7A-9117-EA4D19C3434D}
*/
UUID = aml_touuid("E5C937D0-3553-4D7A-9117-EA4D19C3434D");
ifctx = aml_if(aml_equal(aml_arg(0), UUID));
ifctx1 = aml_if(aml_equal(aml_arg(2), aml_int(0)));
uint8_t byte_list[1] = {1};
buf = aml_buffer(1, byte_list);
aml_append(ifctx1, aml_return(buf));
aml_append(ifctx, ifctx1);
aml_append(method, ifctx);
byte_list[0] = 0;
buf = aml_buffer(1, byte_list);
aml_append(method, aml_return(buf));
aml_append(dev, method);
Aml *dev_rp0 = aml_device("%s", "RP0");
aml_append(dev_rp0, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, dev_rp0);
Aml *dev_res0 = aml_device("%s", "RES0");
aml_append(dev_res0, aml_name_decl("_HID", aml_string("PNP0C02")));
crs = aml_resource_template();
aml_append(crs,
aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED,
AML_NON_CACHEABLE, AML_READ_WRITE, 0x0000, base_ecam,
base_ecam + size_ecam - 1, 0x0000, size_ecam));
aml_append(dev_res0, aml_name_decl("_CRS", crs));
aml_append(dev, dev_res0);
aml_append(scope, dev);
}
static void acpi_dsdt_add_gpio(Aml *scope, const MemMapEntry *gpio_memmap,
uint32_t gpio_irq)
{
Aml *dev = aml_device("GPO0");
aml_append(dev, aml_name_decl("_HID", aml_string("ARMH0061")));
aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
Aml *crs = aml_resource_template();
aml_append(crs, aml_memory32_fixed(gpio_memmap->base, gpio_memmap->size,
AML_READ_WRITE));
aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, &gpio_irq, 1));
aml_append(dev, aml_name_decl("_CRS", crs));
Aml *aei = aml_resource_template();
/* Pin 3 for power button */
const uint32_t pin_list[1] = {3};
aml_append(aei, aml_gpio_int(AML_CONSUMER, AML_EDGE, AML_ACTIVE_HIGH,
AML_EXCLUSIVE, AML_PULL_UP, 0, pin_list, 1,
"GPO0", NULL, 0));
aml_append(dev, aml_name_decl("_AEI", aei));
/* _E03 is handle for power button */
Aml *method = aml_method("_E03", 0, AML_NOTSERIALIZED);
aml_append(method, aml_notify(aml_name(ACPI_POWER_BUTTON_DEVICE),
aml_int(0x80)));
aml_append(dev, method);
aml_append(scope, dev);
}
static void acpi_dsdt_add_power_button(Aml *scope)
{
Aml *dev = aml_device(ACPI_POWER_BUTTON_DEVICE);
aml_append(dev, aml_name_decl("_HID", aml_string("PNP0C0C")));
aml_append(dev, aml_name_decl("_ADR", aml_int(0)));
aml_append(dev, aml_name_decl("_UID", aml_int(0)));
aml_append(scope, dev);
}
static void
build_iort(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
int nb_nodes, iort_start = table_data->len;
AcpiIortIdMapping *idmap;
AcpiIortItsGroup *its;
AcpiIortTable *iort;
AcpiIortSmmu3 *smmu;
size_t node_size, iort_node_offset, iort_length, smmu_offset = 0;
AcpiIortRC *rc;
iort = acpi_data_push(table_data, sizeof(*iort));
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
nb_nodes = 3; /* RC, ITS, SMMUv3 */
} else {
nb_nodes = 2; /* RC, ITS */
}
iort_length = sizeof(*iort);
iort->node_count = cpu_to_le32(nb_nodes);
/*
* Use a copy in case table_data->data moves during acpi_data_push
* operations.
*/
iort_node_offset = sizeof(*iort);
iort->node_offset = cpu_to_le32(iort_node_offset);
/* ITS group node */
node_size = sizeof(*its) + sizeof(uint32_t);
iort_length += node_size;
its = acpi_data_push(table_data, node_size);
its->type = ACPI_IORT_NODE_ITS_GROUP;
its->length = cpu_to_le16(node_size);
its->its_count = cpu_to_le32(1);
its->identifiers[0] = 0; /* MADT translation_id */
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
int irq = vms->irqmap[VIRT_SMMU] + ARM_SPI_BASE;
/* SMMUv3 node */
smmu_offset = iort_node_offset + node_size;
node_size = sizeof(*smmu) + sizeof(*idmap);
iort_length += node_size;
smmu = acpi_data_push(table_data, node_size);
smmu->type = ACPI_IORT_NODE_SMMU_V3;
smmu->length = cpu_to_le16(node_size);
smmu->mapping_count = cpu_to_le32(1);
smmu->mapping_offset = cpu_to_le32(sizeof(*smmu));
smmu->base_address = cpu_to_le64(vms->memmap[VIRT_SMMU].base);
smmu->flags = cpu_to_le32(ACPI_IORT_SMMU_V3_COHACC_OVERRIDE);
smmu->event_gsiv = cpu_to_le32(irq);
smmu->pri_gsiv = cpu_to_le32(irq + 1);
smmu->gerr_gsiv = cpu_to_le32(irq + 2);
smmu->sync_gsiv = cpu_to_le32(irq + 3);
/* Identity RID mapping covering the whole input RID range */
idmap = &smmu->id_mapping_array[0];
idmap->input_base = 0;
idmap->id_count = cpu_to_le32(0xFFFF);
idmap->output_base = 0;
/* output IORT node is the ITS group node (the first node) */
idmap->output_reference = cpu_to_le32(iort_node_offset);
}
/* Root Complex Node */
node_size = sizeof(*rc) + sizeof(*idmap);
iort_length += node_size;
rc = acpi_data_push(table_data, node_size);
rc->type = ACPI_IORT_NODE_PCI_ROOT_COMPLEX;
rc->length = cpu_to_le16(node_size);
rc->mapping_count = cpu_to_le32(1);
rc->mapping_offset = cpu_to_le32(sizeof(*rc));
/* fully coherent device */
rc->memory_properties.cache_coherency = cpu_to_le32(1);
rc->memory_properties.memory_flags = 0x3; /* CCA = CPM = DCAS = 1 */
rc->pci_segment_number = 0; /* MCFG pci_segment */
/* Identity RID mapping covering the whole input RID range */
idmap = &rc->id_mapping_array[0];
idmap->input_base = 0;
idmap->id_count = cpu_to_le32(0xFFFF);
idmap->output_base = 0;
if (vms->iommu == VIRT_IOMMU_SMMUV3) {
/* output IORT node is the smmuv3 node */
idmap->output_reference = cpu_to_le32(smmu_offset);
} else {
/* output IORT node is the ITS group node (the first node) */
idmap->output_reference = cpu_to_le32(iort_node_offset);
}
/*
* Update the pointer address in case table_data->data moves during above
* acpi_data_push operations.
*/
iort = (AcpiIortTable *)(table_data->data + iort_start);
iort->length = cpu_to_le32(iort_length);
build_header(linker, table_data, (void *)(table_data->data + iort_start),
"IORT", table_data->len - iort_start, 0, NULL, NULL);
}
static void
build_spcr(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
AcpiSerialPortConsoleRedirection *spcr;
const MemMapEntry *uart_memmap = &vms->memmap[VIRT_UART];
int irq = vms->irqmap[VIRT_UART] + ARM_SPI_BASE;
int spcr_start = table_data->len;
spcr = acpi_data_push(table_data, sizeof(*spcr));
spcr->interface_type = 0x3; /* ARM PL011 UART */
spcr->base_address.space_id = AML_SYSTEM_MEMORY;
spcr->base_address.bit_width = 8;
spcr->base_address.bit_offset = 0;
spcr->base_address.access_width = 1;
spcr->base_address.address = cpu_to_le64(uart_memmap->base);
spcr->interrupt_types = (1 << 3); /* Bit[3] ARMH GIC interrupt */
spcr->gsi = cpu_to_le32(irq); /* Global System Interrupt */
spcr->baud = 3; /* Baud Rate: 3 = 9600 */
spcr->parity = 0; /* No Parity */
spcr->stopbits = 1; /* 1 Stop bit */
spcr->flowctrl = (1 << 1); /* Bit[1] = RTS/CTS hardware flow control */
spcr->term_type = 0; /* Terminal Type: 0 = VT100 */
spcr->pci_device_id = 0xffff; /* PCI Device ID: not a PCI device */
spcr->pci_vendor_id = 0xffff; /* PCI Vendor ID: not a PCI device */
build_header(linker, table_data, (void *)(table_data->data + spcr_start),
"SPCR", table_data->len - spcr_start, 2, NULL, NULL);
}
static void
build_srat(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
AcpiSystemResourceAffinityTable *srat;
AcpiSratProcessorGiccAffinity *core;
AcpiSratMemoryAffinity *numamem;
int i, srat_start;
uint64_t mem_base;
MachineClass *mc = MACHINE_GET_CLASS(vms);
const CPUArchIdList *cpu_list = mc->possible_cpu_arch_ids(MACHINE(vms));
srat_start = table_data->len;
srat = acpi_data_push(table_data, sizeof(*srat));
srat->reserved1 = cpu_to_le32(1);
for (i = 0; i < cpu_list->len; ++i) {
core = acpi_data_push(table_data, sizeof(*core));
core->type = ACPI_SRAT_PROCESSOR_GICC;
core->length = sizeof(*core);
core->proximity = cpu_to_le32(cpu_list->cpus[i].props.node_id);
core->acpi_processor_uid = cpu_to_le32(i);
core->flags = cpu_to_le32(1);
}
mem_base = vms->memmap[VIRT_MEM].base;
for (i = 0; i < nb_numa_nodes; ++i) {
if (numa_info[i].node_mem > 0) {
numamem = acpi_data_push(table_data, sizeof(*numamem));
build_srat_memory(numamem, mem_base, numa_info[i].node_mem, i,
MEM_AFFINITY_ENABLED);
mem_base += numa_info[i].node_mem;
}
}
build_header(linker, table_data, (void *)(table_data->data + srat_start),
"SRAT", table_data->len - srat_start, 3, NULL, NULL);
}
/* GTDT */
static void
build_gtdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
int gtdt_start = table_data->len;
AcpiGenericTimerTable *gtdt;
uint32_t irqflags;
if (vmc->claim_edge_triggered_timers) {
irqflags = ACPI_GTDT_INTERRUPT_MODE_EDGE;
} else {
irqflags = ACPI_GTDT_INTERRUPT_MODE_LEVEL;
}
gtdt = acpi_data_push(table_data, sizeof *gtdt);
/* The interrupt values are the same with the device tree when adding 16 */
gtdt->secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_S_EL1_IRQ + 16);
gtdt->secure_el1_flags = cpu_to_le32(irqflags);
gtdt->non_secure_el1_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL1_IRQ + 16);
gtdt->non_secure_el1_flags = cpu_to_le32(irqflags |
ACPI_GTDT_CAP_ALWAYS_ON);
gtdt->virtual_timer_interrupt = cpu_to_le32(ARCH_TIMER_VIRT_IRQ + 16);
gtdt->virtual_timer_flags = cpu_to_le32(irqflags);
gtdt->non_secure_el2_interrupt = cpu_to_le32(ARCH_TIMER_NS_EL2_IRQ + 16);
gtdt->non_secure_el2_flags = cpu_to_le32(irqflags);
build_header(linker, table_data,
(void *)(table_data->data + gtdt_start), "GTDT",
table_data->len - gtdt_start, 2, NULL, NULL);
}
/* MADT */
static void
build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
int madt_start = table_data->len;
const MemMapEntry *memmap = vms->memmap;
const int *irqmap = vms->irqmap;
AcpiMultipleApicTable *madt;
AcpiMadtGenericDistributor *gicd;
AcpiMadtGenericMsiFrame *gic_msi;
int i;
madt = acpi_data_push(table_data, sizeof *madt);
gicd = acpi_data_push(table_data, sizeof *gicd);
gicd->type = ACPI_APIC_GENERIC_DISTRIBUTOR;
gicd->length = sizeof(*gicd);
gicd->base_address = cpu_to_le64(memmap[VIRT_GIC_DIST].base);
gicd->version = vms->gic_version;
for (i = 0; i < vms->smp_cpus; i++) {
AcpiMadtGenericCpuInterface *gicc = acpi_data_push(table_data,
sizeof(*gicc));
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(i));
gicc->type = ACPI_APIC_GENERIC_CPU_INTERFACE;
gicc->length = sizeof(*gicc);
if (vms->gic_version == 2) {
gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
}
gicc->cpu_interface_number = cpu_to_le32(i);
gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
gicc->uid = cpu_to_le32(i);
gicc->flags = cpu_to_le32(ACPI_MADT_GICC_ENABLED);
if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
}
if (vms->virt) {
gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
}
}
if (vms->gic_version == 3) {
AcpiMadtGenericTranslator *gic_its;
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
AcpiMadtGenericRedistributor *gicr = acpi_data_push(table_data,
sizeof *gicr);
gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
gicr->length = sizeof(*gicr);
gicr->base_address = cpu_to_le64(memmap[VIRT_GIC_REDIST].base);
gicr->range_length = cpu_to_le32(memmap[VIRT_GIC_REDIST].size);
if (nb_redist_regions == 2) {
gicr = acpi_data_push(table_data, sizeof(*gicr));
gicr->type = ACPI_APIC_GENERIC_REDISTRIBUTOR;
gicr->length = sizeof(*gicr);
gicr->base_address =
cpu_to_le64(memmap[VIRT_HIGH_GIC_REDIST2].base);
gicr->range_length =
cpu_to_le32(memmap[VIRT_HIGH_GIC_REDIST2].size);
}
if (its_class_name() && !vmc->no_its) {
gic_its = acpi_data_push(table_data, sizeof *gic_its);
gic_its->type = ACPI_APIC_GENERIC_TRANSLATOR;
gic_its->length = sizeof(*gic_its);
gic_its->translation_id = 0;
gic_its->base_address = cpu_to_le64(memmap[VIRT_GIC_ITS].base);
}
} else {
gic_msi = acpi_data_push(table_data, sizeof *gic_msi);
gic_msi->type = ACPI_APIC_GENERIC_MSI_FRAME;
gic_msi->length = sizeof(*gic_msi);
gic_msi->gic_msi_frame_id = 0;
gic_msi->base_address = cpu_to_le64(memmap[VIRT_GIC_V2M].base);
gic_msi->flags = cpu_to_le32(1);
gic_msi->spi_count = cpu_to_le16(NUM_GICV2M_SPIS);
gic_msi->spi_base = cpu_to_le16(irqmap[VIRT_GIC_V2M] + ARM_SPI_BASE);
}
build_header(linker, table_data,
(void *)(table_data->data + madt_start), "APIC",
table_data->len - madt_start, 3, NULL, NULL);
}
/* FADT */
static void build_fadt_rev5(GArray *table_data, BIOSLinker *linker,
VirtMachineState *vms, unsigned dsdt_tbl_offset)
{
/* ACPI v5.1 */
AcpiFadtData fadt = {
.rev = 5,
.minor_ver = 1,
.flags = 1 << ACPI_FADT_F_HW_REDUCED_ACPI,
.xdsdt_tbl_offset = &dsdt_tbl_offset,
};
switch (vms->psci_conduit) {
case QEMU_PSCI_CONDUIT_DISABLED:
fadt.arm_boot_arch = 0;
break;
case QEMU_PSCI_CONDUIT_HVC:
fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT |
ACPI_FADT_ARM_PSCI_USE_HVC;
break;
case QEMU_PSCI_CONDUIT_SMC:
fadt.arm_boot_arch = ACPI_FADT_ARM_PSCI_COMPLIANT;
break;
default:
g_assert_not_reached();
}
build_fadt(table_data, linker, &fadt, NULL, NULL);
}
/* DSDT */
static void
build_dsdt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
{
Aml *scope, *dsdt;
const MemMapEntry *memmap = vms->memmap;
const int *irqmap = vms->irqmap;
dsdt = init_aml_allocator();
/* Reserve space for header */
acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader));
/* When booting the VM with UEFI, UEFI takes ownership of the RTC hardware.
* While UEFI can use libfdt to disable the RTC device node in the DTB that
* it passes to the OS, it cannot modify AML. Therefore, we won't generate
* the RTC ACPI device at all when using UEFI.
*/
scope = aml_scope("\\_SB");
acpi_dsdt_add_cpus(scope, vms->smp_cpus);
acpi_dsdt_add_uart(scope, &memmap[VIRT_UART],
(irqmap[VIRT_UART] + ARM_SPI_BASE));
acpi_dsdt_add_flash(scope, &memmap[VIRT_FLASH]);
acpi_dsdt_add_fw_cfg(scope, &memmap[VIRT_FW_CFG]);
acpi_dsdt_add_virtio(scope, &memmap[VIRT_MMIO],
(irqmap[VIRT_MMIO] + ARM_SPI_BASE), NUM_VIRTIO_TRANSPORTS);
acpi_dsdt_add_pci(scope, memmap, (irqmap[VIRT_PCIE] + ARM_SPI_BASE),
vms->highmem, vms->highmem_ecam);
acpi_dsdt_add_gpio(scope, &memmap[VIRT_GPIO],
(irqmap[VIRT_GPIO] + ARM_SPI_BASE));
acpi_dsdt_add_power_button(scope);
aml_append(dsdt, scope);
/* copy AML table into ACPI tables blob and patch header there */
g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len);
build_header(linker, table_data,
(void *)(table_data->data + table_data->len - dsdt->buf->len),
"DSDT", dsdt->buf->len, 2, NULL, NULL);
free_aml_allocator();
}
typedef
struct AcpiBuildState {
/* Copy of table in RAM (for patching). */
MemoryRegion *table_mr;
MemoryRegion *rsdp_mr;
MemoryRegion *linker_mr;
/* Is table patched? */
bool patched;
} AcpiBuildState;
static
void virt_acpi_build(VirtMachineState *vms, AcpiBuildTables *tables)
{
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
GArray *table_offsets;
unsigned dsdt, xsdt;
GArray *tables_blob = tables->table_data;
table_offsets = g_array_new(false, true /* clear */,
sizeof(uint32_t));
bios_linker_loader_alloc(tables->linker,
ACPI_BUILD_TABLE_FILE, tables_blob,
64, false /* high memory */);
/* DSDT is pointed to by FADT */
dsdt = tables_blob->len;
build_dsdt(tables_blob, tables->linker, vms);
/* FADT MADT GTDT MCFG SPCR pointed to by RSDT */
acpi_add_table(table_offsets, tables_blob);
build_fadt_rev5(tables_blob, tables->linker, vms, dsdt);
acpi_add_table(table_offsets, tables_blob);
build_madt(tables_blob, tables->linker, vms);
acpi_add_table(table_offsets, tables_blob);
build_gtdt(tables_blob, tables->linker, vms);
acpi_add_table(table_offsets, tables_blob);
{
AcpiMcfgInfo mcfg = {
.base = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].base,
.size = vms->memmap[VIRT_ECAM_ID(vms->highmem_ecam)].size,
};
build_mcfg(tables_blob, tables->linker, &mcfg);
}
acpi_add_table(table_offsets, tables_blob);
build_spcr(tables_blob, tables->linker, vms);
if (nb_numa_nodes > 0) {
acpi_add_table(table_offsets, tables_blob);
build_srat(tables_blob, tables->linker, vms);
if (have_numa_distance) {
acpi_add_table(table_offsets, tables_blob);
build_slit(tables_blob, tables->linker);
}
}
if (its_class_name() && !vmc->no_its) {
acpi_add_table(table_offsets, tables_blob);
build_iort(tables_blob, tables->linker, vms);
}
/* XSDT is pointed to by RSDP */
xsdt = tables_blob->len;
build_xsdt(tables_blob, tables->linker, table_offsets, NULL, NULL);
/* RSDP is in FSEG memory, so allocate it separately */
{
AcpiRsdpData rsdp_data = {
.revision = 2,
.oem_id = ACPI_BUILD_APPNAME6,
.xsdt_tbl_offset = &xsdt,
.rsdt_tbl_offset = NULL,
};
build_rsdp(tables->rsdp, tables->linker, &rsdp_data);
}
/* Cleanup memory that's no longer used. */
g_array_free(table_offsets, true);
}
static void acpi_ram_update(MemoryRegion *mr, GArray *data)
{
uint32_t size = acpi_data_len(data);
/* Make sure RAM size is correct - in case it got changed
* e.g. by migration */
memory_region_ram_resize(mr, size, &error_abort);
memcpy(memory_region_get_ram_ptr(mr), data->data, size);
memory_region_set_dirty(mr, 0, size);
}
static void virt_acpi_build_update(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
AcpiBuildTables tables;
/* No state to update or already patched? Nothing to do. */
if (!build_state || build_state->patched) {
return;
}
build_state->patched = true;
acpi_build_tables_init(&tables);
virt_acpi_build(VIRT_MACHINE(qdev_get_machine()), &tables);
acpi_ram_update(build_state->table_mr, tables.table_data);
acpi_ram_update(build_state->rsdp_mr, tables.rsdp);
acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob);
acpi_build_tables_cleanup(&tables, true);
}
static void virt_acpi_build_reset(void *build_opaque)
{
AcpiBuildState *build_state = build_opaque;
build_state->patched = false;
}
static const VMStateDescription vmstate_virt_acpi_build = {
.name = "virt_acpi_build",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL(patched, AcpiBuildState),
VMSTATE_END_OF_LIST()
},
};
void virt_acpi_setup(VirtMachineState *vms)
{
AcpiBuildTables tables;
AcpiBuildState *build_state;
if (!vms->fw_cfg) {
trace_virt_acpi_setup();
return;
}
if (!acpi_enabled) {
trace_virt_acpi_setup();
return;
}
build_state = g_malloc0(sizeof *build_state);
acpi_build_tables_init(&tables);
virt_acpi_build(vms, &tables);
/* Now expose it all to Guest */
build_state->table_mr = acpi_add_rom_blob(virt_acpi_build_update,
build_state, tables.table_data,
ACPI_BUILD_TABLE_FILE,
ACPI_BUILD_TABLE_MAX_SIZE);
assert(build_state->table_mr != NULL);
build_state->linker_mr =
acpi_add_rom_blob(virt_acpi_build_update, build_state,
tables.linker->cmd_blob, "etc/table-loader", 0);
fw_cfg_add_file(vms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data,
acpi_data_len(tables.tcpalog));
build_state->rsdp_mr = acpi_add_rom_blob(virt_acpi_build_update,
build_state, tables.rsdp,
ACPI_BUILD_RSDP_FILE, 0);
qemu_register_reset(virt_acpi_build_reset, build_state);
virt_acpi_build_reset(build_state);
vmstate_register(NULL, 0, &vmstate_virt_acpi_build, build_state);
/* Cleanup tables but don't free the memory: we track it
* in build_state.
*/
acpi_build_tables_cleanup(&tables, false);
}