qemu/target/ppc/translate/fixedpoint-impl.c.inc
Chinmay Rath a9bd40d937 target/ppc: Move add and subf type fixed-point arithmetic instructions to decodetree
This patch moves the below instructions to decodetree specification:

        {add, subf}[c,e,me,ze][o][.]       : XO-form
        addic[.], subfic                   : D-form
        addex                              : Z23-form

This patch introduces XO form instructions into decode tree
specification, for which all the four variations([o][.]) have been
handled with a single pattern. The changes were verified by validating
that the tcg ops generated by those instructions remain the same, which
were captured with the '-d in_asm,op' flag.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com>
Signed-off-by: Chinmay Rath <rathc@linux.ibm.com>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2024-03-13 02:47:04 +10:00

598 lines
17 KiB
PHP

/*
* Power ISA decode for Fixed-Point Facility instructions
*
* Copyright (c) 2021 Instituto de Pesquisas Eldorado (eldorado.org.br)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Fixed-Point Load/Store Instructions
*/
static bool do_ldst(DisasContext *ctx, int rt, int ra, TCGv displ, bool update,
bool store, MemOp mop)
{
TCGv ea;
if (update && (ra == 0 || (!store && ra == rt))) {
gen_invalid(ctx);
return true;
}
gen_set_access_type(ctx, ACCESS_INT);
ea = do_ea_calc(ctx, ra, displ);
mop ^= ctx->default_tcg_memop_mask;
if (store) {
tcg_gen_qemu_st_tl(cpu_gpr[rt], ea, ctx->mem_idx, mop);
} else {
tcg_gen_qemu_ld_tl(cpu_gpr[rt], ea, ctx->mem_idx, mop);
}
if (update) {
tcg_gen_mov_tl(cpu_gpr[ra], ea);
}
return true;
}
static bool do_ldst_D(DisasContext *ctx, arg_D *a, bool update, bool store,
MemOp mop)
{
return do_ldst(ctx, a->rt, a->ra, tcg_constant_tl(a->si), update, store, mop);
}
static bool do_ldst_PLS_D(DisasContext *ctx, arg_PLS_D *a, bool update,
bool store, MemOp mop)
{
arg_D d;
if (!resolve_PLS_D(ctx, &d, a)) {
return true;
}
return do_ldst_D(ctx, &d, update, store, mop);
}
static bool do_ldst_X(DisasContext *ctx, arg_X *a, bool update,
bool store, MemOp mop)
{
return do_ldst(ctx, a->rt, a->ra, cpu_gpr[a->rb], update, store, mop);
}
static bool do_ldst_quad(DisasContext *ctx, arg_D *a, bool store, bool prefixed)
{
#if defined(TARGET_PPC64)
TCGv ea;
TCGv_i64 lo, hi;
TCGv_i128 t16;
REQUIRE_INSNS_FLAGS(ctx, 64BX);
if (!prefixed && !(ctx->insns_flags2 & PPC2_LSQ_ISA207)) {
/* lq and stq were privileged prior to V. 2.07 */
REQUIRE_SV(ctx);
if (ctx->le_mode) {
gen_align_no_le(ctx);
return true;
}
}
if (!store && unlikely(a->ra == a->rt)) {
gen_invalid(ctx);
return true;
}
gen_set_access_type(ctx, ACCESS_INT);
ea = do_ea_calc(ctx, a->ra, tcg_constant_tl(a->si));
if (ctx->le_mode && prefixed) {
lo = cpu_gpr[a->rt];
hi = cpu_gpr[a->rt + 1];
} else {
lo = cpu_gpr[a->rt + 1];
hi = cpu_gpr[a->rt];
}
t16 = tcg_temp_new_i128();
if (store) {
tcg_gen_concat_i64_i128(t16, lo, hi);
tcg_gen_qemu_st_i128(t16, ea, ctx->mem_idx, DEF_MEMOP(MO_128));
} else {
tcg_gen_qemu_ld_i128(t16, ea, ctx->mem_idx, DEF_MEMOP(MO_128));
tcg_gen_extr_i128_i64(lo, hi, t16);
}
#else
qemu_build_not_reached();
#endif
return true;
}
static bool do_ldst_quad_PLS_D(DisasContext *ctx, arg_PLS_D *a, bool store)
{
arg_D d;
if (!resolve_PLS_D(ctx, &d, a)) {
return true;
}
return do_ldst_quad(ctx, &d, store, true);
}
/* Load Byte and Zero */
TRANS(LBZ, do_ldst_D, false, false, MO_UB)
TRANS(LBZX, do_ldst_X, false, false, MO_UB)
TRANS(LBZU, do_ldst_D, true, false, MO_UB)
TRANS(LBZUX, do_ldst_X, true, false, MO_UB)
TRANS(PLBZ, do_ldst_PLS_D, false, false, MO_UB)
/* Load Halfword and Zero */
TRANS(LHZ, do_ldst_D, false, false, MO_UW)
TRANS(LHZX, do_ldst_X, false, false, MO_UW)
TRANS(LHZU, do_ldst_D, true, false, MO_UW)
TRANS(LHZUX, do_ldst_X, true, false, MO_UW)
TRANS(PLHZ, do_ldst_PLS_D, false, false, MO_UW)
/* Load Halfword Algebraic */
TRANS(LHA, do_ldst_D, false, false, MO_SW)
TRANS(LHAX, do_ldst_X, false, false, MO_SW)
TRANS(LHAU, do_ldst_D, true, false, MO_SW)
TRANS(LHAXU, do_ldst_X, true, false, MO_SW)
TRANS(PLHA, do_ldst_PLS_D, false, false, MO_SW)
/* Load Word and Zero */
TRANS(LWZ, do_ldst_D, false, false, MO_UL)
TRANS(LWZX, do_ldst_X, false, false, MO_UL)
TRANS(LWZU, do_ldst_D, true, false, MO_UL)
TRANS(LWZUX, do_ldst_X, true, false, MO_UL)
TRANS(PLWZ, do_ldst_PLS_D, false, false, MO_UL)
/* Load Word Algebraic */
TRANS64(LWA, do_ldst_D, false, false, MO_SL)
TRANS64(LWAX, do_ldst_X, false, false, MO_SL)
TRANS64(LWAUX, do_ldst_X, true, false, MO_SL)
TRANS64(PLWA, do_ldst_PLS_D, false, false, MO_SL)
/* Load Doubleword */
TRANS64(LD, do_ldst_D, false, false, MO_UQ)
TRANS64(LDX, do_ldst_X, false, false, MO_UQ)
TRANS64(LDU, do_ldst_D, true, false, MO_UQ)
TRANS64(LDUX, do_ldst_X, true, false, MO_UQ)
TRANS64(PLD, do_ldst_PLS_D, false, false, MO_UQ)
/* Load Quadword */
TRANS64(LQ, do_ldst_quad, false, false);
TRANS64(PLQ, do_ldst_quad_PLS_D, false);
/* Store Byte */
TRANS(STB, do_ldst_D, false, true, MO_UB)
TRANS(STBX, do_ldst_X, false, true, MO_UB)
TRANS(STBU, do_ldst_D, true, true, MO_UB)
TRANS(STBUX, do_ldst_X, true, true, MO_UB)
TRANS(PSTB, do_ldst_PLS_D, false, true, MO_UB)
/* Store Halfword */
TRANS(STH, do_ldst_D, false, true, MO_UW)
TRANS(STHX, do_ldst_X, false, true, MO_UW)
TRANS(STHU, do_ldst_D, true, true, MO_UW)
TRANS(STHUX, do_ldst_X, true, true, MO_UW)
TRANS(PSTH, do_ldst_PLS_D, false, true, MO_UW)
/* Store Word */
TRANS(STW, do_ldst_D, false, true, MO_UL)
TRANS(STWX, do_ldst_X, false, true, MO_UL)
TRANS(STWU, do_ldst_D, true, true, MO_UL)
TRANS(STWUX, do_ldst_X, true, true, MO_UL)
TRANS(PSTW, do_ldst_PLS_D, false, true, MO_UL)
/* Store Doubleword */
TRANS64(STD, do_ldst_D, false, true, MO_UQ)
TRANS64(STDX, do_ldst_X, false, true, MO_UQ)
TRANS64(STDU, do_ldst_D, true, true, MO_UQ)
TRANS64(STDUX, do_ldst_X, true, true, MO_UQ)
TRANS64(PSTD, do_ldst_PLS_D, false, true, MO_UQ)
/* Store Quadword */
TRANS64(STQ, do_ldst_quad, true, false);
TRANS64(PSTQ, do_ldst_quad_PLS_D, true);
/*
* Fixed-Point Compare Instructions
*/
static bool do_cmp_X(DisasContext *ctx, arg_X_bfl *a, bool s)
{
if ((ctx->insns_flags & PPC_64B) == 0) {
/*
* For 32-bit implementations, The Programming Environments Manual says
* that "the L field must be cleared, otherwise the instruction form is
* invalid." It seems, however, that most 32-bit CPUs ignore invalid
* forms (e.g., section "Instruction Formats" of the 405 and 440
* manuals, "Integer Compare Instructions" of the 601 manual), with the
* notable exception of the e500 and e500mc, where L=1 was reported to
* cause an exception.
*/
if (a->l) {
if ((ctx->insns_flags2 & PPC2_BOOKE206)) {
/*
* For 32-bit Book E v2.06 implementations (i.e. e500/e500mc),
* generate an illegal instruction exception.
*/
return false;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"Invalid form of CMP%s at 0x" TARGET_FMT_lx ", L = 1\n",
s ? "" : "L", ctx->cia);
}
}
gen_op_cmp32(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf);
return true;
}
/* For 64-bit implementations, deal with bit L accordingly. */
if (a->l) {
gen_op_cmp(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf);
} else {
gen_op_cmp32(cpu_gpr[a->ra], cpu_gpr[a->rb], s, a->bf);
}
return true;
}
static bool do_cmp_D(DisasContext *ctx, arg_D_bf *a, bool s)
{
if ((ctx->insns_flags & PPC_64B) == 0) {
/*
* For 32-bit implementations, The Programming Environments Manual says
* that "the L field must be cleared, otherwise the instruction form is
* invalid." It seems, however, that most 32-bit CPUs ignore invalid
* forms (e.g., section "Instruction Formats" of the 405 and 440
* manuals, "Integer Compare Instructions" of the 601 manual), with the
* notable exception of the e500 and e500mc, where L=1 was reported to
* cause an exception.
*/
if (a->l) {
if ((ctx->insns_flags2 & PPC2_BOOKE206)) {
/*
* For 32-bit Book E v2.06 implementations (i.e. e500/e500mc),
* generate an illegal instruction exception.
*/
return false;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"Invalid form of CMP%s at 0x" TARGET_FMT_lx ", L = 1\n",
s ? "I" : "LI", ctx->cia);
}
}
gen_op_cmp32(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf);
return true;
}
/* For 64-bit implementations, deal with bit L accordingly. */
if (a->l) {
gen_op_cmp(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf);
} else {
gen_op_cmp32(cpu_gpr[a->ra], tcg_constant_tl(a->imm), s, a->bf);
}
return true;
}
TRANS(CMP, do_cmp_X, true);
TRANS(CMPL, do_cmp_X, false);
TRANS(CMPI, do_cmp_D, true);
TRANS(CMPLI, do_cmp_D, false);
/*
* Fixed-Point Arithmetic Instructions
*/
static bool trans_ADDI(DisasContext *ctx, arg_D *a)
{
if (a->ra) {
tcg_gen_addi_tl(cpu_gpr[a->rt], cpu_gpr[a->ra], a->si);
} else {
tcg_gen_movi_tl(cpu_gpr[a->rt], a->si);
}
return true;
}
static bool trans_PADDI(DisasContext *ctx, arg_PLS_D *a)
{
arg_D d;
if (!resolve_PLS_D(ctx, &d, a)) {
return true;
}
return trans_ADDI(ctx, &d);
}
static bool trans_ADDIS(DisasContext *ctx, arg_D *a)
{
a->si <<= 16;
return trans_ADDI(ctx, a);
}
static bool trans_ADDPCIS(DisasContext *ctx, arg_DX *a)
{
REQUIRE_INSNS_FLAGS2(ctx, ISA300);
tcg_gen_movi_tl(cpu_gpr[a->rt], ctx->base.pc_next + (a->d << 16));
return true;
}
static bool trans_ADDEX(DisasContext *ctx, arg_X *a)
{
REQUIRE_INSNS_FLAGS2(ctx, ISA300);
gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb],
cpu_ov, cpu_ov32, true, true, false, false);
return true;
}
static bool do_add_D(DisasContext *ctx, arg_D *a, bool add_ca, bool compute_ca,
bool compute_ov, bool compute_rc0)
{
gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra],
tcg_constant_tl(a->si), cpu_ca, cpu_ca32,
add_ca, compute_ca, compute_ov, compute_rc0);
return true;
}
static bool do_add_XO(DisasContext *ctx, arg_XO *a, bool add_ca,
bool compute_ca)
{
gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb],
cpu_ca, cpu_ca32, add_ca, compute_ca, a->oe, a->rc);
return true;
}
static bool do_add_const_XO(DisasContext *ctx, arg_XO_ta *a, TCGv const_val,
bool add_ca, bool compute_ca)
{
gen_op_arith_add(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], const_val,
cpu_ca, cpu_ca32, add_ca, compute_ca, a->oe, a->rc);
return true;
}
TRANS(ADD, do_add_XO, false, false);
TRANS(ADDC, do_add_XO, false, true);
TRANS(ADDE, do_add_XO, true, true);
TRANS(ADDME, do_add_const_XO, tcg_constant_tl(-1LL), true, true);
TRANS(ADDZE, do_add_const_XO, tcg_constant_tl(0), true, true);
TRANS(ADDIC, do_add_D, false, true, false, false);
TRANS(ADDIC_, do_add_D, false, true, false, true);
static bool trans_SUBFIC(DisasContext *ctx, arg_D *a)
{
gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra],
tcg_constant_tl(a->si), false, true, false, false);
return true;
}
static bool do_subf_XO(DisasContext *ctx, arg_XO *a, bool add_ca,
bool compute_ca)
{
gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], cpu_gpr[a->rb],
add_ca, compute_ca, a->oe, a->rc);
return true;
}
static bool do_subf_const_XO(DisasContext *ctx, arg_XO_ta *a, TCGv const_val,
bool add_ca, bool compute_ca)
{
gen_op_arith_subf(ctx, cpu_gpr[a->rt], cpu_gpr[a->ra], const_val,
add_ca, compute_ca, a->oe, a->rc);
return true;
}
TRANS(SUBF, do_subf_XO, false, false)
TRANS(SUBFC, do_subf_XO, false, true)
TRANS(SUBFE, do_subf_XO, true, true)
TRANS(SUBFME, do_subf_const_XO, tcg_constant_tl(-1LL), true, true)
TRANS(SUBFZE, do_subf_const_XO, tcg_constant_tl(0), true, true)
static bool trans_INVALID(DisasContext *ctx, arg_INVALID *a)
{
gen_invalid(ctx);
return true;
}
static bool trans_PNOP(DisasContext *ctx, arg_PNOP *a)
{
return true;
}
static bool do_set_bool_cond(DisasContext *ctx, arg_X_bi *a, bool neg, bool rev)
{
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
uint32_t mask = 0x08 >> (a->bi & 0x03);
TCGCond cond = rev ? TCG_COND_EQ : TCG_COND_NE;
TCGv temp = tcg_temp_new();
TCGv zero = tcg_constant_tl(0);
tcg_gen_extu_i32_tl(temp, cpu_crf[a->bi >> 2]);
tcg_gen_andi_tl(temp, temp, mask);
if (neg) {
tcg_gen_negsetcond_tl(cond, cpu_gpr[a->rt], temp, zero);
} else {
tcg_gen_setcond_tl(cond, cpu_gpr[a->rt], temp, zero);
}
return true;
}
TRANS(SETBC, do_set_bool_cond, false, false)
TRANS(SETBCR, do_set_bool_cond, false, true)
TRANS(SETNBC, do_set_bool_cond, true, false)
TRANS(SETNBCR, do_set_bool_cond, true, true)
static bool trans_CFUGED(DisasContext *ctx, arg_X *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
#if defined(TARGET_PPC64)
gen_helper_CFUGED(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]);
#else
qemu_build_not_reached();
#endif
return true;
}
static void do_cntzdm(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 mask, int64_t trail)
{
TCGv_i64 t0, t1;
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
tcg_gen_and_i64(t0, src, mask);
if (trail) {
tcg_gen_ctzi_i64(t0, t0, -1);
} else {
tcg_gen_clzi_i64(t0, t0, -1);
}
tcg_gen_setcondi_i64(TCG_COND_NE, t1, t0, -1);
tcg_gen_andi_i64(t0, t0, 63);
tcg_gen_xori_i64(t0, t0, 63);
if (trail) {
tcg_gen_shl_i64(t0, mask, t0);
tcg_gen_shl_i64(t0, t0, t1);
} else {
tcg_gen_shr_i64(t0, mask, t0);
tcg_gen_shr_i64(t0, t0, t1);
}
tcg_gen_ctpop_i64(dst, t0);
}
static bool trans_CNTLZDM(DisasContext *ctx, arg_X *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
#if defined(TARGET_PPC64)
do_cntzdm(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb], false);
#else
qemu_build_not_reached();
#endif
return true;
}
static bool trans_CNTTZDM(DisasContext *ctx, arg_X *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
#if defined(TARGET_PPC64)
do_cntzdm(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb], true);
#else
qemu_build_not_reached();
#endif
return true;
}
static bool trans_PDEPD(DisasContext *ctx, arg_X *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
#if defined(TARGET_PPC64)
gen_helper_PDEPD(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]);
#else
qemu_build_not_reached();
#endif
return true;
}
static bool trans_PEXTD(DisasContext *ctx, arg_X *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_INSNS_FLAGS2(ctx, ISA310);
#if defined(TARGET_PPC64)
gen_helper_PEXTD(cpu_gpr[a->ra], cpu_gpr[a->rt], cpu_gpr[a->rb]);
#else
qemu_build_not_reached();
#endif
return true;
}
static bool trans_ADDG6S(DisasContext *ctx, arg_X *a)
{
const target_ulong carry_bits = (target_ulong)-1 / 0xf;
TCGv in1, in2, carryl, carryh, tmp;
TCGv zero = tcg_constant_tl(0);
REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206);
in1 = cpu_gpr[a->ra];
in2 = cpu_gpr[a->rb];
tmp = tcg_temp_new();
carryl = tcg_temp_new();
carryh = tcg_temp_new();
/* Addition with carry. */
tcg_gen_add2_tl(carryl, carryh, in1, zero, in2, zero);
/* Addition without carry. */
tcg_gen_xor_tl(tmp, in1, in2);
/* Difference between the two is carry in to each bit. */
tcg_gen_xor_tl(carryl, carryl, tmp);
/*
* The carry-out that we're looking for is the carry-in to
* the next nibble. Shift the double-word down one nibble,
* which puts all of the bits back into one word.
*/
tcg_gen_extract2_tl(carryl, carryl, carryh, 4);
/* Invert, isolate the carry bits, and produce 6's. */
tcg_gen_andc_tl(carryl, tcg_constant_tl(carry_bits), carryl);
tcg_gen_muli_tl(cpu_gpr[a->rt], carryl, 6);
return true;
}
static bool trans_CDTBCD(DisasContext *ctx, arg_X_sa *a)
{
REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206);
gen_helper_CDTBCD(cpu_gpr[a->ra], cpu_gpr[a->rs]);
return true;
}
static bool trans_CBCDTD(DisasContext *ctx, arg_X_sa *a)
{
REQUIRE_INSNS_FLAGS2(ctx, BCDA_ISA206);
gen_helper_CBCDTD(cpu_gpr[a->ra], cpu_gpr[a->rs]);
return true;
}
static bool do_hash(DisasContext *ctx, arg_X *a, bool priv,
void (*helper)(TCGv_ptr, TCGv, TCGv, TCGv))
{
TCGv ea;
if (!(ctx->insns_flags2 & PPC2_ISA310)) {
/* if version is before v3.1, this operation is a nop */
return true;
}
if (priv) {
/* if instruction is privileged but the context is in user space */
REQUIRE_SV(ctx);
}
if (unlikely(a->ra == 0)) {
/* if RA=0, the instruction form is invalid */
gen_invalid(ctx);
return true;
}
ea = do_ea_calc(ctx, a->ra, tcg_constant_tl(a->rt));
helper(tcg_env, ea, cpu_gpr[a->ra], cpu_gpr[a->rb]);
return true;
}
TRANS(HASHST, do_hash, false, gen_helper_HASHST)
TRANS(HASHCHK, do_hash, false, gen_helper_HASHCHK)
TRANS(HASHSTP, do_hash, true, gen_helper_HASHSTP)
TRANS(HASHCHKP, do_hash, true, gen_helper_HASHCHKP)