qemu/target/hppa/mem_helper.c
Richard Henderson d73d4a5d78 target/hppa: Fix priority of T, D, and B page faults
Drop the 'else' so that ret is overridden with the
highest priority fault.

Fixes: d8bc138125 ("target/hppa: Implement PSW_X")
Reviewed-by: Helge Deller <deller@gmx.de>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2024-10-13 11:27:05 -07:00

819 lines
26 KiB
C

/*
* HPPA memory access helper routines
*
* Copyright (c) 2017 Helge Deller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/page-protection.h"
#include "exec/helper-proto.h"
#include "hw/core/cpu.h"
#include "trace.h"
hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
{
/*
* Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
* an algorithm in which a 62-bit absolute address is transformed to
* a 64-bit physical address. This must then be combined with that
* pictured in Figure H-11 "Physical Address Space Mapping", in which
* the full physical address is truncated to the N-bit physical address
* supported by the implementation.
*
* Since the supported physical address space is below 54 bits, the
* H-8 algorithm is moot and all that is left is to truncate.
*/
QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
}
hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
{
/*
* See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
* combined with Figure H-11, as above.
*/
if (likely(extract32(addr, 28, 4) != 0xf)) {
/* Memory address space */
addr = (uint32_t)addr;
} else if (extract32(addr, 24, 4) != 0) {
/* I/O address space */
addr = (int32_t)addr;
} else {
/*
* PDC address space:
* Figures H-10 and H-11 of the parisc2.0 spec do not specify
* where to map into the 64-bit PDC address space.
* We map with an offset which equals the 32-bit address, which
* is what can be seen on physical machines too.
*/
addr = (uint32_t)addr;
addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
}
return addr;
}
static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
{
IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
if (i) {
HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
ent->itree.start, ent->itree.last, ent->pa);
return ent;
}
trace_hppa_tlb_find_entry_not_found(env, addr);
return NULL;
}
static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
bool force_flush_btlb)
{
CPUState *cs = env_cpu(env);
bool is_btlb;
if (!ent->entry_valid) {
return;
}
trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
ent->itree.last, ent->pa);
tlb_flush_range_by_mmuidx(cs, ent->itree.start,
ent->itree.last - ent->itree.start + 1,
HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
/* Never clear BTLBs, unless forced to do so. */
is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
if (is_btlb && !force_flush_btlb) {
return;
}
interval_tree_remove(&ent->itree, &env->tlb_root);
memset(ent, 0, sizeof(*ent));
if (!is_btlb) {
ent->unused_next = env->tlb_unused;
env->tlb_unused = ent;
}
}
static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
{
IntervalTreeNode *i, *n;
i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
for (; i ; i = n) {
HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
/*
* Find the next entry now: In the normal case the current entry
* will be removed, but in the BTLB case it will remain.
*/
n = interval_tree_iter_next(i, va_b, va_e);
hppa_flush_tlb_ent(env, ent, false);
}
}
static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
{
HPPATLBEntry *ent = env->tlb_unused;
if (ent == NULL) {
uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
uint32_t i = env->tlb_last;
if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
i = btlb_entries;
}
env->tlb_last = i + 1;
ent = &env->tlb[i];
hppa_flush_tlb_ent(env, ent, false);
}
env->tlb_unused = ent->unused_next;
return ent;
}
#define ACCESS_ID_MASK 0xffff
/* Return the set of protections allowed by a PID match. */
static int match_prot_id_1(uint32_t access_id, uint32_t prot_id)
{
if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) {
return (prot_id & 1
? PAGE_EXEC | PAGE_READ
: PAGE_EXEC | PAGE_READ | PAGE_WRITE);
}
return 0;
}
static int match_prot_id32(CPUHPPAState *env, uint32_t access_id)
{
int r, i;
for (i = CR_PID1; i <= CR_PID4; ++i) {
r = match_prot_id_1(access_id, env->cr[i]);
if (r) {
return r;
}
}
return 0;
}
static int match_prot_id64(CPUHPPAState *env, uint32_t access_id)
{
int r, i;
for (i = CR_PID1; i <= CR_PID4; ++i) {
r = match_prot_id_1(access_id, env->cr[i]);
if (r) {
return r;
}
r = match_prot_id_1(access_id, env->cr[i] >> 32);
if (r) {
return r;
}
}
return 0;
}
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
int type, MemOp mop, hwaddr *pphys, int *pprot)
{
hwaddr phys;
int prot, r_prot, w_prot, x_prot, priv;
HPPATLBEntry *ent;
int ret = -1;
/* Virtual translation disabled. Map absolute to physical. */
if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
switch (mmu_idx) {
case MMU_ABS_W_IDX:
phys = hppa_abs_to_phys_pa2_w1(addr);
break;
case MMU_ABS_IDX:
if (hppa_is_pa20(env)) {
phys = hppa_abs_to_phys_pa2_w0(addr);
} else {
phys = (uint32_t)addr;
}
break;
default:
g_assert_not_reached();
}
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
goto egress;
}
/* Find a valid tlb entry that matches the virtual address. */
ent = hppa_find_tlb(env, addr);
if (ent == NULL) {
phys = 0;
prot = 0;
ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
goto egress;
}
/* We now know the physical address. */
phys = ent->pa + (addr - ent->itree.start);
/* Map TLB access_rights field to QEMU protection. */
priv = MMU_IDX_TO_PRIV(mmu_idx);
r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
switch (ent->ar_type) {
case 0: /* read-only: data page */
prot = r_prot;
break;
case 1: /* read/write: dynamic data page */
prot = r_prot | w_prot;
break;
case 2: /* read/execute: normal code page */
prot = r_prot | x_prot;
break;
case 3: /* read/write/execute: dynamic code page */
prot = r_prot | w_prot | x_prot;
break;
default: /* execute: promote to privilege level type & 3 */
prot = x_prot;
break;
}
/*
* No guest access type indicates a non-architectural access from
* within QEMU. Bypass checks for access, D, B, P and T bits.
*/
if (type == 0) {
goto egress;
}
if (unlikely(!(prot & type))) {
/* Not allowed -- Inst/Data Memory Access Rights Fault. */
ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
goto egress;
}
/* access_id == 0 means public page and no check is performed */
if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
int access_prot = (hppa_is_pa20(env)
? match_prot_id64(env, ent->access_id)
: match_prot_id32(env, ent->access_id));
if (unlikely(!(type & access_prot))) {
/* Not allowed -- Inst/Data Memory Protection Id Fault. */
ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI;
goto egress;
}
/* Otherwise exclude permissions not allowed (i.e WD). */
prot &= access_prot;
}
/*
* In reverse priority order, check for conditions which raise faults.
* Remove PROT bits that cover the condition we want to check,
* so that the resulting PROT will force a re-check of the
* architectural TLB entry for the next access.
*/
if (unlikely(ent->t)) {
prot &= PAGE_EXEC;
if (!(type & PAGE_EXEC)) {
/* The T bit is set -- Page Reference Fault. */
ret = EXCP_PAGE_REF;
}
}
if (unlikely(!ent->d)) {
prot &= PAGE_READ | PAGE_EXEC;
if (type & PAGE_WRITE) {
/* The D bit is not set -- TLB Dirty Bit Fault. */
ret = EXCP_TLB_DIRTY;
}
}
if (unlikely(ent->b)) {
prot &= PAGE_READ | PAGE_EXEC;
if (type & PAGE_WRITE) {
/*
* The B bit is set -- Data Memory Break Fault.
* Except when PSW_X is set, allow this single access to succeed.
* The write bit will be invalidated for subsequent accesses.
*/
if (env->psw_xb & PSW_X) {
prot |= PAGE_WRITE_INV;
} else {
ret = EXCP_DMB;
}
}
}
egress:
*pphys = phys;
*pprot = prot;
trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
return ret;
}
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
HPPACPU *cpu = HPPA_CPU(cs);
hwaddr phys;
int prot, excp, mmu_idx;
/* If the (data) mmu is disabled, bypass translation. */
/* ??? We really ought to know if the code mmu is disabled too,
in order to get the correct debugging dumps. */
mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 0,
&phys, &prot);
/* Since we're translating for debugging, the only error that is a
hard error is no translation at all. Otherwise, while a real cpu
access might not have permission, the debugger does. */
return excp == EXCP_DTLB_MISS ? -1 : phys;
}
void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
{
if (env->psw & PSW_Q) {
/*
* For pa1.x, the offset and space never overlap, and so we
* simply extract the high and low part of the virtual address.
*
* For pa2.0, the formation of these are described in section
* "Interruption Parameter Registers", page 2-15.
*/
env->cr[CR_IOR] = (uint32_t)addr;
env->cr[CR_ISR] = addr >> 32;
if (hppa_is_pa20(env)) {
if (mmu_disabled) {
/*
* If data translation was disabled, the ISR contains
* the upper portion of the abs address, zero-extended.
*/
env->cr[CR_ISR] &= 0x3fffffff;
} else {
/*
* If data translation was enabled, the upper two bits
* of the IOR (the b field) are equal to the two space
* bits from the base register used to form the gva.
*/
uint64_t b;
b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
b >>= (env->psw & PSW_W ? 62 : 30);
env->cr[CR_IOR] |= b << 62;
}
}
}
}
G_NORETURN static void
raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
vaddr addr, bool mmu_disabled)
{
CPUState *cs = env_cpu(env);
cs->exception_index = excp;
cpu_restore_state(cs, retaddr);
hppa_set_ior_and_isr(env, addr, mmu_disabled);
cpu_loop_exit(cs);
}
void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
CPUHPPAState *env = cpu_env(cs);
qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
" while accessing I/O at %#08" HWADDR_PRIx "\n",
env->iasq_f, env->iaoq_f, physaddr);
/* FIXME: Enable HPMC exceptions when firmware has clean device probing */
if (0) {
raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
MMU_IDX_MMU_DISABLED(mmu_idx));
}
}
bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
MMUAccessType type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
int prot, excp, a_prot;
hwaddr phys;
switch (type) {
case MMU_INST_FETCH:
a_prot = PAGE_EXEC;
break;
case MMU_DATA_STORE:
a_prot = PAGE_WRITE;
break;
default:
a_prot = PAGE_READ;
break;
}
excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, 0,
&phys, &prot);
if (unlikely(excp >= 0)) {
if (probe) {
return false;
}
trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
/* Failure. Raise the indicated exception. */
raise_exception_with_ior(env, excp, retaddr, addr,
MMU_IDX_MMU_DISABLED(mmu_idx));
}
trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
phys & TARGET_PAGE_MASK, size, type, mmu_idx);
/*
* Success! Store the translation into the QEMU TLB.
* Note that we always install a single-page entry, because that
* is what works best with softmmu -- anything else will trigger
* the large page protection mask. We do not require this,
* because we record the large page here in the hppa tlb.
*/
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
HPPATLBEntry *ent;
/* Zap any old entries covering ADDR. */
addr &= TARGET_PAGE_MASK;
hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
ent = env->tlb_partial;
if (ent == NULL) {
ent = hppa_alloc_tlb_ent(env);
env->tlb_partial = ent;
}
/* Note that ent->entry_valid == 0 already. */
ent->itree.start = addr;
ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
}
static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
target_ulong reg)
{
ent->access_id = extract32(reg, 1, 18);
ent->u = extract32(reg, 19, 1);
ent->ar_pl2 = extract32(reg, 20, 2);
ent->ar_pl1 = extract32(reg, 22, 2);
ent->ar_type = extract32(reg, 24, 3);
ent->b = extract32(reg, 27, 1);
ent->d = extract32(reg, 28, 1);
ent->t = extract32(reg, 29, 1);
ent->entry_valid = 1;
interval_tree_insert(&ent->itree, &env->tlb_root);
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
}
/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
{
HPPATLBEntry *ent = env->tlb_partial;
if (ent) {
env->tlb_partial = NULL;
if (ent->itree.start <= addr && addr <= ent->itree.last) {
set_access_bits_pa11(env, ent, reg);
return;
}
}
qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
}
static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
target_ulong r2, vaddr va_b)
{
HPPATLBEntry *ent;
vaddr va_e;
uint64_t va_size;
int mask_shift;
mask_shift = 2 * (r1 & 0xf);
va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
va_b &= -va_size;
va_e = va_b + va_size - 1;
hppa_flush_tlb_range(env, va_b, va_e);
ent = hppa_alloc_tlb_ent(env);
ent->itree.start = va_b;
ent->itree.last = va_e;
/* Extract all 52 bits present in the page table entry. */
ent->pa = r1 << (TARGET_PAGE_BITS - 5);
/* Align per the page size. */
ent->pa &= TARGET_PAGE_MASK << mask_shift;
/* Ignore the bits beyond physical address space. */
ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
ent->t = extract64(r2, 61, 1);
ent->d = extract64(r2, 60, 1);
ent->b = extract64(r2, 59, 1);
ent->ar_type = extract64(r2, 56, 3);
ent->ar_pl1 = extract64(r2, 54, 2);
ent->ar_pl2 = extract64(r2, 52, 2);
ent->u = extract64(r2, 51, 1);
/* o = bit 50 */
/* p = bit 49 */
ent->access_id = extract64(r2, 1, 31);
ent->entry_valid = 1;
interval_tree_insert(&ent->itree, &env->tlb_root);
trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
ent->ar_pl2, ent->ar_pl1, ent->ar_type,
ent->b, ent->d, ent->t);
}
void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
{
vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
itlbt_pa20(env, r1, r2, va_b);
}
void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
{
vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
itlbt_pa20(env, r1, r2, va_b);
}
/* Purge (Insn/Data) TLB. */
static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
{
vaddr start = data.target_ptr;
vaddr end;
/*
* PA2.0 allows a range of pages encoded into GR[b], which we have
* copied into the bottom bits of the otherwise page-aligned address.
* PA1.x will always provide zero here, for a single page flush.
*/
end = start & 0xf;
start &= TARGET_PAGE_MASK;
end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
end = start + end - 1;
hppa_flush_tlb_range(cpu_env(cpu), start, end);
}
/* This is local to the current cpu. */
void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
{
trace_hppa_tlb_ptlb_local(env);
ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
}
/* This is synchronous across all processors. */
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
{
CPUState *src = env_cpu(env);
CPUState *cpu;
bool wait = false;
trace_hppa_tlb_ptlb(env);
run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
CPU_FOREACH(cpu) {
if (cpu != src) {
async_run_on_cpu(cpu, ptlb_work, data);
wait = true;
}
}
if (wait) {
async_safe_run_on_cpu(src, ptlb_work, data);
} else {
ptlb_work(src, data);
}
}
void hppa_ptlbe(CPUHPPAState *env)
{
uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
uint32_t i;
/* Zap the (non-btlb) tlb entries themselves. */
memset(&env->tlb[btlb_entries], 0,
sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
env->tlb_last = btlb_entries;
env->tlb_partial = NULL;
/* Put them all onto the unused list. */
env->tlb_unused = &env->tlb[btlb_entries];
for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
env->tlb[i].unused_next = &env->tlb[i + 1];
}
/* Re-initialize the interval tree with only the btlb entries. */
memset(&env->tlb_root, 0, sizeof(env->tlb_root));
for (i = 0; i < btlb_entries; ++i) {
if (env->tlb[i].entry_valid) {
interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
}
}
tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
}
/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
number of pages/entries (we choose all), and is local to the cpu. */
void HELPER(ptlbe)(CPUHPPAState *env)
{
trace_hppa_tlb_ptlbe(env);
qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
hppa_ptlbe(env);
}
void cpu_hppa_change_prot_id(CPUHPPAState *env)
{
tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
}
void HELPER(change_prot_id)(CPUHPPAState *env)
{
cpu_hppa_change_prot_id(env);
}
target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
{
hwaddr phys;
int prot, excp;
excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 0,
&phys, &prot);
if (excp >= 0) {
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
trace_hppa_tlb_lpa_failed(env, addr);
raise_exception_with_ior(env, excp, GETPC(), addr, false);
}
trace_hppa_tlb_lpa_success(env, addr, phys);
return phys;
}
/*
* diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
* allow operating systems to modify the Block TLB (BTLB) entries.
* For implementation details see page 1-13 in
* https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
*/
void HELPER(diag_btlb)(CPUHPPAState *env)
{
unsigned int phys_page, len, slot;
int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
uintptr_t ra = GETPC();
HPPATLBEntry *btlb;
uint64_t virt_page;
uint32_t *vaddr;
uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
/* BTLBs are not supported on 64-bit CPUs */
if (btlb_entries == 0) {
env->gr[28] = -1; /* nonexistent procedure */
return;
}
env->gr[28] = 0; /* PDC_OK */
switch (env->gr[25]) {
case 0:
/* return BTLB parameters */
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
MMU_DATA_STORE, mmu_idx, ra);
if (vaddr == NULL) {
env->gr[28] = -10; /* invalid argument */
} else {
vaddr[0] = cpu_to_be32(1);
vaddr[1] = cpu_to_be32(16 * 1024);
vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
}
break;
case 1:
/* insert BTLB entry */
virt_page = env->gr[24]; /* upper 32 bits */
virt_page <<= 32;
virt_page |= env->gr[23]; /* lower 32 bits */
phys_page = env->gr[22];
len = env->gr[21];
slot = env->gr[19];
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
"0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
"into slot %d\n",
(long long) virt_page << TARGET_PAGE_BITS,
(long long) (virt_page + len) << TARGET_PAGE_BITS,
(long long) virt_page, phys_page, len, slot);
if (slot < btlb_entries) {
btlb = &env->tlb[slot];
/* Force flush of possibly existing BTLB entry. */
hppa_flush_tlb_ent(env, btlb, true);
/* Create new BTLB entry */
btlb->itree.start = virt_page << TARGET_PAGE_BITS;
btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
btlb->pa = phys_page << TARGET_PAGE_BITS;
set_access_bits_pa11(env, btlb, env->gr[20]);
btlb->t = 0;
btlb->d = 1;
} else {
env->gr[28] = -10; /* invalid argument */
}
break;
case 2:
/* Purge BTLB entry */
slot = env->gr[22];
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
slot);
if (slot < btlb_entries) {
btlb = &env->tlb[slot];
hppa_flush_tlb_ent(env, btlb, true);
} else {
env->gr[28] = -10; /* invalid argument */
}
break;
case 3:
/* Purge all BTLB entries */
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
for (slot = 0; slot < btlb_entries; slot++) {
btlb = &env->tlb[slot];
hppa_flush_tlb_ent(env, btlb, true);
}
break;
default:
env->gr[28] = -2; /* nonexistent option */
break;
}
}
uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f)
{
uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f);
HPPATLBEntry *ent = hppa_find_tlb(env, gva);
if (ent == NULL) {
raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false);
}
/*
* There should be no need to check page permissions, as that will
* already have been done by tb_lookup via get_page_addr_code.
* All we need at this point is to check the ar_type.
*
* No change for non-gateway pages or for priv decrease.
*/
if (ent->ar_type & 4) {
int old_priv = iaoq_f & 3;
int new_priv = ent->ar_type & 3;
if (new_priv < old_priv) {
iaoq_f = (iaoq_f & -4) | new_priv;
}
}
return iaoq_f;
}